Skip to main content

Ultrathin Oxide Films on Au(111) Substrates

  • Chapter
  • First Online:
Oxide Materials at the Two-Dimensional Limit

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 234))

Abstract

The Au(111) surface is an excellent substrate for the growth of ultrathin oxide films. Although it is chemically relatively inert, the high electronegativity of Au tends to give rise to strong interactions between the oxide film and the substrate via charge transfer processes. Many new surface oxide structures with unique properties have been observed in ultrathin film form that have no analogues as bulk crystal terminations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

AES:

Auger electron spectroscopy

CVD:

Chemical vapor deposition

FCC:

Face centered cubic

HCP:

Hexagonal close packing

LEED:

Low-energy electron diffraction

MBE:

Molecular beam epitaxy

ML:

Monolayer

PVD:

Physical vapor deposition

RHEED:

Reflection high energy electron diffraction

RLAD:

Reactive-layer-assisted deposition

RT:

Room temperature

SMSI:

Strong metal-support interactions

STM:

Scanning tunneling microscopy

STS:

Scanning tunneling spectroscopy

TMAA:

Trimethyl acetic acid

TPD:

Thermal programmed desorption

UHV:

Ultrahigh vacuum

XPS:

X-ray photoelectron spectroscopy

References

  1. Motoyama Y, Matsuzaki H, Murakami H (2001) A study of the secondary electron yield gamma of insulator cathodes for plasma display panels. IEEE Trans Electron Dev 48(8):1568–1574. doi:10.1109/16.936562

    Article  Google Scholar 

  2. Matulevich YT, Vink TJ, van Emmichoven PAZ (2002) Low-energy ion-induced electron emission from a MgO(100) thin film: The role of the MgO-substrate interface. Phys Rev Lett 89(16):167601. doi:10.1103/PhysRevLett.89.167601

    Article  Google Scholar 

  3. Shaikhutdinov S, Freund HJ (2012) Ultrathin oxide films on metal supports: structure-reactivity relations. Annu Rev Phys Chem 63:619–633. doi:10.1146/annurev-physchem-032511-143737

    Article  Google Scholar 

  4. Chambers SA (2000) Epitaxial growth and properties of thin film oxides. Surf Sci Rep 39(5–6):105–180. doi:10.1016/s0167-5729(00)00005-4

    Article  Google Scholar 

  5. Nilius N (2009) Properties of oxide thin films and their adsorption behavior studied by scanning tunneling microscopy and conductance spectroscopy. Surf Sci Rep 64(12):595–659. doi:10.1016/j.surfrep.2009.07.004

    Article  Google Scholar 

  6. Goniakowski J, Finocchi F, Noguera C (2008) Polarity of oxide surfaces and nanostructures. Rep Prog Phys 71(1):55. doi:10.1088/0034-4885/71/1/016501

    Article  Google Scholar 

  7. Huber H, McIntosh D, Ozin GA (1977) Metal atom model for oxidation of carbon-monoxide to carbon-dioxide-gold atom carbon monoxide dioxygen reaction and gold atom carbon dioxide reaction. Inorg Chem 16(5):975–979. doi:10.1021/ic50171a001

    Article  Google Scholar 

  8. Green IX, Tang WJ, Neurock M, Yates JT (2011) Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO2 catalyst. Science 333(6043):736–739. doi:10.1126/science.1207272

    Article  Google Scholar 

  9. Fu Q, Saltsburg H, Flytzani-Stephanopoulos M (2003) Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 301(5635):935–938. doi:10.1126/science.1085721

    Article  Google Scholar 

  10. Fu Q, Weber A, Flytzani-Stephanopoulos M (2001) Nanostructured Au-CeO2 catalysts for low-temperature water-gas shift. Catal Lett 77(1–3):87–95. doi:10.1023/a:1012666128812

    Article  Google Scholar 

  11. Ueda A, Oshima T, Haruta M (1997) Reduction of nitrogen monoxide with propene in the presence of oxygen and moisture over gold supported on metal oxides. Applied Catalysis B-Environmental 12(2–3):81–93. doi:10.1016/s0926-3373(96)00069-0

    Article  Google Scholar 

  12. Zheng N, Stucky GD (2006) A general synthetic strategy for oxide-supported metal nanoparticle catalysts. J Am Chem Soc 128(44):14278–14280. doi:10.1021/ja0659929

    Article  Google Scholar 

  13. Hayashi T, Tanaka K, Haruta M (1998) Selective vapor-phase epoxidation of propylene over Au/TiO2 catalysts in the presence of oxygen and hydrogen. J Catal 178(2):566–575. doi:10.1006/jcat.1998.2157

    Article  Google Scholar 

  14. Rodriguez JA, Ma S, Liu P, Hrbek J, Evans J, Perez M (2007) Activity of CeOx and TiOx nanoparticles grown on Au(111) in the water-gas shift reaction. Science 318(5857):1757–1760. doi:10.1126/science.1150038

    Article  Google Scholar 

  15. Senanayake SD, Stacchiola D, Evans J, Estrella M, Barrio L, Pérez M, Hrbek J, Rodriguez JA (2010) Probing the reaction intermediates for the water–gas shift over inverse CeOx/Au(111) catalysts. J Catal 271(2):392–400. doi:10.1016/j.jcat.2010.02.024

    Article  Google Scholar 

  16. Yan T, Redman DW, Yu W-Y, Flaherty DW, Rodriguez JA, Mullins CB (2012) CO oxidation on inverse Fe2O3/Au(111) model catalysts. J Catal 294:216–222. doi:10.1016/j.jcat.2012.07.024

    Article  Google Scholar 

  17. Magkoev TT (2007) Interaction of carbon monoxide and oxygen at the surface of inverse titania/Au model catalyst. Surf Sci 601(14):3143–3148. doi:10.1016/j.susc.2007.05.015

    Article  Google Scholar 

  18. Wu C, Marshall MSJ, Castell MR (2011) Surface structures of ultrathin TiOx films on Au(111). J Phys Chem C 115(17):8643–8652. doi:10.1021/jp111385n

    Article  Google Scholar 

  19. Pan Y, Benedetti S, Nilius N, Freund H-J (2011) Change of the surface electronic structure of Au(111) by a monolayer MgO(001) film. Phys Rev B 84(7):075456. doi:10.1103/PhysRevB.84.075456

    Article  Google Scholar 

  20. Guimond S, Goebke D, Romanyshyn Y, Sturm JM, Naschitzki M, Kuhlenbeck H, Freund H-J (2008) Growth and characterization of ultrathin V2Oy (y approximate to 5) films on Au(111). J Phys Chem C 112(32):12363–12373. doi:10.1021/jp8011365

    Article  Google Scholar 

  21. Guimond S, Sturm JM, Goebke D, Romanyshyn Y, Naschitzki M, Kuhlenbeck H, Freund H-J (2008) Well-ordered V2O5(001) thin films on Au(111): growth and thermal stability. J Phys Chem C 112(31):11835–11846. doi:10.1021/jp8011156

    Article  Google Scholar 

  22. Deng X, Matranga C (2009) Selective growth of Fe2O3 nanoparticles and islands on Au(111). J Phys Chem C 113(25):11104–11109. doi:10.1021/jp9021954

    Article  Google Scholar 

  23. Potapenko DV, Hrbek J, Osgood RM (2008) Scanning tunneling microscopy study of titanium oxide nanocrystals prepared on Au(111) by reactive-layer-assisted deposition. ACS Nano 2(7):1353–1362. doi:10.1021/nn800169y

    Article  Google Scholar 

  24. Song D, Hrbek J, Osgood R (2005) Formation of TiO2 nanoparticles by reactive-layer-assisted deposition and characterization by XPS and STM. Nano Lett 5(7):1327–1332. doi:10.1021/nl0505703

    Article  Google Scholar 

  25. Ma S, Rodriguez J, Hrbek J (2008) STM study of the growth of cerium oxide nanoparticles on Au(111). Surf Sci 602(21):3272–3278. doi:10.1016/j.susc.2008.08.021

