Skip to main content

Literature Evidence of the MIS Lateral Approach

  • Chapter
  • First Online:
Lateral Access Minimally Invasive Spine Surgery

Abstract

Minimally disruptive approaches continue to gain adoption by spine surgeons in the hopes of minimizing soft tissue damage and accelerating postoperative recovery [1]. Lateral techniques such as the extreme lateral interbody fusion (XLIF®, NuVasive, Inc., San Diego, CA, USA) are one of those minimally disruptive approaches. The XLIF (XLIF®, NuVasive, Inc., San Diego, CA, USA) approach was first introduced in 2001 by Pimenta [2] and since then has gained acceptance and recognition as a spinal treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lucio JC, VanConia RB, et al. Economics of less invasive spinal surgery: an analysis of hospital cost differences between open and minimally invasive instrumented spinal fusion procedures during the perioperative period. Risk Manag Healthc Policy. 2012;5:65–74.

    PubMed  PubMed Central  Google Scholar 

  2. Pimenta L. Lateral endoscopic transpsoas retroperitoneal approach for lumbar spine surgery. In: VIII Brazilian spine society meeting. Belo Horizonte; 2001.

    Google Scholar 

  3. Rodgers WB, Lehmen JA, Gerber EJ, Rodgers JA. Grade 2 spondylolisthesis at L4-5 treated by XLIF: safety and midterm results in the “worst case scenario”. ScientificWorldJournal. 2012;2012:356712. doi: 10.1100/2012/356712. Epub 2012 Oct 17. PubMed PMID: 23125555; PubMed Central PMCID: PMC3483667.

  4. Rodgers WB, Gerber EJ, Rodgers JA. Clinical and radiographic outcomes of extreme lateral approach to interbody fusion with B-tricalcium phosphate and hydroxyapatite composite for lumbar degenerative conditions. Int J Spine Surg. 2012;6:24–8.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rodgers WB, Cox CS, Gerber EJ. Experience & early results with a minimally invasive technique for anterior column support through eXtreme lateral interbody fusion: XLIF. Musculoskelet Rev. 2007;1:28–32.

    Google Scholar 

  6. Rodgers WB, Cox CS, Gerber EJ. Minimally invasive treatment (XLIF) of adjacent segment disease after prior lumbar fusions. J Biol Minim Invasive Spinal Technol. 2009;3:1–8.

    Google Scholar 

  7. Rodgers WB, Cox CS, et al. Early complications of extreme lateral interbody fusion in the obese. J Spinal Disord Tech. 2010;23:393–7.

    Article  PubMed  Google Scholar 

  8. Rodgers WB, Gerber EJ, et al. Lumbar fusion in octogenarians. Spine. 2010;35(26S):S355–60.

    Article  PubMed  Google Scholar 

  9. Rodgers WB, Gerber EJ, Patterson J. Intraoperative and early postoperative complications in extreme lateral interbody fusion: an analysis of 600 cases. Spine. 2011;36:26–32.

    Article  PubMed  Google Scholar 

  10. Youssef JA, McAfee PC, Patty CA, et al. Minimally invasive surgery: lateral approach interbody fusion: results and review. Spine. 2010;35:S302–11.

    Article  PubMed  Google Scholar 

  11. Moro T, Kikuchi S, Konno S, et al. An anatomic study of the lumbar plexus with respect to retroperitoneal endoscopic surgery. Spine. 2003;28:423–8.

    PubMed  Google Scholar 

  12. Knight RQ, Schwaegler P, Hanscom D, et al. Direct lateral lumbar interbody fusion for degenerative conditions: early complication profile. J Spinal Disord Tech. 2009;22:34–7.

    Article  PubMed  Google Scholar 

  13. Benglis DM, Vanni S, Levi AD. An anatomical study of the lumbosacral plexus as related to the minimally invasive trans- psoas approach to the lumbar spine. Laboratory investigation. J Neurosurg Spine. 2009;10:139–44.

    Article  PubMed  Google Scholar 

  14. Kepler CK, Bogner EA, Herzog RJ, Huang RC. Anatomy of the psoas muscle and lumbar plexus with respect to the surgical approach for lateral transpsoas interbody fusion. Eur Spine J. 2011;20(4):550–6. doi:10.1007/s00586-010-1593-5. Epub 2010 Oct 13. PubMed PMID: 20938787; PubMed Central PMCID: PMC3065600.

