Advertisement

Dicyanovinylene-Substituted Oligothiophenes for Organic Solar Cells

  • Christian Koerner
  • Hannah Ziehlke
  • Roland Fitzner
  • Moritz Riede
  • Amaresh Mishra
  • Peter Bäuerle
  • Karl Leo
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 272)

Abstract

We investigate dicyanovinyl-substituted oligothiophene derivatives as absorber materials in organic solar cells. We determine structure–property relationships, which are important for materials design. We demonstrate the influence of those structural changes on the processing ability, energy levels, optical properties, thin-film morphology, and charge transport. Furthermore, we give a detailed picture of the microscopic processes between photon absorption and charge carrier generation, in particular, the importance of triplet exciton losses and a relationship between the yield of charge carrier generation and macroscopic charge-transport properties.

Keywords

Charge carrier generation Multijunction Oligothiophene Photoinduced absorption Small molecule Structure-property relationships Triplet exciton 

Notes

Acknowledgements

The authors gratefully acknowledge the following people for their contribution to this work: S. Olthof, C. Uhrich, M. Tietze, and M. Schwarze for UPS measurements; M. P. Hein and J. Jankowski for mobility measurements; C. Elschner, N. Cates-Miller, and M. McGehee (+team) for thin-film X-ray measurements; F. Selzer and D. Schütze and the IAPP Lesker team for preparation of samples; A. Petrich for material purification; M. Pfeiffer and C. Uhrich from Heliatek for our fruitful collaboration; E. Mena-Osteritz and R. Gresser for DFT calculation and discussion; M. Weil for single-crystal X-ray analysis. The authors gratefully acknowledge the DFG for funding this project within the priority program 1355 (LE747-38 and BA 880/5).

