Skip to main content

Atomistic and Electronic Structure Methods for Nanostructured Oxide Interfaces

  • Chapter
  • First Online:
Oxide Materials at the Two-Dimensional Limit

Abstract

An overview is given of methods for the computational prediction of the atomistic and electronic structures of nanoscale oxide interfaces. Global optimization approaches for structure prediction, together with total energy and electronic structure methods are reviewed and discussed. Our aim is to furnish conceptual instruments to select the optimal (i.e., the most accurate and least costly) method for treating a given system, and to understand the potentialities and limitations of current approaches. Theoretical modeling of the structural, catalytic, mechanical, optical and magnetic properties of nanoscale oxides is also briefly described. Finally, an outlook on extending computational and experimental investigation from crystalline-like to amorphous oxide ultrathin layers and the challenges to be faced when dealing with these more complex systems is presented. Final remarks conclude the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altieri S, Finazzi M, Hsieh HH, Havekort MW, Lin HJ, Chen CT, Frabboni S, Gazzardi GC, Rot A, Valeri S (2009) Image charge screening: a new approach to enhance magnetic ordering temperatures in ultrathin correlated oxide films. Phys Rev B 79:174431

    Article  Google Scholar 

  2. Altland A, Simons B (2006) Condensed matter field theory. Cambridge University Press, Cambridge

    Book  Google Scholar 

  3. Amico L, Fazio R, Osterloh A, Vedral V (2008) Entanglement in many-body systems. Rev Mod Phys 80:517–567

    Article  Google Scholar 

  4. Anisimov VI, Zaanen J, Andersen OK (1991) Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys Rev B 44:943

    Article  Google Scholar 

  5. Aoki H, Tsuji N, Eckstein M, Kollar M, Oka T, Werner P (2014) Nonequilibrium dynamical mean-field theory and its applications. Rev Mod Phys 86:779–839

    Article  Google Scholar 

  6. Arsenault L-F, Sémon P, Tremblay A-MS (2012) Benchmark of a modified iterated peturbation theory approach on the fcc lattice at strong coupling. Phys Rev B 86(085133):1–16

    Google Scholar 

  7. Atanasov IS, Hou M (2009) A multi-range order parameter for binary alloy bulk materials and nanoparticles. Eur Phys J D 52:51

    Article  Google Scholar 

  8. Atanasov IS, Hou M (2009) Equilibrium ordering properties of Au-Pd alloys and nanoalloys. Surf Sci 603:2639

    Article  Google Scholar 

  9. Bader R (1990) Atoms in molecules: a quantum theory. Oxford University Press, New York

    Google Scholar 

  10. Barcaro G, Sedona F, Fortunelli A, Granozzi G (2007) Structure of a TiOx zigzag-like monolayer on pt(111). J Phys Chem C 111:6095

    Article  Google Scholar 

  11. Barcaro G, Sedona F, Fortunelli A, Granozzi G (2009) Structure of reduced ultrathin TiOx polar films on Pt(111). J Phys Chem C 113:5721–5729

    Article  Google Scholar 

  12. Barcaro G, Thomas IO, Fortunelli A (2010) Validation of density-functional versus density-functional+ U approaches for oxide ultrathin films. J Chem Phys 132:124703

    Article  Google Scholar 

  13. Barcaro G, Sementa L, Fortunelli A (2014) A grouping approach to homotop global optimization in alloy nanoparticles. Phys Chem Chem Phys 16:24256–24265

    Article  Google Scholar 

  14. Barcaro G, Fortunelli A, Rossi G, Ferrando R (2005) Electronic and structural shell closure in AgCu and AuCu nanoclusters. J Phys Chem B 110:23197

    Article  Google Scholar 

  15. Barcaro G, Cavaliere E, Artiglia L, Sementa L, Gavioli L, Granozzi G, Fortunelli A (2012) Building principles and structural motifs in TiOx ultrathin films on a (111) substrate. J Phys Chem C 116:13302–13306

    Article  Google Scholar 

  16. Barcaro G, Fortunelli A (2012) Functional theory of free and supported metal clusters and nanoalloys. In: Mariscal MM, Oviedo OA, Leiva EPM (eds) Metal clusters and nanoalloys—from modeling to applications. Springer, New York

    Google Scholar 

  17. Barcaro G, Fortunelli A, Polak M, Rubinovich L (2011) Patchy multishell segregation in Pd–Pt alloy nanoparticles. Nano Lett 11:1766

    Article  Google Scholar 

  18. Becke AD (1993) Density functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648

    Article  Google Scholar 

  19. Beniya A, Isomura N, Hirata H, Watanabe Y (2014) Morphology and chemical states of size-selected Ptn clusters on an aluminium oxide film on NiAl(110). Phys Chem Chem Phys 16:26485–26492

    Article  Google Scholar 

  20. Blochl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953

    Article  Google Scholar 

  21. Calvo F (ed) (2013) Nanoalloys: from fundamentals to emergent applications. Elsevier, Amsterdam

    Google Scholar 

  22. Mariscal MM, Oviedo OA, Leiva EPM (eds) (2012) Metal clusters and nanoalloys—from modeling to applications. Springer, New York

    Google Scholar 

  23. Booth GH, Alavi A (2010) Approaching chemical accuracy using full configuration-interaction quantum Monte Carlo: a study of ionization potentials. J Chem Phys 132:174104

    Article  Google Scholar 

  24. Paz-Borbón LO, Barcaro G, Fortunelli A, Levchenko SV (2012) AuN clusters (N = 1–6) supported on MgO(100) surfaces: effect of exact exchange and dispersion interactions on adhesion energies. Phys Rev B 85:155409

    Article  Google Scholar 

  25. Borghi G, Fabrizio M, Tosatti E (2009) Surface dead layer for quasiparticles near a mott transition. Phys Rev Lett 102:066806

    Article  Google Scholar 

  26. Borghi G, Fabrizio M, Tosatti E (2010) Strongly correlated metal interfaces in the Gutzwiller approximation. Phys Rev B 81(115134):1–10

    Google Scholar 

  27. Born M, Oppenheimer JR (1927) On the quantum theory of molecules. Ann Phys 84:457

    Article  Google Scholar 

  28. Bulla R, Costi TA, Pruschke T (2008) Numerical renormalisation group method for quantum impurity systems. Rev Mod Phys 80:395–450

    Article  Google Scholar 

  29. Caffarel M, Krauth W (1994) Exact diagonalization approach to correlated fermions in infinite dimensions: Mott transition and superconductivity. Phys Rev Lett 72:1545–1548

    Article  Google Scholar 

  30. Calvo F (2005) All-exchanges parallel tempering. J Chem Phys 123:124106

    Article  Google Scholar 

  31. Casida ME (1995) Time-dependent density-functional response theory for molecules. In: Chong DP (ed) Recent advances in density functional methods, Part I. World Scientific, Singapore

    Google Scholar 

  32. Causà M, Colle R, Dovesi R, Fortunelli A, Pisani C (1988) Correlation correction to the Hartree-Fock total energy of solids. II. Phys Scripta 38:194

    Article  Google Scholar 

  33. Cavaliere E, Barcaro G, Sementa L, Granozzi G, Fortunelli A, Gavioli L (2014) Experimental and theoretical scanning tunneling spectroscopy analysis of an ultrathin titania film and adsorbed Au nanoparticles. J Phys Chem C 118:14640

    Article  Google Scholar 

  34. Chen MS, Goodman DW (2007) Interaction of Au with titania: the role of reduced Ti. Top Catal 44:41–47

    Article  Google Scholar 

  35. Cheng L et al (2013) Reaction mechanism for direct propylene epoxidation by alumina-supported silver aggregates: the role of the particle/support interface. ACS Catal 4:32–39

    Article  Google Scholar 

  36. Choi HJ, Ihm J (1999) Ab initio pseudopotential method for the calculation of conductance in quantum wires. Phys Rev B 59:2267

    Article  Google Scholar 

  37. Cohen-Tannoudji C, Diu B, Laloe F (2006) Quantum mechanics. Wiley-Interscience, Hoboken

    Google Scholar 

  38. Demiroglu I, Bromley ST (2013) Nanofilm versus bulk polymorphism in wurtzite materials. Phys Rev Lett 110:245501

    Article  Google Scholar 

  39. Denk M, Kuhness D, Wagner M, Surnev S, Negreiros FR, Sementa L, Barcaro G, Vobornik I, Fortunelli A, Netzer FP (2014) Metal tungstates at the ultimate two-dimensional limit: fabrication of a CuWO4 nanophase. ACS Nano 8:3947–3954

    Article  Google Scholar 

  40. Schintke S, Messerli S, Pivetta M, Patthey F, Libioulle L, Stengel M, De Vita A, Schneider WD (2001) Insulator at the ultrathin limit: MgO on Ag(001). Phys Rev Lett 87:276801

    Article  Google Scholar 

  41. Dirac PAM (1930) Note on exchange phenomena in the Thomas atom. Proc Cambridge Phil Soc 26:376

    Article  Google Scholar 

  42. Dovesi R, Pisani C, Roetti C, Saunders VR (1983) Treatment of Coulomb interactions in Hartree-Fock calculations of periodic systems. Phys Rev B 28:5781

    Article  Google Scholar 

  43. Dunlap BI, Rosch N, Trickey SB (2010) Variational fitting methods for electronic structure calculations. Mol Phys 108:3167

    Article  Google Scholar 

  44. Elam JW, George SM (2003) Growth of ZnO/Al2O3 alloy films using atomic layer deposition techniques. Chem Mater 15:1020–1028

    Article  Google Scholar 

  45. Ferrando R, Fortunelli A, Rossi G (2005) Quantum effects on the structure of pure and binary metallic nanoclusters. Phys Rev B 72:085449

    Article  Google Scholar 

  46. Ferrando R, Rossi G, Nita F, Barcaro G, Fortunelli A (2008) Interface-stabilized phases of metal-on-oxide nanodots. ACS Nano 2:1849–1856

    Article  Google Scholar 

  47. Ferrando R, Fortunelli A, Johnston RL (2008) Searching for the optimum structures of alloy nanoclusters. Phys Chem Chem Phys 10:640–649

    Article  Google Scholar 

  48. Fortunelli A, Salvetti O (1991) A simplified representation of the potential produced by a Gaussian charge-distribution. J Comp Chem 12:36

    Article  Google Scholar 

  49. Fortunelli A, Salvetti O (1991) Overlapping and non-overlapping integrals in molecular calculations. Chem Phys Lett 186:372

    Article  Google Scholar 

  50. Fortunelli A, Velasco AM (1999) Structural and electronic properties of Pt/Fe nanoclusters from EHT calculations. J Mol Struct (Theochem) 487:251–266

    Article  Google Scholar 

  51. Apra E, Fortunelli A (2000) Density-functional study of Pt-13 and Pt-55 cuboctahedral clusters. J Mol Struct 501–502:251

    Article  Google Scholar 

  52. Freericks JK (2004) Dynamical mean-field theory for strongly correlated inhomogenous nanostructures. Phys Rev B 70(195342):1–14

    Google Scholar 

  53. Freericks JK (2006) Transport in multilayered nanostructures: the dynamical mean-field theory approach. Imperial College Press, London

    Book  Google Scholar 

  54. Kuhlenbeck H, Shaikhutdinov S, Freund H-J (2013) Well-ordered transition metal oxide layers in model catalysis—a series of case studies. Chem Rev 113:3986–4034

    Article  Google Scholar 

  55. Gavioli L, Cavaliere E, Agnoli S, Barcaro G, Fortunelli A, Granozzi G (2011) Template-assisted assembly of transition metal nanoparticles on oxide ultrathin films. Progr Surf Sci 86:59–81

    Article  Google Scholar 

  56. Georges A, Kotliar G, Krauth W, Rosenberg MJ (1996) Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev Mod Phys 68:13–125

    Article  Google Scholar 

  57. Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P (2001) Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys 73:515

    Article  Google Scholar 

  58. Giannozzi P, Baroni S, Bonini N et al (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502

    Article  Google Scholar 

  59. Giordano L, Pacchioni G, Goniakowski J, Nilius N, Rienks EDL, Freund H-J (2007) Interplay between structural, magnetic, and electronic properties in a FeO/Pt(111) ultrathin film. Phys Rev B 76:075416

    Article  Google Scholar 

  60. Gragnaniello L et al (2012) Ordered arrays of size-selected oxide nanoparticles. Phys Rev Lett 108:195507

    Article  Google Scholar 

  61. Gorling A, Levy M (1997) Hybrid schemes combining the Hartree-Fock method and density-functional theory: underlying formalism and properties of correlation functionals. J Chem Phys 106:2675–2680

    Article  Google Scholar 

  62. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787

    Article  Google Scholar 

  63. Hamann DR, Schluter M, Chiang C (1979) Norm-conserving pseudopotentials. Phys Rev Lett 43:1494

    Article  Google Scholar 

  64. Haunschild R, Scuseria GE (2010) Range-separated local hybrids. J Chem Phys 132:224106

    Article  Google Scholar 

  65. Helmes RW, Costi TA, Rosch A (2008) Kondo proximity effect: how does a metal penetrate into a Mott insulator? Phys Rev Lett 101(066802):1–4

    Google Scholar 

  66. Hofer WA, Foster AS, Shluger AL (2003) Theories of scanning probe microscopes at the atomic scale. Rev Mod Phys 75:1287

    Article  Google Scholar 

  67. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:864B

    Article  Google Scholar 

  68. Hu S et al (2014) Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 344:1005–1009

    Article  Google Scholar 

  69. Hubbard PS (1961) Quantum-mechanical and semiclassical forms of the density operator theory of relaxation. Rev Mod Phys 33:249

    Article  Google Scholar 

  70. Jellinek J, Krissinel EB (1996) NinAlm alloy clusters: analysis of structural forms and their energy ordering. Chem Phys Lett 258:283

    Article  Google Scholar 

  71. Johnston RL (2003) Evolving better nanoparticles: aenetic algorithms for optimising cluster geometries. Dalton Trans 4193–4207

    Google Scholar 

  72. Kais S, Herschbach DR, Handy NC, Murray CW, Laming GJ (1993) Density functionals and dimensional renormalization for an exactly solvable model. J Chem Phys 99:417

    Article  Google Scholar 

  73. Kane MD, Roberts FS, Anderson SL (2015) Effects of alumina thickness on CO oxidation activity over Pd-20/Alumina/Re(0001): correlated effects of alumina electronic properties and Pd-20 geometry on activity. J Phys Chem C 119:1359–1375

    Article  Google Scholar 

  74. Karewar SV, Gupta N, Caro A, Srinivasan SG (2014) A concentration dependent embedded atom method potential for the Mg–Li system. Comput Mater Sci 85:172–178

    Article  Google Scholar 

  75. Kittel C (1996) Introduction to solid state physics, 7th edn. Wiley, Hoboken

    Google Scholar 

  76. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:1133A

    Article  Google Scholar 

  77. Kokalj A (2003) Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale. Comp Mat Sci 28:155

    Article  Google Scholar 

  78. Kresse G, Schmid M, Napetschnig E, Shishkin M, Kohler L, Varga P (2005) Structure of the ultrathin aluminum oxide film on NiAl(110). Science 308:1440–1442

    Article  Google Scholar 

  79. Kryachko ES, Ludeña EV (1990) Energy density functional theory of many-electron systems. Springer, Berlin

    Book  Google Scholar 

  80. Landauer R (1985) Electrical resistance of disordered one-dimensional lattice. Philos Mag 21:863

    Article  Google Scholar 

  81. Lee S et al (2010) Oxidative decomposition of methanol on subnanometer palladium clusters: the effect of catalyst size and support composition. J Phys Chem C 114:10342–10348

    Article  Google Scholar 

  82. Lee S et al (2009) Selective propene epoxidation on immobilized Au6–10 clusters: the effect of hydrogen and water on activity and selectivity. Angew Chem Int Ed 121:1495–1499

    Article  Google Scholar 

  83. Lee S et al (2012) Support-dependent performance of size-selected subnanometer cobalt cluster-based catalysts in the dehydrogenation of cyclohexene. ChemCatChem 4:1632–1637

    Article  Google Scholar 

  84. Lee S, Lee B, Seifert S, Winans RE, Vajda S (2015) Fischer-Tropsch synthesis at a low pressure on subnanometer cobalt oxide clusters: the effect of cluster size and support on activity and selectivity. J Phys Chem C 119:11210–11216

    Article  Google Scholar 

  85. Lee S et al (2012) Oxidative dehydrogenation of cyclohexene on size selected subnanometer cobalt clusters: improved catalytic performance via evolution of cluster-assembled nanostructures. Phys Chem Chem Phys 14:9336–9342

    Article  Google Scholar 

  86. Lei Y et al (2010) Increased silver activity for direct propylene epoxidation via subnanometer size effects. Science 328:224–228

    Article  Google Scholar 

  87. Li Z, Scheraga HA (1987) Monte Carlo-minimization approach to the multiple-minima problem in protein folding. Proc Natl Acad Sci USA 84:6611–6615

    Article  Google Scholar 

  88. Lowdin PO (1955) Quantum theory of many-particle systems. I. Physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction. Phys Rev 97:1474

    Article  Google Scholar 

  89. Lundgren E, Kresse G, Klein C, Borg M, Andersen JN, De Santis M, Gauthier Y, Konvicka C, Schmid M, Varga P (2002) Two-dimensional oxide on Pd(111). Phys Rev Lett 88:246103

    Article  Google Scholar 

  90. Mahan GD (2008) Quantum mechanics in a nutshell. Princeton University Press, Princeton

    Google Scholar 

  91. Malashevich A, Altman EI, Ismail-Beigi S (2014) Imaging the buried MgO/Ag interface: formation mechanism of the STM contrast. Phys Rev B 90:165426

    Article  Google Scholar 

  92. Marsault M, Worz GHA, Sitja G, Barth C, Henry CR (2008) Farad Disc 138:407–420

    Article  Google Scholar 

  93. Meyer W, Hock D, Biedermann K, Gubo M, Mu¨ller S, Hammer L, Heinz K (2008) Coexistence of rocksalt and wurtzite structure in nanosized CoO films. Phys Rev Lett 101:016103

    Article  Google Scholar 

  94. Molina LM et al (2011) Size-dependent selectivity and activity of silver nanoclusters in the partial oxidation of propylene to propylene oxide and acrolein: a joint experimental and theoretical study. Catal Today 160:116–130

    Article  Google Scholar 

  95. Mulliken RS (1955) Electronic population analysis on LCAO-MO molecular wave functions I. J Chem Phys 23:1833

    Article  Google Scholar 

  96. Negreiros FR, Aprà E, Barcaro G, Sementa L, Vajda S, Fortunelli A (2012) A first-principles theoretical approach to heterogeneous nanocatalysis. Nanoscale 4:1208–1219

    Article  Google Scholar 

  97. Obermüller T, Steurer W, Surnev S, Barcaro G, Sementa L, Stroppa A, Fortunelli A, Netzer FP (2013) Kinetic asymmetry in the growth of two-dimensional Mn oxide nanostripes. Phys Rev B 88:235410

    Article  Google Scholar 

  98. Onida G, Reining L, Rubio A (2002) Electronic excitations: density-functional versus many-body Green’s-function approaches. Rev Mod Phys 74:601

    Article  Google Scholar 

  99. Pacchioni G (2013) Electronic interactions and charge transfers of metal atoms and clusters on oxide surfaces. Phys Chem Chem Phys 15:1737–1757

    Article  Google Scholar 

  100. Perdew JP (1985) Accurate density functional for the energy: real-space cutoff of the gradient expansion for the exchange hole. Phys Rev Lett 55:1665

    Article  Google Scholar 

  101. Perdew JP, Yue W (1986) Accurate and simple density functional for the electronic exchange energy: generalized gradient approximation. Phys Rev B 33:8800R

    Article  Google Scholar 

  102. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865

    Article  Google Scholar 

  103. Perdew JP, Ruzsinszky A, Tao J, Staroverov V, Scuseria G, Csonka G (2005) Prescription for the design and selection of density functional approximations: more constraint satisfaction with fewer fits. J Chem Phys 123:062201

    Article  Google Scholar 

  104. Pisani C, Erba A, Ferrabone M, Dovesi R (2012) Nuclear motion effects on the density matrix of crystals: an ab initio Monte Carlo harmonic approach. J Chem Phys 137:044114

    Article  Google Scholar 

  105. Potthoff M, Nolting W (1999) Dynamical mean-field study of the Mott transition in thin films. Euro Phys J B 8:555–568

    Article  Google Scholar 

  106. Prada S, Martinez U, Pacchioni G (2008) Work function changes induced by deposition of ultrathin dielectric films on metals: a theoretical analysis. Phys Rev B 78:235423

    Article  Google Scholar 

  107. Reuter K, Scheffler M (2002) Composition, structure, and stability of RuO2(110) as a function of oxygen pressure. Phys Rev B 65:035406

    Article  Google Scholar 

  108. Rossi G, Ferrando R (2009) Searching for low-energy structures of nanoparticles: a comparison of different methods and algorithms. J Phys Condens Matt 21:084208

    Article  Google Scholar 

  109. Sahimi M, Hamzehpour H (2010) Efficient computational strategies for solving global optimization problems. Comp Sci Eng 12:74–82

    Article  Google Scholar 

  110. Schimka L, Harl J, Stroppa A, Grüneis A, Marsman M, Mittendorfer F, Kresse G (2010) Accurate surface and adsorption energies from many-body perturbation theory. Nat Mater 9:741

    Article  Google Scholar 

  111. Schimka L, Harl J, Kresse G (2011) Improved hybrid functional for solids: the HSEsol functional. J Chem Phys 134:024116

    Article  Google Scholar 

  112. Schnadt J, Michaelides A, Knudsen J, Vang RT, Reuter K, Lægsgaard E, Scheffler M, FBesenbacher F (2006) Revisiting the structure of the p(4×4) surface oxide on Ag(111). Phys Rev Lett 96:146101

    Article  Google Scholar 

  113. Schouteden K, Lauwaet K, Janssens E, Barcaro G, Fortunelli A, Van Haesendonck C, Lievens P (2014) Probing the atomic structure of metallic nanoclusters with the tip of a scanning tunneling microscope. Nanoscale 6:2170

    Article  Google Scholar 

  114. Scuseria GE (1999) Linear scaling density functional calculations with gaussian orbitals. J Phys Chem A 103:4782

    Article  Google Scholar 

  115. Sementa L, Barcaro G, Negreiros FR, Thomas IO, Netzer FP, Ferrari AM, Fortunelli A (2012) Work function of oxide ultrathin films on the Ag(100) surface. J Chem Theor Comput 8:629

    Article  Google Scholar 

  116. Sementa L, Marini A, Barcaro G, Negreiros FR, Fortunelli A (2013) Electronic excited states at ultrathin dielectric-metal interfaces. Phys Rev B 88:125413

    Article  Google Scholar 

  117. Shankar R (1994) Renormalization-group approach to interacting fermions. Rev Mod Phys 66:129

    Article  Google Scholar 

  118. Slater JC (1972) Statistical exchange-correlation in the self-consistent field. In: Lowdin PO (ed) Advances in quantum chemistry. Academic Press, Cambridge

    Google Scholar 

  119. Smogunov A, Dal Corso A, Tosatti E (2004) Ballistic conductance of magnetic Co and Ni nanowires with ultrasoft pseudopotentials. Phys Rev B 70:045417

    Article  Google Scholar 

  120. Stacchiola DJ et al (2006) Synthesis and structure of ultrathin aluminosilicate films. Angew Chem Int Ed 45:7636–7639

    Article  Google Scholar 

  121. Stacchiola DJ, Kaya S, Weissenrieder SJ, Shaikhutdinov SK, Freund H-J (2007), Synthesis and structure of an ultrathin aluminosilicate film. In: Abstracts of Papers, 234th ACS National Meeting, Boston, 19–23 August

    Google Scholar 

  122. Sterrer M et al (2007) Control of the charge state of metal atoms on thin MgO films. Phys Rev Lett 98:096107

    Article  Google Scholar 

  123. Steurer W, Surnev S, Fortunelli A, Netzer FP (2012) Scanning tunneling microscopy imaging of NiO(100)(1×1) Islands embedded in Ag(100). Surf Sci 606:803

    Article  Google Scholar 

  124. Steurer W, Surnev S, Netzer FP, Sementa L, Negreiros FR, Barcaro G, Durante N, Fortunelli A (2014) Redox processes at a nanostructured interface under strong electric fields. Nanoscale 6:10589–10595

    Article  Google Scholar 

  125. Steurer W, Allegretti F, Surnev S, Barcaro G, Sementa L, Negreiros FR, Fortunelli A, FNetzer FP (2011) Metamorphosis of ultrathin Ni oxide nanostructures on Ag(100). Phys Rev B 84:115446

    Article  Google Scholar 

  126. Suich DE, Caplins BW, Shearer AJ, Harris CB (2014) Femtosecond trapping of free electrons in ultrathin films of NaCl on Ag(100). J Phys Chem Lett 5:3073

    Article  Google Scholar 

  127. Surnev S, Fortunelli A, Netzer FP (2013) Structure-property relationship and chemical aspects of oxide-metal hybrid nanostructures. Chem Rev 113:4314–4372

    Article  Google Scholar 

  128. Tersoff J, Hamann DR (1985) Theory of scanning tunneling microscope. Phys Rev B 31:805

    Article  Google Scholar 

  129. Thomas IO, Fortunelli A (2010) Analysis of the electronic structure of ultrathin NiO/Ag(100) films. E Phys J B 75:5

    Article  Google Scholar 

  130. Tkatchenko A, Scheffler M (2009) Accurate molecular Van Der Waals interactions from ground-state electron density and free-atom reference data. Phys Rev Lett 102:073005

    Article  Google Scholar 

  131. Tran F, Blaha P (2009) Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys Rev Lett 102:226401

    Article  Google Scholar 

  132. Ulrich S, Nilius N, Freund H-J (2007) Growth of thin alumina films on a vicinal NiAl surface. Surf Sci 601:4603–4607

    Article  Google Scholar 

  133. Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41:7892

    Article  Google Scholar 

  134. Wu QH, Fortunelli A, Granozzi G (2009) Preparation, characterisation and structure of Ti and Al ultrathin oxide films on metals. Int Rev Phys Chem 28:517–576

    Article  Google Scholar 

  135. Weissenrieder J, Kaya S, Lu J-L, Gao H-J, Shaikhutdinov S, Freund H-J, Sierka M, Todorova TK, Sauer J (2005) Atomic structure of a thin silica film on a Mo(112) substrate: a two-dimensional network of SiO4 tetrahedra. Phys Rev Lett 95:076103

    Article  Google Scholar 

  136. Xiong G, Elam JW, Feng H et al (2005) Effect of atomic layer deposition coatings on the surface structure of anodic aluminum oxide membranes. J Phys Chem B 109:14059–14063

    Article  Google Scholar 

  137. Zenia H et al (2009) Appearance of “fragile” fermi liquids in finite-width mott insulators sandwiched between metallic leads. Phys Rev Lett 103:116402

    Article  Google Scholar 

  138. Buttiker M, Imry Y, Landauer R (1985) Generalized many-channel conductance formula with applications to small rings. Phys Rev B 31:6207

    Article  Google Scholar 

  139. Wagner M, Negreiros FR, Sementa L, Barcaro G, Surnev S, Fortunelli A, Netzer FR (2013) Nanostripe Pattern of NaCl Layers on Cu(110). Phys Rev Lett 110:216101. doi: 10.1103/PhysRevLett.110.216101

  140. Saunders VR, Freyria-Fava C, Dovesi R, Salasco L, Roetti C (1992) On the electrostatic potential in crystalline systems where the charge density is expanded in Gaussian functions. Mol Phys 77(4):629–665. doi: 10.1080/00268979200102671

    Google Scholar 

Download references

Acknowledgments

A.F. would like to acknowledge CECAM and Psi-k for financial and logistic support in the organization of the CECAM workshop “Emergent structural and electronic phenomena at interfaces of nanoscale oxides” (www.cecam.org/workshop-1145.html), in which some of the ideas here described were presented and discussed. The workshop co-organizers: Henrik Groenbeck, Jacek Goniakowski and Alex Shluger (two of whom are also contributors to this book), are gratefully acknowledged for many interesting discussions, as well as all the workshop participants (some of whom are also contributors to this book). S.V. would like to thank Dr. Jeffrey Elam for the ALD synthesis of the oxide films and characterization of the film thickness by circular dichroism, and Drs. Byeongdu Lee, Sönke Seifert and Randall Winans for their participation in GISAXS characterization of the films. S.V. acknowledged the support by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, division of Materials Sciences and Engineering under Contract No. DE-AC-02-06CH11357. The GISAXS experiments were carried out at the 12-ID-C beam line of the Advanced Photon Source of Argonne National Laboratory. The use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE), Office of Science by Argonne National Laboratory was supported by the U.S. Department of Energy (DOE), under contract No. DE-AC-02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Fortunelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Barcaro, G., Sementa, L., Negreiros, F.R., Thomas, I.O., Vajda, S., Fortunelli, A. (2016). Atomistic and Electronic Structure Methods for Nanostructured Oxide Interfaces. In: Netzer, F., Fortunelli, A. (eds) Oxide Materials at the Two-Dimensional Limit. Springer Series in Materials Science, vol 234. Springer, Cham. https://doi.org/10.1007/978-3-319-28332-6_2

Download citation

Publish with us

Policies and ethics