  15. Regev GJ, Chen L, Dhawan M, et al. Morphometric analysis of the ventral nerve roots and retroperitoneal vessels with respect to the minimally invasive lateral approach in normal and deformed spines. Spine. 2009;34:1330–5.

    Article  PubMed  Google Scholar 

  16. Park DK, Lee MJ, Lin EL, et al. The relationship of intrapsoas nerves during a transpsoas approach to the lumbar spine. J Spinal Disord Tech. 2010;23:223–8.

    Article  PubMed  Google Scholar 

  17. Good CR, Lenke LG, Bridwell KH, et al. Can posterior-only surgery provide similar radiographic and clinical results as combined anterior (thoracotomy/thoracoabdominal)/posterior approaches for adult scoliosis? Spine. 2010;35:210–8.

    Article  PubMed  Google Scholar 

  18. Gupta MC. Degenerative scoliosis: options for surgical management. Orthop Clin N Am. 2003;34:269–79.

    Article  Google Scholar 

  19. Schlenk RP, Kowalski RJ, Benzel EC. Biomechanics of spinal deformity. Neurosurg Focus. 2003;14:E2.

    Article  PubMed  Google Scholar 

  20. Dorward IG, Lenke LG. Osteotomies in the posterior-only treatment of complex adult spinal deformity: a comparative review. Neurosurg Focus. 2010;28:E4.

    Article  PubMed  Google Scholar 

  21. Yadla S, Maltenfort MG, Ratliff JK, et al. Adult scoliosis surgery outcomes: a systematic review. Neurosurg Focus. 2010;28:E3.

    Article  PubMed  Google Scholar 

  22. Zimmerman RM, Mohamed AS, Skolasky RL, et al. Functional outcomes and complications after primary spinal surgery for scoliosis in adults aged forty years or older: a prospective study with minimum two-year follow-up. Spine. 2010;35:1861–6.

    Article  PubMed  Google Scholar 

  23. Billinghurst J, Akbarnia BA. Extreme lateral interbody fusion— XLIF. Curr Orthop Pract. 2009;20:238–51.

    Article  Google Scholar 

  24. Caputo AM, Michael KW, Chapman Jr TM, et al. Clinical outcomes of extreme lateral interbody fusion in the treatment of adult degenerative scoliosis. Sci World J. 2012;2012:680643.

    Article  Google Scholar 

  25. Dakwar E, Cardona RF, Smith DA, et al. Early outcomes and safety of the minimally invasive, lateral retroperitoneal transpsoas approach for adult degenerative scoliosis. Neurosurg Focus. 2010;28:E8.

    Article  PubMed  Google Scholar 

  26. Madhok R, Kanter AS. Extreme-lateral, minimally invasive, transpsoas approach for the treatment of far-lateral lumbar disc herniation. J Neurosurg Spine. 2010;12:347–50.

    Article  PubMed  Google Scholar 

  27. Oliveira L, Marchi L, Coutinho E, et al. The use of rh-BMP2 in standalone extreme lateral interbody fusion (XLIF): clinical and radiological results after 24 months follow-up. World Spinal Column. 2010;1:19–25.

    Google Scholar 

  28. Ozgur BM, Aryan HE, Pimenta L, et al. Extreme lateral interbody fusion (XLIF): a novel surgical technique for anterior lumbar inter- body fusion. Spine J. 2006;6:435–43.

    Article  PubMed  Google Scholar 

  29. Pimenta L, Diaz RC, Guerrero LG. Charite lumbar artificial disc retrieval: use of a lateral minimally invasive technique. Technical note. J Neurosurg Spine. 2006;5:556–61.

    Article  PubMed  Google Scholar 

  30. Champain S, Benchikh K, Nogier A, et al. Validation of new clinical quantitative analysis software applicable in spine orthopaedic studies. Eur Spine J. 2006;15:982–91.

    Article  CAS  PubMed  Google Scholar 

  31. Charosky S, Guigui P, Blamoutier A, et al. Complications and riskfactors of primary adult scoliosis surgery: a multicenter study of 306 patients. Spine. 2012;37:693–700.

    Article  PubMed  Google Scholar 

  32. Isaacs RE, Hyde J, Goodrich JA, et al. A prospective, nonrandomized, multicenter evaluation of extreme lateral interbody fusion for the treatment of adult degenerative scoliosis: perioperative outcomes and complications. Spine. 2010;35:S322–30.

    Article  PubMed  Google Scholar 

  33. Smith WD, Christian G, Serrano S, et al. A comparison of perioperative charges and outcome between open and mini-open approaches for anterior lumbar discectomy and fusion. J Clin Neurosci. 2012;19:673–80.

    Article  PubMed  Google Scholar 

  34. Daubs MD, Lenke LG, Cheh G, et al. Adult spinal deformity surgery: complications and outcomes in patients over age 60. Spine. 2007;32:2238–44.

    Article  PubMed  Google Scholar 

  35. Fujita T, Kostuik JP, Huckell CB, et al. Complications of spinal fusion in adult patients more than 60 years of age. Orthop Clin N Am. 1998;29:669–78.

    Article  CAS  Google Scholar 

  36. Tormenti MJ, Maserati MB, Bonfield CM, et al. Complications and radiographic correction in adult scoliosis following combined transpsoas extreme lateral interbody fusion and posterior pedicle screw instrumentation. Neurosurg Focus. 2010;28(3):E7.

    Article  PubMed  Google Scholar 

  37. Phillips FM, Isaacs RE, et al. Adult degenerative scoliosis treated with XLIF. Spine. 2013;38(21):1853–61.

    Article  PubMed  Google Scholar 

  38. Pateder DB, Gonzales RA, Kebaish KM, et al. Short-term mortality and its association with independent risk factors in adult spinal deformity surgery. Spine. 2008;33:1224–8.

    Article  PubMed  Google Scholar 

  39. Maeda T, Buchowski JM, Kim YJ, et al. Long adult spinal deformity fusion to the sacrum using rhBMP-2 versus autogenous iliac crest bone graft. Spine. 2009;34:2205–12.

    Article  PubMed  Google Scholar 

  40. Bess RS, Lenke LG, Bridwell KH, et al. Comparison of thoracic pedicle screw to hook instrumentation for the treatment of adult spinal deformity. Spine. 2007;32:555–61.

    Article  PubMed  Google Scholar 

  41. Scheufler KM, Cyron D, Dohmen H, et al. Less invasive surgical correction of adult degenerative scoliosis, part I: technique and radiographic results. Neurosurgery. 2010;67:696–710.

    Article  PubMed  Google Scholar 

  42. Wu CH, Wong CB, Chen LH, et al. Instrumented posterior lumbar interbody fusion for patients with degenerative lumbar scoliosis. J Spinal Disord Tech. 2008;21:310–5.

    Article  PubMed  Google Scholar 

  43. Anand N, Rosemann R, Khalsa B, et al. Mid-term to long-term clinical and functional outcomes of minimally invasive correction and fusion for adults with scoliosis. Neurosurg Focus. 2010;28:E6.

    Article  PubMed  Google Scholar 

  44. Wang MY, Mummaneni PV. Minimally invasive surgery for thoracolumbar spinal deformity: initial clinical experience with clinical and radiographic outcomes. Neurosurg Focus. 2010;28:E9.

    Article  PubMed  Google Scholar 

  45. Sanden B, Forsth P, Michaelsson K. Smokers show less improvement than nonsmokers two years after surgery for lumbar spinal stenosis. Spine. 2011;36(13):1059–64.

    Article  PubMed  Google Scholar 

  46. Andersen T, Christensen F, Laursen M, et al. Smoking as a predictor of negative outcome in lumbar spinal fusion. Spine. 2001;26(23):2623–8.

    Article  CAS  PubMed  Google Scholar 

  47. Perez-Cruet MJ, Foley KT, Isaacs RE, et al. Microendoscopic lumbar discectomy:technical note. Neurosurgery. 2002;51(5):S129–36.

    PubMed  Google Scholar 

  48. Schwender JD, Holly LT, Rouben DP, et al. Minimally invasive transforaminal lumbar interbody fusion (TLIF): technical feasibility and initial results. J Spinal Disord Tech. 2005;18:S1–6.

    Article  PubMed  Google Scholar 

  49. Selznick LA, Shamji MF, Isaacs RE. Minimally invasive interbody fusion for revision lumbar surgery: technical feasibility and safety. J Spinal Disord Tech. 2009;22:207–13.

    Article  PubMed  Google Scholar 

  50. Pateder DB, Kebaish KM, Cascio BM, Neubaeur P, Matusz DM, Kostuik JP. Posterior only versus combined anterior and posterior approaches to lumbar scoliosis in adults: a radiographic analysis. Spine. 2007;32(14):1551–4.

    Article  PubMed  Google Scholar 

  51. Kamel HK, Iqbal MA, Mogallapu R, et al. Time to ambulation after hip fracture surgery: relation to hospitalization outcomes. J Gerontol. 2003;58:1042–5.

    Article  Google Scholar 

  52. Oliveira L, Marchi L, Coutinho E, et al. A radiographic assessment of the ability of the extreme lateral interbody fusion procedure to indirectly decompress the neural elements. Spine. 2010;35(26):S331–7.

    Article  PubMed  Google Scholar 

  53. Sharma AK, Kepler CK, Girardi FP, et al. Lateral lumbar interbody fusion: clinical and radiographic outcomes at 1 year: a preliminary report. J Spinal Disord Tech. 2011;24:242–50.

    Article  PubMed  Google Scholar 

  54. Pumberger M, Hughes AP, Huang RR, Sama AA, Cammisa FP, Girardi FP. Neurologic deficit following lateral lumbar interbody fusion. Eur Spine J. 2012;21(6):1192–9. doi:10.1007/s00586-011-2087-9. Epub 2011 Dec 1. PubMed PMID: 22130617; PubMed Central PMCID: PMC3366130.

  55. Malham GM, Ellis NJ, et al. Clinical outcome and fusion rates after the first 30 extreme lateral interbody fusions. Sci World J. 2012;2012:246989.

    Article  Google Scholar 

  56. Marchi L, Abdala N, et al. Radiographic and clinical evaluation of cage subsidence after stand-alone lateral interbody fusion. J Neurosurg Spine. 2013;19:110–8.

    Article  PubMed  Google Scholar 

  57. Pimenta L, Marchi L, Oliveira L, Coutinho E, Amaral R. A prospective, randomized, controlled trial comparing radiographic and clinical outcomes between stand-alone lateral interbody lumbar fusion with either silicate calcium phosphate or rh-BMP2. J Neurol Surg A Cent Eur Neurosurg. 2013;74(6):343-50. doi:10.1055/s-0032-1333420. Epub 2013 Feb 26. PubMed PMID: 23444134.

  58. Cummock MD, Vanni S, et al. An analysis of postoperative thigh symptoms after minimally invasive transpsoas lumbar interbody fusion. J Neurosurg Spine. 2011;15:11–8.

    Article  PubMed  Google Scholar 

  59. Smith WD, Christian G, et al. A comparison of perioperative charges and outcome between open and mini-open approaches for anterior lumbar discectomy and fusion. J Clin Neurosci. 2011;19:673–80.

    Article  Google Scholar 

  60. Cho KJ, Suk SI, Park SR, et al. Complications in posterior fusion and instrumentation for degenerative lumbar scoliosis. Spine. 2007;32:2232–7.

    Article  PubMed  Google Scholar 

  61. Rampersaud YR, Moro ER, Neary MA, et al. Intraoperative adverse events and related postoperative complications in spine surgery: implications for enhancing patient safety founded on evidence-based protocols. Spine. 2006;31(13):1503–10.

    Article  PubMed  Google Scholar 

  62. Schuster JM, Rechtine G, Norvell DC, et al. The influence of perioperative risk factors and therapeutic interventions on infection rates after spine surgery: a systematic review. Spine. 2010;35(9):S125–37.

    Article  PubMed  Google Scholar 

  63. O’Toole JE, Eichholz KM, Fessler RG. Surgical site infection rates after minimally invasive spinal surgery. J Neurosurg Spine. 2009;11(4):471–6.