References

  1. 1.
    Schulze K, Uhrich C, Schüppel R, Leo K, Pfeiffer M, Brier E, Reinold E, Bäuerle P (2006) Efficient vacuum-deposited organic solar cells based on a new low-bandgap oligothiophene and fullerene C60. Adv Mater 18(21):2872–2875CrossRefGoogle Scholar
  2. 2.
    Meerheim R, Körner C, Leo K (2014) Highly efficient organic multi-junction solar cells with a thiophene based donor material. Appl Phys Lett 105(6):063306CrossRefGoogle Scholar
  3. 3.
    Schueppel R, Schmidt K, Uhrich C, Schulze K, Wynands D, Brédas J, Brier E, Reinold E, Bu HB, Baeuerle P, Maennig B, Pfeiffer M, Leo K (2008) Optimizing organic photovoltaics using tailored heterojunctions: a photoinduced absorption study of oligothiophenes with low band gaps. Phys Rev B 77(8):085311CrossRefGoogle Scholar
  4. 4.
    Fitzner R, Reinold E, Mishra A, Mena-Osteritz E, Ziehlke H, Körner C, Leo K, Riede M, Weil M, Tsaryova O, WeißA, Uhrich C, Pfeiffer M, Bäuerle P (2011) Dicyanovinyl-substituted oligothiophenes: structure-property relationships and application in vacuum-processed small molecule organic solar cells. Adv Funct Mater 21(5):897–910CrossRefGoogle Scholar
  5. 5.
    Fitzner R, Elschner C, Weil M, Uhrich C, Körner C, Riede M, Leo K, Pfeiffer M, Reinold E, Mena-Osteritz E, Bäuerle P (2012) Interrelation between crystal packing and small-molecule organic solar cell performance. Adv Mater 24(5):675–680CrossRefGoogle Scholar
  6. 6.
    Fitzner R, Mena-Osteritz E, Mishra A, Schulz G, Reinold E, Weil M, Körner C, Ziehlke H, Elschner C, Leo K, Riede M, Pfeiffer M, Uhrich C, Bäuerle P (2012) Correlation of n-conjugated oligomer structure with film morphology and organic solar cell performance. J Am Chem Soc 134(27):11064–11067CrossRefGoogle Scholar
  7. 7.
    Schulz GL, Urdanpilleta M, Fitzner R, Brier E, Mena-Osteritz E, Reinold E, Bäuerle P (2013) Optimization of solution-processed oligothiophene: fullerene based organic solar cells by using solvent additives. Beilstein J Nanotechnol 4(1):680–689CrossRefGoogle Scholar
  8. 8.
    Tamao K, Kodama S, Nakajima I, Kumada M, Minato A, Suzuki K (1982) Nickel-phosphine complex-catalyzed Grignard coupling–II. Tetrahedron 38(22):3347–3354CrossRefGoogle Scholar
  9. 9.
    Qi T, Liu Y, Qiu W, Zhang H, Gao X, Liu Y, Lu K, Du C, Yu G, Zhu D (2008) Synthesis and properties of fluorene or carbazole-based and dicyanovinyl-capped n-type organic semiconductors. J Mater Chem 18(10):1131–1138CrossRefGoogle Scholar
  10. 10.
    Raposo MMM, Fonseca AMC, Kirsch G (2004) Synthesis of donor–acceptor substituted oligothiophenes by Stille coupling. Tetrahedron 60(18):4071–4078CrossRefGoogle Scholar
  11. 11.
    van Pham C, Macomber RS, Mark HB, Zimmer H (1984) Lithiation reaction of 2,5-dibromothiophene. Carbon-13 NMR spectra of 3-substituted derivatives. J Org Chem 49(26):5250–5253CrossRefGoogle Scholar
  12. 12.
    Asawapirom U, Güntner R, Forster M, Farrell T, Scherf U (2002) Dialkylfluorene-oligothiophene and dialkylfluorene-dithienylvinylene alternating copolymers. Synthesis 2002(09):1136–1142CrossRefGoogle Scholar
  13. 13.
    Körner C (2013) Oligothiophene materials for organic solar cells—photophysics and device properties. Dissertation, TU DresdenGoogle Scholar
  14. 14.
    Fitzner R, Mena-Osteritz E, Walzer K, Pfeiffer M, Bäuerle P (2015) A-D-A-type oligothiophenes for small molecule organic solar cells: extending the n-system by introduction of ring-locked double bonds. Adv Funct Mater 25:1845–1856CrossRefGoogle Scholar
  15. 15.
    Steinberger S, Mishra A, Reinold E, Levichkov J, Uhrich C, Pfeiffer M, Bäuerle P (2011) Vacuum-processed small molecule solar cells based on terminal acceptor-substituted low-band gap oligothiophenes. Chem Commun 47(7):1982–1984CrossRefGoogle Scholar
  16. 16.
    Pappenfus TM, Burand MW, Janzen DE, Mann KR (2003) Synthesis and characterization of tricyanovinyl-capped oligothiophenes as low-band-gap organic materials. Org Lett 5(9):1535–1538CrossRefGoogle Scholar
  17. 17.
    Ziehlke H, Fitzner R, Koerner C, Gresser R, Reinold E, Bäuerle P, Leo K, Riede MK (2011) Side chain variations on a series of dicyanovinyl-terthiophenes: a photoinduced absorption study. J Phys Chem A 115(30):8437–8446CrossRefGoogle Scholar
  18. 18.
    Uhrich C, Schueppel R, Petrich A, Pfeiffer M, Leo K, Brier E, Kilickiran P, Baeuerle P (2007) Organic thin-film photovoltaic cells based on oligothiophenes with reduced bandgap. Adv Funct Mater 17(15):2991–2999CrossRefGoogle Scholar
  19. 19.
    Wynands D, Levichkova M, Riede M, Pfeiffer M, Baeuerle P, Rentenberger R, Denner P, Leo K (2010) Correlation between morphology and performance of low bandgap oligothiophene:C60 mixed heterojunctions in organic solar cells. J Appl Phys 107(1):2–7CrossRefGoogle Scholar
  20. 20.
    Ziehlke H (2012) Excited state properties in dicyanovinyl-oligothiophene donor materials for small molecule organic solar cells. Dissertation, TU DresdenGoogle Scholar
  21. 21.
    Koerner C, Elschner C, Miller NC, Fitzner R, Selzer F, Reinold E, Bäuerle P, Toney MF, McGehee MD, Leo K, Riede M (2012) Probing the effect of substrate heating during deposition of DCV4T:C60 blend layers for organic solar cells. Org Electron 13(4):623–631CrossRefGoogle Scholar
  22. 22.
    Gommans H, Cheyns D, Aernouts T, Girotto C, Poortmans J, Heremans P (2007) Electro-optical study of subphthalocyanine in a bilayer organic solar cell. Adv Funct Mater 17:2653–2658CrossRefGoogle Scholar
  23. 23.
    Griffith OL, Forrest SR (2014) Exciton management in organic photovoltaic multidonor energy cascades. Nano Lett 14(5):2353–2358CrossRefGoogle Scholar
  24. 24.
    Brown P, Thomas D, Köhler A, Wilson J, Kim JS, Ramsdale C, Sirringhaus H, Friend R (2003) Effect of interchain interactions on the absorption and emission of poly(3-hexylthiophene). Phys Rev B 67(6):064203CrossRefGoogle Scholar
  25. 25.
    Gierschner J, Cornil J, Egelhaaf HJ (2007) Optical bandgaps of n-conjugated organic materials at the polymer limit: experiment and theory. Adv Mater 19(2):173–191CrossRefGoogle Scholar
  26. 26.
    Schrader M, Fitzner R, Hein M, Elschner C, Baumeier B, Leo K, Riede M, Bäuerle P, Andrienko D (2012) Comparative study of microscopic charge dynamics in crystalline acceptor-substituted oligothiophenes. J Am Chem Soc 134(13):6052–6056CrossRefGoogle Scholar
  27. 27.
    Schrader M, Körner C, Elschner C, Andrienko D (2012) Charge transport in amorphous and smectic mesophases of dicyanovinyl-substituted oligothiophenes. J Mater Chem 22(41):22258–22264CrossRefGoogle Scholar
  28. 28.
    Wynands D (2011) Strategies for optimizing organic solar cells. Dissertation, TU DresdenGoogle Scholar
  29. 29.
    Yoshida H (2013) New experimental method to precisely examine the LUMO levels of organic semiconductors and application to the fullerene derivatives. MRS Proc 1493:1CrossRefGoogle Scholar
  30. 30.
    Schueppel R, Uhrich C, Pfeiffer M, Leo K, Brier E, Reinold E, Baeuerle P (2007) Enhanced photogeneration of triplet excitons in an oligothiophene-fullerene blend. Chem Phys Chem 8(10):1497–1503Google Scholar
  31. 31.
    Veldman D, Meskers SCJ, Janssen RAJ (2009) The energy of charge-transfer states in electron donor–acceptor blends: insight into the energy losses in organic solar cells. Adv Funct Mater 19(12):1939–1948CrossRefGoogle Scholar
  32. 32.
