Skip to main content

Osteobiologics

  • Chapter
  • First Online:
Lateral Access Minimally Invasive Spine Surgery

Abstract

With the lateral approach, the surgeon is able to achieve a comprehensive discectomy with indirect decompression of the neural elements after placement of a large interbody graft. A number of bone grafts for interbody fusion can be used with this procedure, including iliac autograft, structural allograft and non-biological structural composite materials. The ideal graft for spine fusions should be osteoconductive, osteoinductive, and osteogenic. The iliac crest graft is the only scaffold that satisfies all three characteristics and has no donor rejection complications However, its harvest carries potential postoperative complications, and the amount of harvested material is often insufficient. There are several alternatives including demineralized bone matrix (DBM), bone morphogenetic proteins (BMP), and bone marrow aspirates. DBM scaffolds are osteoconductive and to some extent osteoinductive, whereas BMP and bone marrow aspirates (BMA) are osteoinductive and osteogenic. Even though DBM can be obtained in large amounts and there are no harvest morbidities, cell absence and donor variability are one of the main disadvantages. When choosing the right graft, the surgeon must consider patient’s age, disease condition, graft dose, and the surgical location.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rodgers WB, Gerber EJ, Patterson JR. Fusion after minimally disruptive anterior lumbar interbody fusion: analysis of extreme lateral interbody fusion by computed tomography. Int J Spine Surg. 2010;4(2):63–6.

    CAS  Google Scholar 

  2. Acosta FL, Liu J, Slimack N, Moller D, Fessler R, Koski T. Changes in coronal and sagittal plane alignment following minimally invasive direct lateral interbody fusion for the treatment of degenerative lumbar disease in adults: a radiographic study. J Neurosurg Spine. 2011;15(1):92–6.

    Article  PubMed  Google Scholar 

  3. Boden SD, Schimandle JH, Hutton WC, Chen MI. 1995 Volvo Award in basic sciences. The use of an osteoinductive growth factor for lumbar spinal fusion. Part I: biology of spinal fusion. Spine. 1995;20(24):2626–32.

    Article  CAS  PubMed  Google Scholar 

  4. Vaccaro AR, Chiba K, Heller JG, Patel T, Thalgott JS, Truumees E, et al. Bone grafting alternatives in spinal surgery. Spine J: Off J N Am Spine Soc. 2002;2(3):206–15.

    Article  Google Scholar 

  5. Sengupta DK, Truumees E, Patel CK, Kazmierczak C, Hughes B, Elders G, et al. Outcome of local bone versus autogenous iliac crest bone graft in the instrumented posterolateral fusion of the lumbar spine. Spine. 2006;31(9):985–91.

    Article  PubMed  Google Scholar 

  6. Myeroff C, Archdeacon M. Autogenous bone graft: donor sites and techniques. J Bone Joint Surg Am. 2011;93(23):2227–36.

    Article  PubMed  Google Scholar 

  7. Howard JM, Glassman SD, Carreon LY. Posterior iliac crest pain after posterolateral fusion with or without iliac crest graft harvest. Spine J: Off J N Am Spine Soc. 2011;11(6):534–7.

    Article  Google Scholar 

  8. Gruskay JA, Basques BA, Bohl DD, Webb ML, Grauer JN. Short-term adverse events, length of stay, and readmission after iliac crest bone graft for spinal fusion. Spine. 2014;39(20):1718–24.

    Article  PubMed  Google Scholar 

  9. An HS, Lynch K, Toth J. Prospective comparison of autograft vs. allograft for adult posterolateral lumbar spine fusion: differences among freeze-dried, frozen, and mixed grafts. J Spinal Disord. 1995;8(2):131–5.

    Article  CAS  PubMed  Google Scholar 

  10. Mroz TE, Joyce MJ, Lieberman IH, Steinmetz MP, Benzel EC, Wang JC. The use of allograft bone in spine surgery: is it safe? Spine J: Off J N Am Spine Soc. 2009;9(4):303–8.

    Article  Google Scholar 

  11. Jurgensmeier D, Hart R. Variability in tissue bank practices regarding donor and tissue screening of structural allograft bone. Spine. 2010;35(15):E702–7.

    Article  PubMed  Google Scholar 

  12. Reddi AH. The matrix of rat calvarium as transformant of fibroblasts. Proc Soc Exp Biol Med Soc Exp Biol Med. 1975;150(2):324–6.

    Article  CAS  Google Scholar 

  13. Salih E, Wang J, Mah J, Fluckiger R. Natural variation in the extent of phosphorylation of bone phosphoproteins as a function of in vivo new bone formation induced by demineralized bone matrix in soft tissue and bony environments. Biochem J. 2002;364(Pt 2):465–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Blum B, Moseley J, Miller L, Richelsoph K, Haggard W. Measurement of bone morphogenetic proteins and other growth factors in demineralized bone matrix. Orthopedics. 2004;27(1 Suppl):s161–5.

    PubMed  Google Scholar 

  15. Gruskin E, Doll BA, Futrell FW, Schmitz JP, Hollinger JO. Demineralized bone matrix in bone repair: history and use. Adv Drug Deliv Rev. 2012;64(12):1063–77.