    Article  PubMed  Google Scholar 

  64. Blumenthal S, McAfee PC, Guyer RD, et al. A prospective, randomized, multicenter food and drug administration investigational device exemptions study of lumbar total disc replacement with the CHARITE ́ artificial disc versus lumbar fusion—part I: evaluation of clinical outcomes. Spine. 2005;30(14):1565–75.

    Article  PubMed  Google Scholar 

  65. Kuslich SD, Ulstrom CL, Griffith SL, et al. The Bagby and Kuslich method of lumbar interbody fusion: history, techniques, and 2-year follow-up results of a United States prospective, multicenter trial. Spine. 1998;23(11):1267–79.

    Article  CAS  PubMed  Google Scholar 

  66. Kepler CK, Sharma AK, Huang RC, et al. Indirect foraminal decompression after lateral transpsoas interbody fusion. J Neurosurg Spine. 2012;16:329–33.

    Article  PubMed  Google Scholar 

  67. Cappuccino A, Cornwall GB, Turner AWL, et al. Biomechanical analysis and review of lateral lumbar fusion constructs. Spine. 2010;35(26):S361–7.

    Article  PubMed  Google Scholar 

  68. Bridwell KH, Lenke LG, McEnery KW, et al. Anterior fresh frozen structural allografts in the thoracic and lumbar spine. Do they work if combined with posterior fusion and instrumentation in adult patients with kyphosis or anterior column defects. Spine. 1995;20:1410–8.

    Article  CAS  PubMed  Google Scholar 

  69. Eck JC, Hodges S, Humphreys SC. Minimally invasive lumbar spinal fusion. J Am Acad Orthop Surg. 2007;15:321–9.

    Article  PubMed  Google Scholar 

  70. Kaiser MG, Haid Jr RW, Subach BR, et al. Comparison of the mini-open versus laparoscopic approach for anterior lumbar interbody fusion: a retrospective review. Neurosurgery. 2002;51:97–103.

    Article  PubMed  Google Scholar 

  71. Brau SA. Mini-open approach to the spine for anterior lumbar interbody fusion: description of the procedure, results and complications. Spine J. 2002;2:216–23.

    Article  PubMed  Google Scholar 

  72. Villavicencio AT, Burneikiene S, Bulsara KR, et al. Perioperative complications in transforaminal lumbar interbody fusion versus anterior-posterior reconstruction for lumbar disc degeneration and instability. J Spinal Disord Tech. 2006;19:92–7.

    Article  PubMed  Google Scholar 

  73. Holly LT, Schwender JD, Rouben DP, et al. Neurosurg Focus. 2006;20:E6.

    Article  PubMed  Google Scholar 

  74. Kim JS, Kang BU, Lee SH, et al. Mini-transforaminal lumbar interbody fusion versus anterior lumbar interbody fusion augmented by percutaneous pedicle screw fixation: a comparison of surgical outcomes in adult low-grade isthmic spondylolisthesis. J Spinal Disord Tech. 2009;22:114–21.

    Article  PubMed  Google Scholar 

  75. Rihn JA, Patel R, Makda J, et al. Complications associated with single-level transforaminal lumbar interbody fusion. Spine J. 2009;9(8):623–9.

    Article  PubMed  Google Scholar 

  76. Okuda S, Miyauchi A, Oda T, et al. Surgical complications of posterior lumbar interbody fusion with total facetectomy in 251 patients. J Neurosurg Spine. 2006;4(4):304–9.

    Article  PubMed  Google Scholar 

  77. Davne SH, Myers DL. Complications of lumbar spinal fusion with transpedicular instrumentation. Spine. 1992;17:S184–9.

    Article  CAS  PubMed  Google Scholar 

  78. Gille O, Jolivet E, Dousset V, et al. Erector spinae muscle changes on magnetic resonance imaging following lumbar surgery through a posterior approach. Spine. 2007;32:1236–41.

    Article  PubMed  Google Scholar 

  79. Dickerman RD, East JW, Winters K, et al. Anterior and posterior lumbar interbody fusion with percutaneous pedicle screws: comparison to muscle damage and minimally invasive techniques. Spine. 2009;34:E923–5.