    Ziehlke H, Burtone L, Koerner C, Fitzner R, Reinold E, Bäuerle P, Leo K, Riede M (2011) Increase of charge carrier lifetime in dicyanovinyl–quinquethiophene: fullerene blends upon deposition on heated substrates. Org Electron 12(12):2258–2267CrossRefGoogle Scholar
  33. 33.
    Koerner C, Ziehlke H, Gresser R, Fitzner R, Reinold E, Bäuerle P, Leo K, Riede M, Bäuerle P (2012) Temperature activation of the photoinduced charge carrier generation efficiency in quaterthiophene: C60 mixed films. J Phys Chem C 116(47):25097–25105CrossRefGoogle Scholar
  34. 34.
    Scholz R, Luschtinetz R, Seifert G, Jägeler-Hoheisel T, Körner C, Leo K, Rapacioli M (2013) Quantifying charge transfer energies at donor-acceptor interfaces in small-molecule solar cells with constrained DFTB and spectroscopic methods. J Phys Condens Matter 25:473201CrossRefGoogle Scholar
  35. 35.
    Schlenker CW, Thompson ME (2011) The molecular nature of photovoltage losses in organic solar cells. Chem Commun 47(13):3702–3716CrossRefGoogle Scholar
  36. 36.
    Wynands D, Levichkova M, Leo K, Uhrich C, Schwartz G, Hildebrandt D, Pfeiffer M, Riede M (2010) Increase in internal quantum efficiency in small molecular oligothiophene: C60 mixed heterojunction solar cells by substrate heating. Appl Phys Lett 97(7):073503CrossRefGoogle Scholar
  37. 37.
    Koerner C, Hein MP, Kažukauskas V, Sakavičius A, Janonis V, Fitzner R, Bäuerle P, Leo K, Riede M (2014) Correlation between temperature activation of charge-carrier generation efficiency and hole mobility in small-molecule donor materials. ChemPhysChem 15:1049–1055CrossRefGoogle Scholar
  38. 38.
    Walzer K, Maennig B, Pfeiffer M, Leo K (2007) Highly efficient organic devices based on electrically doped transport layers. Chem Rev 107(4):1233–1271CrossRefGoogle Scholar
  39. 39.
    Falkenberg C, Leo K, Riede MK (2011) Improved photocurrent by using n-doped 2,3,8,9,14,15-hexachloro-5,6,11,12,17,18-hexaazatrinaphthylene as optical spacer layer in p-i-n type organic solar cells. J Appl Phys 110(12):124509CrossRefGoogle Scholar
  40. 40.
    Schueppel R, Timmreck R, Allinger N, Mueller T, Furno M, Uhrich C, Leo K, Riede M (2010) Controlled current matching in small molecule organic tandem solar cells using doped spacer layers. J Appl Phys 107(4):1–6CrossRefGoogle Scholar
  41. 41.
    Riede M, Uhrich C, Widmer J, Timmreck R, Wynands D, Schwartz G, Gnehr WM, Hildebrandt D, Weiss A, Hwang J, Sundarraj S, Erk P, Pfeiffer M, Leo K (2011) Efficient organic tandem solar cells based on small molecules. Adv Funct Mater 21(16):3019–3028CrossRefGoogle Scholar
  42. 42.
    Wynands D, Männig B, Riede M, Leo K, Brier E, Reinold E, Bäuerle P (2009) Organic thin film photovoltaic cells based on planar and mixed heterojunctions between fullerene and a low bandgap oligothiophene. J Appl Phys 106(5):054509CrossRefGoogle Scholar
  43. 43.
    Uhrich C (2008) Strategien zur Optimierung organischer Solarzellen: Dotierte Transportschichten und neuartige Oligothiophene mit reduzierter Bandlücke. Dissertation, TU Dresden [German]Google Scholar
  44. 44.
    Moench T, Friederich P, Holzmueller F, Rutkowski B, Benduhn J, Strunk T, Koerner C, Vandewal K, Czyrska-Filemonowicz A, Wenzel W, Leo K (2016) Adv Energy Mater 1501280. doi: 10.1002/aenm.201501280Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Christian Koerner
    • 1
    • 2
  • Hannah Ziehlke
    • 1
    • 2
  • Roland Fitzner
    • 1
    • 2
  • Moritz Riede
    • 1
    • 2
  • Amaresh Mishra
    • 1
    • 2
  • Peter Bäuerle
    • 1
    • 2
  • Karl Leo
    • 1
    • 2
  1. 1.Institut für Angewandte PhotophysikTechnische Universtität DresdenDresdenGermany
  2. 2.Institut für Organische Chemie II und Neue MaterialienUniversität UlmUlmGermany

Personalised recommendations