Skip to main content

Impact of Charge Carrier Mobility and Electrode Selectivity on the Performance of Organic Solar Cells

  • Chapter
  • First Online:

Part of the book series: Advances in Polymer Science ((POLYMER,volume 272))

Abstract

Low charge carrier mobilities as often observed for photoactive materials of organic solar cells have significant impact on their performance. They cause accumulation of charge carriers which can be described quantitatively by a nonohmic transport resistance in the framework of an analytical model. Further addressed in this work is surface recombination stemming from insufficient electrode selectivity which is another factor limiting the performance of organic solar cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ebenhoch B et al (2015) Org Electron 22:62

    Article  CAS  Google Scholar 

  2. Baumann A et al (2012) Adv Mater 24:4381

    Article  CAS  Google Scholar 

  3. Lv A et al (2012) Adv Mater 24:2626

    Article  CAS  Google Scholar 

  4. Mas-Torrent M et al (2004) J Am Chem Soc 126:984

    Article  CAS  Google Scholar 

  5. von Hauff E, Dyakonov V, Parisi J (2005) Sol Energy Mater Sol Cells 87:149

    Article  Google Scholar 

  6. Bässler H (1993) Phys Stat Sol 175:15

    Article  Google Scholar 

  7. Coehoorn R, Pasveer WF, Bobbert PA, Michels MAJ (2005) Phys Rev B 72:155206

    Google Scholar 

  8. Yuan Y et al (2014) Nat Commun 5:3005

    Google Scholar 

  9. Jurchescu OD, Baas J, Palstra TTM (2004) Appl Phys Lett 84:3061

    Article  CAS  Google Scholar 

  10. Jurchescu OD, Popinciuc M, van Wees BJ, Palstra TTM (2007) Adv Mater 19:688

    Article  CAS  Google Scholar 

  11. Mihailetchi VD et al (2006) Adv Funct Mater 16:699

    Article  CAS  Google Scholar 

  12. Liu Y et al (2014) Nat Commun 5:5293

    Article  CAS  Google Scholar 

  13. Clarke TM et al (2012) Org Electron 13:2639

    Article  CAS  Google Scholar 

  14. Ludwig GW, Watters RL (1956) Phys Rev 101:1699

    Article  CAS  Google Scholar 

  15. Geens W et al (2004) Thin Solid Films 451–452:498

    Article  Google Scholar 

  16. Park JH, Jung EH, Jung JW, Jo WH (2013) Adv Mater 25:2583

    Article  CAS  Google Scholar 

  17. Martens T et al. (2003) In: Kafafi ZH (ed) Organic photovoltaics III. International symposium on optical science and technology. Proceedings of SPIE, Seattle, vol 4801, 07 July 2002, p 40

    Google Scholar 

  18. Kline RJ, McGehee MD (2006) J Macromol Sci Polym Rev 46:27

    Google Scholar 

  19. Oklobia O, Shafai TS (2014) Sol Energy Mater Sol Cells 122:158

    Article  CAS  Google Scholar 

  20. van Duren JKJ et al (2004) Adv Funct Mater 14:425

    Article  Google Scholar 

  21. Juška G, Arlauskas K, Viliunas M (2000) Phys Rev Lett 84

    Google Scholar 

  22. Juška G, Arlauskas K, Viliunas M, Genevicius K (2000) Phys Rev B 62:16235

    Article  Google Scholar 

  23. Albrecht S et al (2012) J Phys Chem Lett 3:640

    Article  CAS  Google Scholar 

  24. Schubert M et al (2013) Phys Rev B 87

    Google Scholar 

  25. Mozer AJ et al (2005) Phys Rev B 72

    Google Scholar 

  26. Homa B, Andersson M, Inganäs O (2009) Org Electron 10:501

    Article  CAS  Google Scholar 

  27. Philippa B et al (2015) Org Electron 16:205

    Article  CAS  Google Scholar 

  28. Juška G et al. (2011) Phys Rev B 84

    Google Scholar 

  29. Bange S, Schubert M, Neher D (2010) Phys Rev B 81

    Google Scholar 

  30. MacKenzie RCI, Kirchartz T, Dibb GFA, Nelson J (2011) J Phys Chem C 115:9806

    Google Scholar 

  31. Hanfland R et al (2013) Appl Phys Lett 103:63904

    Article  Google Scholar 

  32. Philippa B et al (2014) Sci Rep 4:5695

    Article  CAS  Google Scholar 

  33. Melianas A et al (2014) Adv Funct Mater 24:4507

    Article  CAS  Google Scholar 

  34. Kim Y, Yeom HR, Kim JY, Yang C (2013) Energy Environ Sci 6:1909

    Article  CAS  Google Scholar 

  35. Armin A et al (2012) Appl Phys Lett 101:83306

    Article  Google Scholar 

  36. Neukom MT, Reinke NA, Ruhstaller B (2011) Sol Energy 85:1250

    Article  CAS  Google Scholar 

  37. Foster S et al (2014) Adv Energy Mater 4:1400311

    Google Scholar 

  38. Bartesaghi D et al (2015) Nat Commun 6:7083

    Article  CAS  Google Scholar 

  39. Stelzl FF, Würfel U (2012) Phys Rev B 86:75315

    Article  Google Scholar 

  40. Stelzl FF (2013) PhD Thesis, Albert-Ludwigs-Universität Freiburg im Breisgau

    Google Scholar 

  41. Wagenpfahl A et al (2010) Phys Rev B 82

    Google Scholar 

  42. Shockley W, Read W (1952) Phys Rev 87:835

    Article  CAS  Google Scholar 

  43. Sinton RA, Swanson RM (1987) IEEE Trans Electron Devices 34:1380

    Article  Google Scholar 

  44. Würfel U, Neher D, Spies A, Albrecht S (2015) Nat Commun 6:6951

    Article  Google Scholar 

  45. Schiefer S, Zimmermann B, Glunz SW, Würfel U (2014) IEEE J Photovoltaics 4:271

    Article  Google Scholar 

  46. Schiefer S, Zimmermann B, Würfel U (2014) J Appl Phys 115:44506

    Article  Google Scholar 

  47. Albrecht S et al (2014) J Phys Chem Lett 5:1131

    Article  CAS  Google Scholar 

  48. Sinton RA, Cuevas A (eds) (2000) A quasi-steady-state open-circuit voltage method for solar cell characterization. In: Proceedings of the 16th European photovoltaic solar energy conference, Glasgow, UK

    Google Scholar 

  49. Wolf M, Rauschenbach H (1963) Adv Energy Conversion 3:455

    Article  Google Scholar 

  50. Synopsis, TCAD Sentaurus: Sentaurus device user guide, release H-2013.03 (2013)

    Google Scholar 

  51. Vandewal K et al (2009) Nat Mater 8:904

    Article  CAS  Google Scholar 

  52. Tvingstedt K et al (2009) J Am Chem Soc 131:11819

    Article  CAS  Google Scholar 

  53. Vandewal K et al (2010) Phys Rev B 81:125204

    Article  Google Scholar 

  54. Shockley W, Queisser HJ (1961) J Appl Phys 32:510

    Article  CAS  Google Scholar 

  55. Scharber MC et al (2006) Adv Mater 18:789

    Article  CAS  Google Scholar 

  56. Kniepert J, Schubert M, Blakesley JC, Neher D (2011) J Phys Chem Lett 2:700

    Article  CAS  Google Scholar 

  57. Reinhardt J et al (2014) Adv Energy Mater 4:1400081

    Article  Google Scholar 

  58. Würfel U, Cuevas A, Würfel P (2015) IEEE J Photovoltaics 5:461

    Article  Google Scholar 

  59. Peters CH et al (2011) Adv Energy Mater 1:491

    Article  CAS  Google Scholar 

  60. Deibel C, Wagenpfahl A, Dyakonov V (2008) Phys Status Solidi RRL 2:175

    Google Scholar 

  61. Kirchartz T, Pieters BE, Taretto K, Rau U (2009) Phys Rev B 80:35334

    Article  Google Scholar 

  62. Mandoc MM, Koster LJA, Blom, PWM (2007) Appl Phys Lett 90:133504

    Google Scholar 

  63. Seßler M, Saeed A, Kohlstädt M, Würfel U (2014) Org Electron 15:1407

    Article  Google Scholar 

  64. Ratcliff EL et al (2013) Adv Energy Mater 3:647

    Article  CAS  Google Scholar 

  65. Ratcliff EL, Zacher B, Armstrong NR (2011) J Phys Chem Lett 2:1337

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uli Würfel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Spies, A., Reinhardt, J., List, M., Zimmermann, B., Würfel, U. (2017). Impact of Charge Carrier Mobility and Electrode Selectivity on the Performance of Organic Solar Cells. In: Leo, K. (eds) Elementary Processes in Organic Photovoltaics. Advances in Polymer Science, vol 272. Springer, Cham. https://doi.org/10.1007/978-3-319-28338-8_17

Download citation

Publish with us

Policies and ethics