    Article  CAS  PubMed  Google Scholar 

  16. Morone MA, Boden SD. Experimental posterolateral lumbar spinal fusion with a demineralized bone matrix gel. Spine. 1998;23(2):159–67.

    Article  CAS  PubMed  Google Scholar 

  17. Wang JC, Alanay A, Mark D, Kanim LE, Campbell PA, Dawson EG, et al. A comparison of commercially available demineralized bone matrix for spinal fusion. Eur Spine J: Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cervical Spine Res Soc. 2007;16(8):1233–40.

    Article  Google Scholar 

  18. Lu SS, Zhang X, Soo C, Hsu T, Napoli A, Aghaloo T, et al. The osteoinductive properties of Nell-1 in a rat spinal fusion model. Spine J: Off J N Am Spine Soc. 2007;7(1):50–60.

    Article  Google Scholar 

  19. Sassard WR, Eidman DK, Gray PM, Block JE, Russo R, Russell JL, et al. Augmenting local bone with Grafton demineralized bone matrix for posterolateral lumbar spine fusion: avoiding second site autologous bone harvest. Orthopedics. 2000;23(10):1059–64; discussion 64–5.

    CAS  PubMed  Google Scholar 

  20. Dai LY, Jiang LS. Single-level instrumented posterolateral fusion of lumbar spine with beta-tricalcium phosphate versus autograft: a prospective, randomized study with 3-year follow-up. Spine. 2008;33(12):1299–304.

    Article  PubMed  Google Scholar 

  21. Yoshii T, Yuasa M, Sotome S, Yamada T, Sakaki K, Hirai T, et al. Porous/dense composite hydroxyapatite for anterior cervical discectomy and fusion. Spine. 2013;38(10):833–40.

    Article  PubMed  Google Scholar 

  22. Minamide A, Kawakami M, Hashizume H, Sakata R, Tamaki T. Evaluation of carriers of bone morphogenetic protein for spinal fusion. Spine. 2001;26(8):933–9.

    Article  CAS  PubMed  Google Scholar 

  23. Boden SD, Kang J, Sandhu H, Heller JG. Use of recombinant human bone morphogenetic protein-2 to achieve posterolateral lumbar spine fusion in humans: a prospective, randomized clinical pilot trial: 2002 Volvo Award in clinical studies. Spine. 2002;27(23):2662–73.

    Article  PubMed  Google Scholar 

  24. Mulconrey DS, Bridwell KH, Flynn J, Cronen GA, Rose PS. Bone morphogenetic protein (RhBMP-2) as a substitute for iliac crest bone graft in multilevel adult spinal deformity surgery: minimum two-year evaluation of fusion. Spine. 2008;33(20):2153–9.

    Article  PubMed  Google Scholar 

  25. Carragee EJ, Hurwitz EL, Weiner BK. A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J: Off J N Am Spine Soc. 2011;11(6):471–91.

    Article  Google Scholar 

  26. Fu R, Selph S, McDonagh M, Peterson K, Tiwari A, Chou R, et al. Effectiveness and harms of recombinant human bone morphogenetic protein-2 in spine fusion: a systematic review and meta-analysis. Ann Intern Med. 2013;158(12):890–902.

    Article  PubMed  Google Scholar 

  27. Lee KB, Johnson JS, Song KJ, Taghavi CE, Wang JC. Use of autogenous bone graft compared with RhBMP in high-risk patients: a comparison of fusion rates and time to fusion. J Spinal Disord Tech. 2013;26(5):233–8.

    Article  PubMed  Google Scholar 

  28. Vaccaro AR, Patel T, Fischgrund J, Anderson DG, Truumees E, Herkowitz H, et al. A 2-year follow-up pilot study evaluating the safety and efficacy of op-1 putty (rhbmp-7) as an adjunct to iliac crest autograft in posterolateral lumbar fusions. Eur Spine J: Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cervical Spine Res Soc. 2005;14(7):623–9.

    Article  Google Scholar 

  29. Kaito T, Johnson J, Ellerman J, Tian H, Aydogan M, Chatsrinopkun M, et al. Synergistic effect of bone morphogenetic proteins 2 and 7 by ex vivo gene therapy in a rat spinal fusion model. J Bone Joint Surg Am. 2013;95(17):1612–9.

    Article  PubMed  Google Scholar 

  30. Kadiyala S, Young RG, Thiede MA, Bruder SP. Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant. 1997;6(2):125–34.

    Article  CAS  PubMed  Google Scholar 

  31. Taghavi CE, Lee KB, Keorochana G, Tzeng ST, Yoo JH, Wang JC. Bone morphogenetic protein-2 and bone marrow aspirate with allograft as alternatives to autograft in instrumented revision posterolateral lumbar spinal fusion: a minimum two-year follow-up study. Spine. 2010;35(11):1144–50.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zorica Buser PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Buser, Z., Smith, L., Wang, J.C. (2017). Osteobiologics. In: Wang, M., Sama, A., Uribe, J. (eds) Lateral Access Minimally Invasive Spine Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-28320-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28320-3_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28318-0

  • Online ISBN: 978-3-319-28320-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics