Tuning Side Chain and Main Chain Order in a Prototypical Donor–Acceptor Copolymer: Implications for Optical, Electronic, and Photovoltaic Characteristics

  • Marcel SchubertEmail author
  • Johannes Frisch
  • Sybille Allard
  • Eduard Preis
  • Ullrich Scherf
  • Norbert Koch
  • Dieter Neher
Part of the Advances in Polymer Science book series (POLYMER, volume 272)


The recent development of donor–acceptor copolymers has led to an enormous improvement in the performance of organic solar cells and organic field-effect transistors. Here we describe the synthesis, detailed characterisation, and application of a series of structurally modified copolymers to investigate fundamental structure–property relationships in this class of conjugated polymers. The interplay between chemical structure and optoelectronic properties is investigated. These are further correlated to the charge transport and solar cell performance, which allows us to link their chemical structure to the observed physical properties.


Aggregate states All‐polymer heterojunctions Alternating copolymers Ambipolar charge transport Ambipolar materials Backbone modifications Bilayer solar cells Charge separation Conformational disorder Crystalline phases Donor–acceptor copolymers Electron traps Energetic disorder Energy‐level alignment Fermi‐level alignment Fermi‐level pinning Interface dipole Interlayer Intrachain order Intragap states Microscopic morphology Mobility imbalance Mobility relaxation Monte Carlo simulation Multiple trapping model Nonradiative recombination OFET Open‐circuit voltage Optoelectronic properties Partially alternating copolymers Photo‐CELIV Photocurrent Photovoltaic gap Polymer intermixing Recombination losses Spectral diffusion Statistical copolymers Stille‐type cross‐coupling Structure–property relationships Time‐dependent mobility Time‐of‐flight (TOF) Transient photocurrent Ultraviolet photoelectron spectroscopy Vacuum‐level alignment X‐ray photoelectron spectroscopy 



The authors thank the DFG for funding within the DFG Priority Program 1355 “Elementary Processes of Organic Photovoltaics.” This report is based on results obtained by the collaboration of project no. 15 (“Tuning the Optical and Charge-Transporting Properties of the Electron-Accepting Phase in Polymer Solar Cells”) and project number 11 (“Electronic Properties of Interfaces with Conjugated Polymers and Polyelectrolytes”).


  1. 1.
    Zhang Z-G, Wang J (2012) J Mater Chem 22:4178CrossRefGoogle Scholar
  2. 2.
    Kang I, Yun H-J, Chung DS, Kwon S-K, Kim Y-H (2013) J Am Chem Soc 135:14896CrossRefGoogle Scholar
  3. 3.
    Tseng H-R, Phan H, Luo C, Wang M, Perez LA, Patel SN, Ying L, Kramer EJ, Nguyen T-Q, Bazan GC, Heeger AJ (2014) Adv Mater 26:2993CrossRefGoogle Scholar
  4. 4.
    Yi Z, Wang S, Liu Y (2015) Adv Mater 27:3589CrossRefGoogle Scholar
  5. 5.
    Guo X, Facchetti A, Marks TJ (2014) Chem Rev 114:8943CrossRefGoogle Scholar
  6. 6.
    Lin Y, Zhan X (2014) Mater Horiz 1:470CrossRefGoogle Scholar
  7. 7.
    Steyrleuthner R, Schubert M, Jaiser F, Blakesley JC, Chen Z, Facchetti A, Neher D (2010) Adv Mater 22:2799CrossRefGoogle Scholar
  8. 8.
    Yan H, Chen Z, Zheng Y, Newman C, Quinn JR, Dotz F, Kastler M, Facchetti A (2009) Nature 457:679CrossRefGoogle Scholar
  9. 9.
    Kang H, Uddin MA, Lee C, Kim K-H, Nguyen TL, Lee W, Li Y, Wang C, Woo HY, Kim BJ (2015) J Am Chem Soc 137:2359CrossRefGoogle Scholar
  10. 10.
    Mori D, Benten H, Okada I, Ohkita H, Ito S (2014) Energy Environ Sci 7:2939CrossRefGoogle Scholar
  11. 11.
    Ye L, Jiao X, Zhou M, Zhang S, Yao H, Zhao W, Xia A, Ade H, Hou J (2015) Adv Mater. doi: 10.1002/adma.201503218 Google Scholar
  12. 12.
    Li W, Roelofs WSC, Turbiez M, Wienk MM, Janssen RAJ (2014) Adv Mater 26:3304CrossRefGoogle Scholar
  13. 13.
    Steyrleuthner R, Di Pietro R, Collins BA, Polzer F, Himmelberger S, Schubert M, Chen Z, Zhang S, Salleo A, Ade H, Facchetti A, Neher D (2014) J Am Chem Soc 136:4245CrossRefGoogle Scholar
  14. 14.
    Marsh RA, Groves C, Greenham NC (2007) J Appl Phys 101:083509CrossRefGoogle Scholar
  15. 15.
    Offermans T, Meskers SCJ, Janssen RAJ (2005) Chem Phys 308:125CrossRefGoogle Scholar
  16. 16.
    Yang F, Forrest SR (2008) ACS Nano 2:1022CrossRefGoogle Scholar
  17. 17.
    Svensson M, Zhang F, Veenstra SC, Verhees WJH, Hummelen JC, Kroon JM, Inganäs O, Andersson MR (2003) Adv Mater 15:988CrossRefGoogle Scholar
  18. 18.
    Groves C, Marsh RA, Greenham NC (2008) J Chem Phys 129:114903CrossRefGoogle Scholar
  19. 19.
    Huang Y, Westenhoff S, Avilov I, Sreearunothai P, Hodgkiss JM, Deleener C, Friend RH, Beljonne D (2008) Nat Mater 7:483CrossRefGoogle Scholar
  20. 20.
    Liu J, Choi H, Kim JY, Bailey C, Durstock M, Dai L (2012) Adv Mater 24:538CrossRefGoogle Scholar
  21. 21.
    McNeill CR, Abrusci A, Zaumseil J, Wilson R, McKiernan MJ, Burroughes JH, Halls JJM, Greenham NC, Friend RH (2007) Appl Phys Lett 90:193506CrossRefGoogle Scholar
  22. 22.
    McNeill CR, Halls JJM, Wilson R, Whiting GL, Berkebile S, Ramsey MG, Friend RH, Greenham NC (2008) Adv Funct Mater 18:2309CrossRefGoogle Scholar
  23. 23.
    McNeill CR, Westenhoff S, Groves C, Friend RH, Greenham NC (2007) J Phys Chem C 111:19153CrossRefGoogle Scholar
  24. 24.
    Mori D, Benten H, Ohkita H, Ito S (2015) Adv Energy Mater 5:1500304CrossRefGoogle Scholar
  25. 25.
    Mori D, Benten H, Ohkita H, Ito S, Miyake K (2012) ACS Appl Mater Interfaces 4:3325CrossRefGoogle Scholar
  26. 26.
    Yan H, Collins BA, Gann E, Wang C, Ade H, McNeill CR (2012) ACS Nano 6:677CrossRefGoogle Scholar
  27. 27.
    Kodomari M, Satoh H, Yoshitomi S (1988) J Org Chem 53:2093CrossRefGoogle Scholar
  28. 28.
    Baillargeon VP, Stille JK (1986) J Am Chem Soc 108:452CrossRefGoogle Scholar
  29. 29.
    Li J-H, Liang Y, Wang D-P, Liu W-J, Xie Y-X, Yin D-L (2005) J Org Chem 70:2832CrossRefGoogle Scholar
  30. 30.
    Ellinger S, Ziener U, Thewalt U, Landfester K, Möller M (2007) Chem Mater 19:1070CrossRefGoogle Scholar
  31. 31.
    Letizia JA, Salata MR, Tribout CM, Facchetti A, Ratner MA, Marks TJ (2008) J Am Chem Soc 130:9679CrossRefGoogle Scholar
  32. 32.
    Mulherin RC, Jung S, Huettner S, Johnson K, Kohn P, Sommer M, Allard S, Scherf U, Greenham NC (2011) Nano Lett 11:4846CrossRefGoogle Scholar
  33. 33.
    Nothofer H-G (2005) Dissertation, Universität PotsdamGoogle Scholar
  34. 34.
    Yamamoto T (1992) Prog Polym Sci 17:1153CrossRefGoogle Scholar
  35. 35.
    Hwang J, Kim E-G, Liu J, Brédas J-L, Duggal A, Kahn A (2007) J Phys Chem C 111:1378CrossRefGoogle Scholar
  36. 36.
    Koch N, Elschner A, Rabe JP, Johnson RL (2005) Adv Mater 17:330CrossRefGoogle Scholar
  37. 37.
    Lange I, Blakesley JC, Frisch J, Vollmer A, Koch N, Neher D (2011) Phys Rev Lett 106:216402CrossRefGoogle Scholar
  38. 38.
    Sueyoshi T, Fukagawa H, Ono M, Kera S, Ueno N (2009) Appl Phys Lett 95:183303CrossRefGoogle Scholar
  39. 39.
    Garreau S, Leclerc M, Errien N, Louarn G (2003) Macromolecules 36:692CrossRefGoogle Scholar
  40. 40.
    Steyrleuthner R, Schubert M, Howard I, Klaumünzer B, Schilling K, Chen Z, Saalfrank P, Laquai F, Facchetti A, Neher D (2012) J Am Chem Soc 134:18303CrossRefGoogle Scholar
  41. 41.
    Schubert M, Dolfen D, Frisch J, Roland S, Steyrleuthner R, Stiller B, Chen Z, Scherf U, Koch N, Facchetti A, Neher D (2012) Adv Energy Mater 2:369CrossRefGoogle Scholar
  42. 42.
    Chua L-L, Zaumseil J, Chang J-F, Ou EC-W, Ho PK-H, Sirringhaus H, Friend RH (2005) Nature 434:194CrossRefGoogle Scholar
  43. 43.
    Bange S, Schubert M, Neher D (2010) Phys Rev B 81:035209CrossRefGoogle Scholar
  44. 44.
    Schubert M, Preis E, Blakesley JC, Pingel P, Scherf U, Neher D (2013) Phys Rev B 87:024203CrossRefGoogle Scholar
  45. 45.
    Orenstein J, Kastner M (1981) Phys Rev Lett 46:1421CrossRefGoogle Scholar
  46. 46.
    Nicolai HT, Kuik M, Wetzelaer GAH, de Boer B, Campbell C, Risko C, Brédas JL, Blom PWM (2012) Nat Mater 11:882CrossRefGoogle Scholar
  47. 47.
    Kilina S, Dandu N, Batista ER, Saxena A, Martin RL, Smith DL, Tretiak S (2013) J Phys Chem Lett 4:1453CrossRefGoogle Scholar
  48. 48.
    Noriega R, Rivnay J, Vandewal K, Koch FPV, Stingelin N, Smith P, Toney MF, Salleo A (2013) Nat Mater 12:1038CrossRefGoogle Scholar
  49. 49.
    Huang DM, Mauger SA, Friedrich S, George SJ, Dumitriu-LaGrange D, Yoon S, Moulé AJ (2011) Adv Funct Mater 21:1657CrossRefGoogle Scholar
  50. 50.
    Chang J-F, Sun B, Breiby DW, Nielsen MM, Sölling TI, Giles M, McCulloch I, Sirringhaus H (2004) Chem Mater 16:4772CrossRefGoogle Scholar
  51. 51.
    Zen A, Pflaum J, Hirschmann S, Zhuang W, Jaiser F, Asawapirom U, Rabe JP, Scherf U, Neher D (2004) Adv Funct Mater 14:757CrossRefGoogle Scholar
  52. 52.
    Hao XT, Hosokai T, Mitsuo N, Kera S, Okudaira KK, Mase K, Ueno N (2007) J Phys Chem B 111:10365CrossRefGoogle Scholar
  53. 53.
    Heimel G, Salzmann I, Duhm S, Rabe JP, Koch N (2009) Adv Funct Mater 19:3874CrossRefGoogle Scholar
  54. 54.
    Frisch J, Vollmer A, Rabe JP, Koch N (2011) Org Electron 12:916CrossRefGoogle Scholar
  55. 55.
    Braun S, Salaneck WR, Fahlman M (2009) Adv Mater 21:1450CrossRefGoogle Scholar
  56. 56.
    Hwang J, Wan A, Kahn A (2009) Mater Sci Eng R Rep 64:1CrossRefGoogle Scholar
  57. 57.
    Kanai K, Miyazaki T, Suzuki H, Inaba M, Ouchi Y, Seki K (2010) Phys Chem Chem Phys 12:273CrossRefGoogle Scholar
  58. 58.
    Dennler G, Scharber MC, Brabec CJ (2009) Adv Mater 21:1323CrossRefGoogle Scholar
  59. 59.
    Rand BP, Burk DP, Forrest SR (2007) Phys Rev B 75:115327CrossRefGoogle Scholar
  60. 60.
    Burke TM, Sweetnam S, Vandewal K, McGehee MD (2015) Adv Energy Mater 5:1500123CrossRefGoogle Scholar
  61. 61.
    Vandewal K, Tvingstedt K, Gadisa A, Inganäs O, Manca JV (2010) Phys Rev B 81:125204CrossRefGoogle Scholar
  62. 62.
    Kuriyama T, Kunimori K, Kuriyama T, Nozoye H (1998) Chem Commun 501. doi: 10.1039/A707932J
  63. 63.
    Frisch J, Schubert M, Preis E, Rabe JP, Neher D, Scherf U, Koch N (2012) J Mater Chem 22:4418CrossRefGoogle Scholar
  64. 64.
    Würfel U, Neher D, Spies A, Albrecht S (2015) Nat Commun 6:6951CrossRefGoogle Scholar
  65. 65.
    Schubert M, Collins BA, Mangold H, Howard IA, Schindler W, Vandewal K, Roland S, Behrends J, Kraffert F, Steyrleuthner R, Chen Z, Fostiropoulos K, Bittl R, Salleo A, Facchetti A, Laquai F, Ade HW, Neher D (2014) Adv Funct Mater 24:4068CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Marcel Schubert
    • 1
    Email author
  • Johannes Frisch
    • 2
  • Sybille Allard
    • 3
  • Eduard Preis
    • 3
  • Ullrich Scherf
    • 3
  • Norbert Koch
    • 2
    • 4
  • Dieter Neher
    • 5
  1. 1.Soft Matter Photonics, School of Physics and Astronomy, University of St AndrewsSt AndrewsUK
  2. 2.Institut für Physik and IRIS Adlershof, Humboldt-Universität zu BerlinBerlinGermany
  3. 3.Macromolecular Chemistry and Institute for Polymer Technology, Bergische Universität WuppertalWuppertalGermany
  4. 4.Helmholtz Zentrum Berlin für Materialien und Energie GmbHBerlinGermany
  5. 5.Physics of Soft Matter, School of Physics and Astronomy, University of PotsdamPotsdamGermany

Personalised recommendations