    Article  Google Scholar 

  26. Potapenko DV, Osgood RM (2009) Preparation of TiO2 nanocrystallites by oxidation of Ti-Au(111) surface alloy. Nano Lett 9(6):2378–2383. doi:10.1021/nl900904s

    Article  Google Scholar 

  27. Ragazzon D, Schaefer A, Farstad MH, Walle LE, Palmgren P, Borg A, Uvdal P, Sandell A (2013) Chemical vapor deposition of ordered TiOx nanostructures on Au(111). Surf Sci 617:211–217. doi:10.1016/j.susc.2013.07.019

    Article  Google Scholar 

  28. Biener MM, Friend CM (2004) Heteroepitaxial growth of novel MoO3 nanostructures on Au(111). Surf Sci 559(2–3):L173–L179. doi:10.1016/j.susc.2004.01.021

    Article  Google Scholar 

  29. Fu Q, Wagner T (2007) Interaction of nanostructured metal overlayers with oxide surfaces. Surf Sci Rep 62(11):431–498. doi:10.1016/j.surfrep.2007.07.001

    Article  Google Scholar 

  30. Bach CE, Giesen M, Ibach H, Einstein TL (1997) Stress relief in reconstruction. Phys Rev Lett 78(22):4225–4228. doi:10.1103/PhysRevLett.78.4225

    Article  Google Scholar 

  31. Barth JV, Brune H, Ertl G, Behm RJ (1990) Scanning tunneling microscopy observations on the reconstructed Au(111) surface-atomic-structure, long-range superatructure, rotational domains, and surface-defects. Physical Review B 42(15):9307–9318. doi:10.1103/PhysRevB.42.9307

    Article  Google Scholar 

  32. Lauritsen JV, Besenbacher F (2006) Model catalyst surfaces investigated by scanning tunneling microscopy. In: Gates BC, Knozinger H (eds) Advances in catalysis, vol 50. Advances in catalysis. Elsevier Academic Press Inc, San Diego, pp 97–147. doi:10.1016/s0360-0564(06)50003-3

    Google Scholar 

  33. Morgenstern K, Kibsgaard J, Lauritsen JV, Laegsgaard E, Besenbacher F (2007) Cobalt growth on two related close-packed noble metal surfaces. Surf Sci 601(9):1967–1972. doi:10.1016/j.susc.2007.02.018

    Article  Google Scholar 

  34. Khan NA, Matranga C (2008) Nucleation and growth of Fe and FeO nanoparticles and films on Au(111). Surf Sci 602(4):932–942. doi:10.1016/j.susc.2007.12.027

    Article  Google Scholar 

  35. Window AJ, Hentz A, Sheppard DC, Parkinson GS, Woodruff DP, Unterberger W, Noakes TCQ, Bailey P, Ganduglia-Pirovano MV, Sauer J (2012) The structure of epitaxial V2O3 films and their surfaces: a medium energy ion scattering study. Surf Sci 606(21–22):1716–1727. doi:10.1016/j.susc.2012.07.015

    Article  Google Scholar 

  36. Seifert J, Meyer E, Winter H, Kuhlenbeck H (2012) Surface termination of an ultrathin V2O3-film on Au(111) studied via ion beam triangulation. Surf Sci 606(9–10):L41–L44. doi:10.1016/j.susc.2012.02.004

    Article  Google Scholar 

  37. Dupuis AC, Abu Haija M, Richter B, Kuhlenbeck H, Freund HJ (2003) V2O3(0001) on Au(111) and W(110): growth, termination and electronic structure. Surf Sci 539(1–3):99–112. doi:10.1016/s0039-6028(03)00752-0

    Article  Google Scholar 

  38. Window AJ, Hentz A, Sheppard DC, Parkinson GS, Niehus H, Ahlbehrendt D, Noakes TCQ, Bailey P, Woodruff DP (2011) V2O3(0001) surface termination: Phase equilibrium. Phys Rev Lett 107(1):016105. doi:10.1103/PhysRevLett.107.016105