    Article  PubMed  Google Scholar 

  80. Dickerman RD, Reynolds AS, Tackett J, et al. Percutaneous pedicle screws significantly decrease muscle damage and operative time: surgical technique makes a difference! Eur Spine J. 2008;17:1398–400.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Regev GJ, Lee YP, Taylor WR, et al. Nerve injury to the posterior rami medial branch during the insertion of pedicle screws: comparison of mini-open versus percutaneous pedicle screw insertion techniques. Spine. 2009;34:1239–42.

    Article  PubMed  Google Scholar 

  82. Bergey DL, Villavicencio AT, Goldstein T, et al. Endoscopic lateral transpsoas approach to the lumbar spine. Spine. 2004;29:1681–8.

    Article  PubMed  Google Scholar 

  83. Gumbs AA, Shah RV, Yue JJ, et al. The open anterior paramedian retroperitoneal approach for spinal procedures. Arch Surg. 2005;140:339–43.

    Article  PubMed  Google Scholar 

  84. Riedel CJ. Open anterior lumbar interbody fusion. Clin Neurosurg. 2000;47:534–40.

    CAS  PubMed  Google Scholar 

  85. Le TV, Smith DA, Greenberg MS, et al. Complications of lateral plating in the minimally invasive lateral transpsoas approach. J Neurosurg Spine. 2012;16(3):302–7.

    Article  PubMed  Google Scholar 

  86. Mroz TE, Wang JC, Hashimoto R, et al. Complications related to osteobiologics use in spine surgery: a systematic review. Spine. 2010;35(9):S86–104.

    Article  PubMed  Google Scholar 

  87. Cassinelli EH, Eubanks J, Vogt M, et al. Risk factors for the development of perioperative complications in elderly patients undergoing lumbar decompression and arthrodesis for spinal stenosis. Spine. 2007;32:230–5.

    Article  PubMed  Google Scholar 

  88. Papanastassiou ID, Eleraky M, Vrionis FD. Contralateral femoral nerve compression: an unrecognized complication after extreme lateral interbody fusion (XLIF). J Clin Neurosci. 2011;18:149–51.

    Article  PubMed  Google Scholar 

  89. Pimenta L, Oliveira L, Schaffa T, et al. Lumbar total disc replacement from an extreme lateral approach: clinical experience with a minimum of 2 years’ follow-up. J Neurosurg Spine. 2011;14:38–45.

    Article  PubMed  Google Scholar 

  90. Moller DJ, Slimack NP, et al. Minimally invasive lateral lumbar interbody fusion and transpsoas approach–related morbidity. Neurosurg Focus. 2011;31(4):E4.

    Article  PubMed  Google Scholar 

  91. Lee Y, Regev GJ, et al. Evaluation of hip flexion strength following lateral lumbar interbody fusion. Spine J. 2013;13:1259–62.

    Article  PubMed  Google Scholar 

  92. Tohmeh AG, Rodgers WB, Peterson MD. Dynamically evoked, discrete-threshold electromyography in the extreme lateral interbody fusion approach: clinical article. J Neurosurg Spine. 2011;14(1):31–7.

    Article  PubMed  Google Scholar 

  93. Barnes B, Rodts Jr GE, Haid Jr RW, et al. Allograft implants for posterior lumbar interbody fusion: results comparing cylindrical dowels and impacted wedges. Neurosurgery. 2002;51:1191–8.

    Article  PubMed  Google Scholar 

  94. Fantini GA, Pappou IP, Girardi FP, et al. Major vascular injury during anterior lumbar spinal surgery: incidence, risk factors, and management. Spine. 2007;32:2751–8.

    Article  PubMed  Google Scholar 

  95. Dhall SS, Wang MY, Mummaneni PV. Clinical and radiographic comparison of mini-open transforaminal lumbar interbody fusion with open transforaminal lumbar interbody fusion in 42 patients with long-term follow-up. J Neurosurg Spine. 2008;9:560–5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jim Youssef MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Youssef, J., Orndorff, D., Myhre, S.L. (2017). Literature Evidence of the MIS Lateral Approach. In: Wang, M., Sama, A., Uribe, J. (eds) Lateral Access Minimally Invasive Spine Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-28320-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28320-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28318-0

  • Online ISBN: 978-3-319-28320-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics