Advertisement

Controlling the Electronic Interface Properties in Polymer–Fullerene Bulk Heterojunction Solar Cells

  • T. StubhanEmail author
  • N. Wolf
  • J. Manara
  • V. Dyakonov
  • C. J. Brabec
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 272)

Abstract

This work covers the use of solution-processed metal oxides as interface layers for organic solar cells. To study the interface properties, intrinsic and Al-doped ZnO x were chosen as reference systems. From the class of n-type metal oxides, ZnO x was chosen because it can be doped when it is solution processed. Furthermore, the influence of thin modification layers applied on top of the metal oxides is investigated.

Keywords

Aluminum-doped zinc oxide Barium hydroxide Charge transport in nanoparticular films Conjugated polyelectrolyte Device structure Diketopyrrolopyrrole-quinquethiophene Doped zinc oxide Electronic surface properties Energy diagram Energy-level diagrams EQE spectra Inferface layers for organic solar cells Interface layers Interface modification layers Inverted organic solar cells J-V characteristics Low temperature Molybdenum oxide Mott–Schottky capacitance Oxygen P3HT PCDTBT Phosphonic acid anchored fullerene SAM Polyvinylpyrrolidone Poole–Frenkel effect Reference solar cells SAM modification Stability of interface materials Stabilization of AZO nanoparticles Summary Thickness dependence Trioxadecanoic acid Water Zinc oxide 

Notes

Acknowledgment

This work is supported by the German Science Foundation (DFG), grant numbers BR 4031/1-1, DY 18/7-1, BR 4031/1-2, and DY 18/7-2.

References

  1. 1.
    Wagenpfahl A, Rauh D, Binder M, Deibel C (2010) Phys Rev B 82:115306CrossRefGoogle Scholar
  2. 2.
    Wang J, Polleux J, Lim J, Dunn B (2007) J Phys Chem C 111:14925CrossRefGoogle Scholar
  3. 3.
    Alam MJ, Cameron DC (2001) J Vac Sci Technol A 19:1642CrossRefGoogle Scholar
  4. 4.
    Park Y-S, Park HK, Cho SW, Jeong JA, Choi KH, Kim HK, Lee JY, Cho WJ (2008) Electrochem Solid-State Lett 11:J85CrossRefGoogle Scholar
  5. 5.
    Huang H-H, Chu SY, Kao PC, Chen YC (2008) Thin Solid Films 516(16):5664Google Scholar
  6. 6.
    Yoshida Y, Tanaka S, Hiromttsu I, Fujita Y, Yoshino K (2008) Jpn J Appl Phys 47:867CrossRefGoogle Scholar
  7. 7.
    Park YR, Nam E, Kim YS (2008) Jpn J Appl Phys 47:468CrossRefGoogle Scholar
  8. 8.
    Tsai C-L, Lin YJ, Wu PH, Chen SY, Liu DS, Hong HJH, Liu CJ, Chang HC (2007) J Appl Phys 101(11):113713Google Scholar
  9. 9.
    Al-Dahoudi N, Aegerter MA (2006) Thin Solid Films 502:193–197CrossRefGoogle Scholar
  10. 10.
    Dislich H (1986) J Non-Cryst Solids 80:115–121CrossRefGoogle Scholar
  11. 11.
    Rydzek M, Reidinger M, Arduini-Schuster M, Manara J (2011) Prog Org Coat 70:369–375CrossRefGoogle Scholar
  12. 12.
    Reidinger M, Rydzek M, Scherdel C, Arduini-Schuster M, Manara J (2009) Thin Solid Films 517:3096–3099CrossRefGoogle Scholar
  13. 13.
    Rydzek M, Reidinger M, Arduini-Schuster M, Manara J (2012) Thin Solid Films 520:4114–4118CrossRefGoogle Scholar
  14. 14.
    Rydzek M, Reidinger M, Scherdel C, Arduini-Schuster M, Manara J (2009) High Temp–High Pressures 38:277–293Google Scholar
  15. 15.
    Puetz J, Al-Dahoudi N, Aegerter MA (2004) Adv Eng Mater 6:733–737CrossRefGoogle Scholar
  16. 16.
    Al-Dahoudi N (2003) Dissertation, Universität des SaarlandesGoogle Scholar
  17. 17.
    Al-Dahoudi N, Aegerter MA (2006) Thin Solid Films 520:193CrossRefGoogle Scholar
  18. 18.
    Zhang YL, Yang Y, Zhao JH, Tan RQ, Cui P, Song WJ (2009) J Sol-Gel Sci Technol 51:198CrossRefGoogle Scholar
  19. 19.
    Serier H, Gaudon M, Ménétrier M (2009) Solid State Sci 11:1192CrossRefGoogle Scholar
  20. 20.
    Zhao J, Tan R, Zhang Y, Yang Y, Guo Y, Zhang X, Wang W, Song W (2011) J Am Ceram Soc 94:725–728CrossRefGoogle Scholar
  21. 21.
    Stubhan T, Salinas M, Ebel A, Krebs FC, Hirsch A, Halik M, Brabec CJ (2012) Adv Energy Mater 2:532CrossRefGoogle Scholar
  22. 22.
    Zhang H, Stubhan T, Li N, Turbiez M, Matt GJ, Ameri T, Brabec CJ (2014) J Mater Chem A 2:18917CrossRefGoogle Scholar
  23. 23.
    Min J, Luponosov YN, Ameri T, Elschner A, Peregudova SM, Baran D, Heumüller T, Li N, Machui F, Ponomarenko S, Brabec CJ (2013) Org Electron 14:219–229CrossRefGoogle Scholar
  24. 24.
    Scherf U, Gutacker A, Koenen N (2008) Acc Chem Res 41:1086–1097CrossRefGoogle Scholar
  25. 25.
    Seo JH, Gutacker A, Sun Y, Wu H, Huang F, Cao Y, Scherf U, Heeger AJ, Bazan GC (2011) J Am Chem Soc 133:8416CrossRefGoogle Scholar
  26. 26.
    He ZC, Zhong CM, Su SJ, Xu M, Wu HB, Cao Y (2012) Nat Photonics 6:591–595Google Scholar
  27. 27.
    Kyaw AKK, Wang DH, Gupta V, Zhang J, Chand S, Bazan GC, Heeger AJ (2013) Adv Mater 25:2397–2402CrossRefGoogle Scholar
  28. 28.
    Choi H, Park JS, Jeong E, Kim G-H, Lee BR, Kim SO, Song MH, Woo HY, Kim JY (2011) Adv Mater 23:2759–2763CrossRefGoogle Scholar
  29. 29.
    Jeong JK, Won Yang H, Jeong JH, Mo Y-G, Kim HD (2008) Appl Phys Lett 93:123508CrossRefGoogle Scholar
  30. 30.
    Litzov I, Azimi H, Matt G, Kubis P, Stubhan T, Popov G, Brabec CJ Org Electron 15(2):569–576Google Scholar
  31. 31.
    Oh H, Krantz J, Stubhan T, Litzov I, Brabec CJ (2011) Sol Energy Mater Sol Cells 95:2194CrossRefGoogle Scholar
  32. 32.
    Stubhan T, Oh H, Pinna L, Krantz J, Litzov I, Brabec CJ (2011) Org Electron 12:1539CrossRefGoogle Scholar
  33. 33.
    Stubhan T, Ameri T, Salinas M, Krantz J, Machui F, Halik M, Brabec CJ (2011) Appl Phys Lett 98:253308CrossRefGoogle Scholar
  34. 34.
    Wolf N, Rydzek M, Gerstenlauer D, Arduini-Schuster M, Manara J (2013) Thin Solid Films 532:60–65CrossRefGoogle Scholar
  35. 35.
    Wolf N, Stubhan T, Manara J, Dyakonov V, Brabec CJ (2014) Thin Solid Films 564:213CrossRefGoogle Scholar
  36. 36.
    Sista S, Park M-H, Hong Z, Wu Y, Hou J, Kwan WL, Li G, Yang Y (2010) Adv Mater 22:380CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • T. Stubhan
    • 1
    Email author
  • N. Wolf
    • 2
  • J. Manara
    • 2
  • V. Dyakonov
    • 2
  • C. J. Brabec
    • 1
    • 3
  1. 1.Materials for Electronics and Energy Technology (i-MEET)Friedrich-Alexander-Universtät Erlangen-NürnbergErlangenGermany
  2. 2.Bavarian Center for Applied Energy Research (ZAE Bayern)WürzburgGermany
  3. 3.Bavarian Center for Applied Energy Research (ZAE Bayern)ErlangenGermany

Personalised recommendations