    Article  Google Scholar 

  39. Li M, Altman EI (2014) Cluster-size dependent phase transition of Co oxides on Au(111). Surf Sci 619:L6–L10. doi:10.1016/j.susc.2013.09.029

    Article  Google Scholar 

  40. Sindhu S, Heiler M, Schindler KM, Neddermeyer H (2003) A photoemission study of CoO-films on Au(111). Surf Sci 541(1–3):197–206. doi:10.1016/s0039-6028(03)00917-8

    Article  Google Scholar 

  41. Li M, Altman EI (2014) Shape, morphology, and phase transitions during Co oxide growth on Au(111). J Phys Chem C 118(24):12706–12716. doi:10.1021/jp411375w

    Article  Google Scholar 

  42. Biener MM, Biener J, Schalek R, Friend CM (2004) Growth of nanocrystalline MoO3 on Au(111) studied by in situ scanning tunneling microscopy. J Chem Phys 121(23):12010–12016. doi:10.1063/1.1808422

    Article  Google Scholar 

  43. Guimond S, Göbke D, Sturm JM, Romanyshyn Y, Kuhlenbeck H, Cavalleri M, Freund HJ (2013) Well-ordered molybdenum oxide layers on Au(111): preparation and properties. J Phys Chem C 117(17):8746–8757. doi:10.1021/jp3113792

    Article  Google Scholar 

  44. Pan Y, Benedetti S, Noguera C, Giordano L, Goniakowski J, Nilius N (2012) Compensating edge polarity: A means to alter the growth orientation of MgO nanostructures on Au(111). J Phys Chem C 116(20):11126–11132. doi:10.1021/jp302302v

    Article  Google Scholar 

  45. Benedetti S, Nilius N, Torelli P, Renaud G, Freund HJ, Valeri S (2011) Competition between polar and nonpolar growth of MgO thin films on Au(111). J Phys Chem C 115(46):23043–23049. doi:10.1021/jp207901a

    Article  Google Scholar 

  46. Nilius N, Benedetti S, Pan Y, Myrach P, Noguera C, Giordano L, Goniakowski J (2012) Electronic and electrostatic properties of polar oxide nanostructures: MgO(111) islands on Au(111). Phys Rev B 86(20):205410. doi:10.1103/PhysRevB.86.205410

    Article  Google Scholar 

  47. Stavale F, Pascua L, Nilius N, Freund H-J (2013) Morphology and luminescence of ZnO films grown on a Au(111) support. J Phys Chem C 117(20):10552–10557. doi:10.1021/jp401939x

    Article  Google Scholar 

  48. Wu C, Castell MR (2012) Ba and BaOx surface structures on Au(111). Surf Sci 606(3–4):181–185. doi:10.1016/j.susc.2011.09.013

    Article  Google Scholar 

  49. Quek SY, Biener MM, Biener J, Friend CM, Kaxiras E (2005) Tuning electronic properties of novel metal oxide nanocrystals using interface interactions: MoO3 monolayers on Au(111). Surf Sci 577(2–3):L71–L77. doi:10.1016/j.susc.2005.01.012

    Article  Google Scholar 

  50. Deng X, Yao K, Sun K, Li W, Lee J, Matranga C (2013) Growth of single- and bilayer ZnO on Au(111) and interaction with copper. J Phys Chem C 117(21):11211–11218. doi:10.1021/jp402008w

    Article  Google Scholar 

  51. Kuhlenbeck H, Shaikhutdinov S, Freund HJ (2013) Well-ordered transition metal oxide layers in model catalysis–a series of case studies. Chem Rev 113(6):3986–4034. doi:10.1021/cr300312n

    Article  Google Scholar 

  52. Romanyshyn Y, Guimond S, Gobke D, Sturm JM, Kuhlenbeck H, Dobler J, Ganduglia-Pirovano MV, Sauer J, Freund HJ (2011) Methanol adsorption on V2O3(0001). Top Catal 54(10–12):669–684. doi:10.1007/s11244-011-9685-y

    Article  Google Scholar 

  53. Simic-Milosevic V, Nilius N, Rust HP, Freund HJ (2008) Local band gap modulations in non-stoichiometric V2O3 films probed by scanning tunneling spectroscopy. Phys Rev B 77(12):125112. doi:10.1103/PhysRevB.77.125112

    Article  Google Scholar 

  54. Feiten FE, Seifert J, Paier J, Kuhlenbeck H, Winter H, Sauer J, Freund H-J (2015) Surface Structure of V2O3(0001) Revisited. Phys Rev Lett 114(21). doi:10.1103/PhysRevLett.114.216101

  55. Guimond S, Abu Haija M, Kaya S, Lu J, Weissenrieder J, Shaikhutdinov S, Kuhlenbeck H, Freund HJ, Dobler J, Sauer J (2006) Vanadium oxide surfaces and supported vanadium oxide nanoparticles. Top Catal 38(1–3):117–125. doi:10.1007/s11244-006-0076-8

    Article  Google Scholar 

  56. Li ZS, Potapenko DV, Osgood RM (2014) Using moire patterning to map surface reactivity versus atom registration: Chemisorbed trimethyl acetic acid on TiO/Au(111). J Phys Chem C 118(51):29999–30005. doi:10.1021/jp5103302

    Article  Google Scholar 

  57. Bouzidi L, Slavin AJ (2005) Ultrathin films of lead oxide on gold: dependence of stoichiometry, stability and thickness on O2 pressure and annealing temperature. Surf Sci 580(1–3):195–206. doi:10.1016/j.susc.2005.01.056

    Article  Google Scholar 

  58. Barcaro G, Cavaliere E, Artiglia L, Sementa L, Gavioli L, Granozzi G, Fortunelli A (2012) Building principles and structural motifs in TiOx ultrathin films on a (111) substrate. J Phys Chem C 116(24):13302–13306. doi:10.1021/jp303730j

    Article  Google Scholar 

  59. Tung RT (2001) Recent advances in Schottky barrier concepts. Mater Sci Eng R-Reports 35(1–3):1–138. doi:10.1016/s0927-796x(01)00037-7

    Article  Google Scholar 

  60. Giordano L, Cinquini F, Pacchioni G (2006) Tuning the surface metal work function by deposition of ultrathin oxide films: density functional calculations. Phys Rev B 73(4):045414. doi:10.1103/PhysRevB.73.045414

    Article  Google Scholar 

  61. Goniakowski J, Giordano L, Noguera C (2010) Polarity of ultrathin MgO(111) films deposited on a metal substrate. Phys Rev B 81(20):205404. doi:10.1103/PhysRevB.81.205404

    Article  Google Scholar 

  62. Goniakowski J, Noguera C, Giordano L, Pacchioni G (2009) Adsorption of metal adatoms on FeO(111) and MgO(111) monolayers: effects of charge state of adsorbate on rumpling of supported oxide film. Phys Rev B 80(12):125403. doi:10.1103/PhysRevB.80.125403

    Article  Google Scholar 

  63. Song Z, Cai TH, Chang ZP, Liu G, Rodriguez JA, Hrbek J (2003) Molecular level study of the formation and the spread of MoO3 on Au (111) by scanning tunneling microscopy and X-ray photoelectron spectroscopy. J Am Chem Soc 125(26):8059–8066. doi:10.1021/ja034862m

    Article  Google Scholar 

  64. Wu P, Cao G, Tang F, Huang M (2014) Electronic and magnetic properties of transition metal doped MgO sheet: a density-functional study. Comput Mater Sci 86:180–185. doi:10.1016/j.commatsci.2014.01.052

    Article  Google Scholar 

  65. Coey JMD (2006) Dilute magnetic oxides. Curr Opin Solid State Mater Sci 10(2):83–92. doi:10.1016/j.cossms.2006.12.002

    Article  Google Scholar 

  66. Tauster SJ, Fung SC, Garten RL (1978) Strong metal-support interactions-group-8 noble-metals supported on TiO2. J Am Chem Soc 100(1):170–175. doi:10.1021/ja00469a029

    Article  Google Scholar 

  67. Tauster SJ, Fung SC, Baker RTK, Horsley JA (1981) Strong-interactions in supported-metal catalysts. Science 211(4487):1121–1125. doi:10.1126/science.211.4487.1121

    Article  Google Scholar 

  68. Tauster SJ (1987) Strong metal-support interactions. Acc Chem Res 20(11):389–394. doi:10.1021/ar00143a001

    Article  Google Scholar 

  69. Sturm JM, Goebke D, Kuhlenbeck H, Doebler J, Reinhardt U, Ganduglia-Pirovano MV, Sauer J, Freund HJ (2009) Partial oxidation of methanol on well-ordered V2O5(001)/Au(111) thin films. Phys Chem Chem Phys 11(17):3290–3299. doi:10.1039/b822384j

    Article  Google Scholar 

  70. Abu Haija M, Guimond S, Uhl A, Kuhlenbeck H, Freund HJ (2006) Adsorption of water on thin V2O3(0001) films. Surf Sci 600(5):1040–1047. doi:10.1016/j.susc.2005.12.035

    Article  Google Scholar 

  71. Bandara A, Abu-Haija M, Höbel F, Kuhlenbeck H, Rupprechter G, Freund H-J (2007) Molecular adsorption on V2O3(0001)/Au(111) surfaces. Top Catal 46(1–2):223–230. doi:10.1007/s11244-007-0332-6

    Article  Google Scholar 

  72. Potapenko DV, Li Z, Lou Y, Guo Y, Osgood RM (2013) 2-Propanol reactivity on in situ prepared Au(111)-supported TiO2 nanocrystals. J Catal 297:281–288. doi:10.1016/j.jcat.2012.10.020

    Article  Google Scholar 

  73. Barcaro G, Fortunelli A (2009) Adsorption and Diffusion of Fe on a Titania Ultrathin Film. J Phys Chem A 113(52):14860–14866. doi:10.1021/jp904998c

    Article  Google Scholar 

  74. Giordano L, Pacchioni G, Goniakowski J, Nilius N, Rienks EDL, Freund H-J (2008) Charging of metal adatoms on ultrathin oxide films: Au and Pd on FeO/Pt(111). Phys Rev Lett 101(2):026102. doi:10.1103/PhysRevLett.101.026102

    Article  Google Scholar 

  75. Cavaliere E, Kholmanov I, Gavioli L, Sedona F, Agnoli S, Granozzi G, Barcaro G, Fortunelli A (2009) Directed assembly of Au and Fe nanoparticles on a TiOx/Pt(111) ultrathin template: the role of oxygen affinity. Phys Chem Chem Phys 11(47):11305–11309. doi:10.1039/b915641k

    Article  Google Scholar 

  76. Barcaro G, Fortunelli A, Granozzi G (2008) Metal adsorption on oxide polar ultrathin films. Phys Chem Chem Phys 10(14):1876–1882. doi:10.1039/b719346g

    Article  Google Scholar 

  77. Baron M, Bondarchuk O, Stacchiola D, Shaikhutdinov S, Freund HJ (2009) Interaction of gold with cerium oxide supports: CeO2(111) thin films vs CeOx nanoparticles. J Phys Chem C 113(15):6042–6049. doi:10.1021/jp9001753

    Article  Google Scholar 

  78. Wu C, Castell MR, Goniakowski J, Noguera C (2015) Stoichiometry engineering of ternary oxide ultrathin films: BaxTi2O3 on Au(111). Phys Rev B 91(15):155424. doi:10.1103/PhysRevB.91.155424

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chen Wu or Martin R. Castell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wu, C., Castell, M.R. (2016). Ultrathin Oxide Films on Au(111) Substrates. In: Netzer, F., Fortunelli, A. (eds) Oxide Materials at the Two-Dimensional Limit. Springer Series in Materials Science, vol 234. Springer, Cham. https://doi.org/10.1007/978-3-319-28332-6_5

Download citation

Publish with us

Policies and ethics