Skip to main content

Pediatrics

  • Chapter
  • First Online:
  • 1817 Accesses

Abstract

A coagulopathic state can occur secondary to trauma or as a consequence of its treatment. While the general principles of trauma care are the same for adults and children, there are important physiologic and developmental differences that potentially affect the development of coagulopathy in children. These include differences in how hemostasis is regulated and response to resuscitative fluid administration in infants and young children. This chapter will discuss some of these differences, and detail specific interventions that may differ from those appropriate for the adult trauma patient.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cap A, Hunt B. Acute traumatic coagulopathy. Curr Opin Crit Care. 2014;20:638–45.

    Article  PubMed  Google Scholar 

  2. Christiaan SC, Duhachek-Stapelman AL, Russel RT, Lissco SJ, Kerby JD, Pittet JF. Coagulopathy after severe pediatric trauma. Shock. 2014;41:476–90.

    Article  CAS  Google Scholar 

  3. Gonzalez E, Moore EE, Moore HB, Chapman MP, Silliman CC. Trauma induced coagulopathy: an institution’s 35 year perspective on practice and research. Scand J Surg. 2014;103:89–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. MacLeod JB, Winkler AM, McCoy CC, Hillyer CD, Shaz BH. Early trauma induced coagulopathy (ETIC): prevalence across the injury spectrum. Injury. 2014;45:910–5.

    Article  PubMed  Google Scholar 

  5. Sakellaris G, Bievrakis E, Petrakis I, et al. Acute coagulopathy in children with multiple trauma: a retrospective study. J Emerg Med. 2014;47:539–45.

    Article  PubMed  Google Scholar 

  6. Whittaker B, Christiaan SC, Altice JL, et al. Early coagulopathy is an independent predictor of mortality in children after severe trauma. Shock. 2013;39:421–6.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Epstein DS, Mitra B, O’Reilly G, Rosenfeld JV, Cameron PA. Acute traumatic coagulopathy in the setting of isolated traumatic brain injury: a systematic review and meta-analysis. Injury. 2014;45:819–24.

    Article  PubMed  Google Scholar 

  8. Frohlich M, Lefering R, Probst C, et al. Epidemiology and risk factors of multiple-organ failure after multiple trauma: an analysis of 31,154 patients from the TraumaRegister DGU. J Trauma Acute Care Surg. 2014;76:921–7. discussion 927–28.

    Article  PubMed  Google Scholar 

  9. Cohen MJ, Kutcher M, Redick B, et al. Clinical and mechanistic drivers of acute traumatic coagulopathy. J Trauma Acute Care Surg. 2013;75(1 Suppl 1):S40–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Duan K, Yu W, Li Z, et al. A time course study of acute traumatic coagulopathy prior to resuscitation: from hypercoagulation to hypocoagulation caused by hypoperfusion? Transfus Apher Sci. 2014;50:399–406.

    Article  PubMed  Google Scholar 

  11. Kumar MA. Coagulopathy associated with traumatic brain injury. Curr Neurol Neurosci Rep. 2013;13:391.

    Article  PubMed  Google Scholar 

  12. Andrew M, Paes B, Milner R, et al. Development of the human coagulation system in the full term infant. Blood. 1987;70:165–72.

    CAS  PubMed  Google Scholar 

  13. Andrew M, Paes B, Milner R, et al. Development of the human coagulation system in the healthy premature infant. Blood. 1988;72:1651–7.

    CAS  PubMed  Google Scholar 

  14. Andrew M, Vegh P, Johnston J, Bowker J, Ofosu F, Mitchell L. Maturation of the hemostatic system during childhood. Blood. 1992;80:1998–2005.

    CAS  PubMed  Google Scholar 

  15. Reverdiau-Moalic P, Delahousse B, Body G, Bardos P, Leroy J, Gruel Y. Evolution of blood coagulation activators and inhibitors in the healthy human fetus. Blood. 1996;88:900–6.

    CAS  PubMed  Google Scholar 

  16. Appel IM, Grimminck B, Geerts J, Stigter R, Cnossen MH, Beishuizen A. Age dependency of coagulation parameters during childhood and puberty. J Thromb Haemost. 2012;10:2254–63.

    Article  CAS  PubMed  Google Scholar 

  17. Andrew M, Paes B, Johnston M. Development of the hemostatic system in the neonate and young infant. Am J Pediatr Hematol Oncol. 1990;12:95–104.

    Article  CAS  PubMed  Google Scholar 

  18. Siow-Phing T, Nem-Yun B, Soon-Keng C. Circulating tissue factor, tissue factor pathway inhibitor and D-dimer in umbilical cord blood of normal term neonates and adult plasma. Blood Cogul Fibrinolysis. 2003;14:125–9.

    Article  Google Scholar 

  19. Parmar N, Albisetti M, Chan AKC, Berry LR. The fibrinolytic system in newborns and children. Clin Lab. 2006;52:115–24.

    CAS  PubMed  Google Scholar 

  20. Tripodi A, Ramenghi LA, Chantarangkul V, et al. Normal thrombin generation in neonates in spite of prolonged conventional tests. Haematologica. 2008;93:1256–9.

    Article  PubMed  Google Scholar 

  21. Bernhard H, Rosenkranz A, Novak M, et al. No difference in support of thrombin generation by neonatal or adult platelets. Hamostaseologie. 2009;29 Suppl 1:S94–7.

    CAS  PubMed  Google Scholar 

  22. Fritsch P, Cvirn G, Cimenti C, et al. Thrombin generation in factor VIII-depleted neonatal plasma: nearly normal because of physiologically low antithrombin and tissue factor pathway inhibitor. J Thromb Haemost. 2006;4:1071–7.

    Article  CAS  PubMed  Google Scholar 

  23. Guzzetta NA, Miller BE. Principles of hemostasis in children: models and maturation. Paediatr Anaesth. 2011;21:3–9.

    Article  PubMed  Google Scholar 

  24. Ignjatovic V, Greenwy A, Summerhayes R, Monagle P. Thrombin generation: the functional role of alpha-2-macroglobulin and influence of developmental haemostasis. Br J Haematol. 2007;138:366–8.

    Article  CAS  PubMed  Google Scholar 

  25. Ignjatovic V, Lai C, Summerhayes R, et al. Age-related differences in plasma proteins: how plasma proteins change from neonates to adults. PLoS One. 2011;6:e17213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Solar-Visner M. Platelets in the neonatal period: developmental differences in platelet production, function, and hemostasis and the potential impact on therapies. Am Soc Hematol Educ Program. 2012;2012:506–11.

    Google Scholar 

  27. Cvrin G, Kutschera J, Wagner T, et al. Collagen/endogenous thrombin-induced platelet aggregation in cord blood versus adult whole blood. Neonatology. 2009;95:187–9.

    Article  CAS  Google Scholar 

  28. Strauss T, Sidlik-Muskatel R, Kenet G. Developmental hemostasis: primary hemostasis and evaluation of platelet function in neonates. Semin Neonatol Med. 2011;16:301–4.

    Article  CAS  Google Scholar 

  29. Israels SJ, Rand ML, Michaelson AD. Neontal platelet function. Semin Thromb Hemost. 2003;29:363–72.

    Article  CAS  PubMed  Google Scholar 

  30. Parker RI, Shafer BC, Gralnick HR. Platelet density-dependent partition of platelet-von Willebrand factor between alpha granule and non-alpha granule pools. Thromb Haemost. 1987;58:911–4.

    CAS  PubMed  Google Scholar 

  31. Saxonhouse MA, Sola MC. Platelet function in term and preterm infants. Clin Perinatol. 2004;31:15–28.

    Article  PubMed  Google Scholar 

  32. Schlagenhauf A, Haidi H, Leschnik B, Leis HJ, Heinemann A, Muntean W. Prostaglandin E2 levels and platelet function are different in cord blood compared to adults. Thromb Haemost. 2015;113:97–106.

    Article  PubMed  Google Scholar 

  33. Katz JA, Moake JL, McPherson PD, et al. Relationship between human development and disappearance of unusually large von Willebrand factor multimers from plasma. Blood. 1989;73:1851–8.

    CAS  PubMed  Google Scholar 

  34. Tsai HM, Sarode R, Downes KA. Ultralarge von Willebrand factor multimers and normal ADAMTS13 activity in the umbilical cord blood. Thromb Res. 2002;108:121–5.

    Article  CAS  PubMed  Google Scholar 

  35. Ferrer-Marin F, Stanworth S, Josephson C, Sola-Visner M. Distinct differences in platelet production and function between neonates and adults: implications for platelet transfusion practice. Transfusion. 2013;53:2814–21.

    Article  PubMed  Google Scholar 

  36. Zhang J, Jiang R, Liu L, Watkins T, Zhang F, Dong JF. Traumatic brain-injury coagulopathy. Neurotrauma. 2012;29:2597–605.

    Article  Google Scholar 

  37. Peiniger S, Peiniger U, Lefering R, et al. Glascow Coma Scale as a predictor for hemocoagulative disorders after blunt pediatric traumatic brain injury. Peditr Crit Care. 2012;13:455–60.

    Article  Google Scholar 

  38. Maegele M. Coagulopathy after traumatic brain injury: incidence, pathogenesis, and treatment options. Transfusion. 2013;53 Suppl 1:28S–37.

    Article  PubMed  Google Scholar 

  39. Hendrickson JE, Shaz BH, Pereira G, et al. Coagulopathy is prevalent and associated with adverse outcomes in transfused pediatric trauma patients. J Pediatr. 2012;160:204–9.

    Article  PubMed  Google Scholar 

  40. Cohen MJ, Brohl K, Ganter MT, Manley GT, Pittet JF, Mackersie RC. Early coagulopathy after traumatic brain injury: the role of hypoperfusion and the protein C pathway. J Trauma. 2007;63:1254–62.

    Article  CAS  PubMed  Google Scholar 

  41. Davis PK, Musunuru H, Walsh M, et al. Platelet dysfunction is an early marker for traumatic brain injury-induced coagulopathy. Neurocrit Care. 2013;18:201–8.

    Article  CAS  PubMed  Google Scholar 

  42. Castellino FJ, Chapmn MP, Donahue DL, et al. Traumatic brain injury causes platelet adenosine diphosphate and arachidonic acid receptor inhibition independent of hemorrhagic shock in humans and rats. J Trauma Acute Care Surg. 2014;76:1169–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hymel KP, Abshire TC, Luckey DW, Jenny C. Coagulopathy in pediatric abusive head trauma. Pediatrics. 1997;99:371–5.

    Article  CAS  PubMed  Google Scholar 

  44. Chiaretti A, Pezzotti P, Mestrovic J, et al. The influence of hemocoagulative disorders on the outcome of children with head injury. Pediatr Neurosurg. 2001;34:131–7.

    Article  CAS  PubMed  Google Scholar 

  45. Holmes JF, Lnd C, Goodwin HC, Kuppermnn N. Coagulation testing in pediatric blunt trauma patients. Pediatr Emerg Care. 2001;17:324–8.

    Article  CAS  PubMed  Google Scholar 

  46. Talving P, Lustenberger T, Lam L, et al. Coagulopathy after isolated severe traumatic brain injury in children. J Trauma. 2011;71:1205–10.

    Article  PubMed  Google Scholar 

  47. Patregnani JT, Borgman MA, Maegele M, Wade CE, Blackbourne LH, Spinella PC. Coagulopathy and shock on admission is associated with mortality for children with traumatic injuries at combat support hospitals. Pediatr Crit Care Med. 2012;13:273–7.

    Article  PubMed  Google Scholar 

  48. Lok J, Leung W, Murphy S, Butler W, Noviski N, Lo EH. Intracranial hemorrhage: mechanisms of secondary brain injury. Acta Neurochir Suppl. 2011;111:63–9.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Coppola A, Windyga J, Tufano A, Yeung C, DiMinno MN. Treatment for preventing bleeding in people with haemophilia or other congenital bleeding disorders undergoing surgery. Cochrane Database Syst Rev. 2015;9(2):CD009961.

    Google Scholar 

  50. Sarode R, Milling Jr TJ, Refaal MA, et al. Efficacy and safety of a 4-factor prothrombin complex concentrate in patients on vitamin K antagonists presenting with major bleeding: randomized, plasma-controlled, phase IIIb study. Circulation. 2013;128:1234–43.

    CAS  PubMed  Google Scholar 

  51. Kinard TN, Sarode R. Four factor prothrombin complex concentrate (human): review of the pharmacology and clinical applications for vitamin K antagonist reversal. Expert Rev Cardiovasc Ther. 2014;12:417–27.

    Article  CAS  PubMed  Google Scholar 

  52. Ipema HJ. Use of oral vitamin K for prevention of late vitamin K deficiency bleeding in neonates when injectable vitamin K is not available. Ann Pharmacother. 2012;46:879–83.

    Article  PubMed  CAS  Google Scholar 

  53. Hong I, Stuchnik J. Unlabeled uses for factor VIIa (recombinant) in pediatric patients. Am J Health Syst Pharm. 2010;67:1909–19.

    Article  CAS  PubMed  Google Scholar 

  54. Howard BM, Daley AT, Cohen MJ. Prohemostatic interventions in trauma: resuscitation associated coagulopathy, hemostatic resuscitation, and other hemostatic interventions. Semin Thromb Hemost. 2012;38:250–8.

    Article  CAS  PubMed  Google Scholar 

  55. Karam O, Lacroix J, Robitaille N, Rimensberger PC, Tucci M. Association between plasma transfusions and clinical outcome in critically ill children: a prospective observational study. Vox Sang. 2013;104:342–9.

    Article  CAS  PubMed  Google Scholar 

  56. Pieracci FM, Witt J, Moore EE, et al. Early death and late morbidity after blood transfusion of injured children: a pilot study. J Pediatr Surg. 2012;47:1587–91.

    Article  PubMed  Google Scholar 

  57. Shander A, Michelson EA, Saraani B, Flaherty ML, Shulman IA. Use of plasma in the management of central nervous system bleeding: evidence-based consensus recommendations. Adv Ther. 2014;31:66–90.

    Article  PubMed  Google Scholar 

  58. Brady KM, Easley RB, Tobias JD. Recombinant activated factor VII (rFVIIa) treatment in infants with hemorrhage. Paediatr Anaesth. 2006;16(10):1042–6.

    Article  PubMed  Google Scholar 

  59. McQuilten ZK, Barnes C, Zatta A, Phillips LE, Haemostasis Registry Steering Committee. Off-label use of recombinant factor VIIa in pediatric patients. Pediatrics. 2012;129(6):e1533–40.

    Article  PubMed  Google Scholar 

  60. Alten JA, Benner K, Green K, Toole B, Tofil NM, Winkler MK. Pediatric off-label use of recombinant factor VIIa. Pediatrics. 2009;123(3):1066–72.

    Article  PubMed  Google Scholar 

  61. Eckert MJ, Wertin TM, Tyner SD, Nelson DW, Izenberg S, Martin MJ. Tranexamic acid administration to pediatric trauma patients in a combat setting: the pediatric trauma and tranexamic acid study (PED-TRAX). J Trauma Acute Care Surg. 2014;77:852–8.

    Article  CAS  PubMed  Google Scholar 

  62. Dehmer JJ, Adamson VT. Massive transfusion and blood product use in the pediatric trauma patient. Semin Pediatr Surg. 2010;19:288–91.

    Article  Google Scholar 

  63. Diab YA, Wong EC, Luban NL. Massive transfusion in children and neonates. Br J Haematol. 2013;161:15–26.

    Article  PubMed  Google Scholar 

  64. Barcelona SL, Thompson AA, Cote CJ. Intraoperative pediatric blood transfusion therapy; a review of common issues. Part II: transfusion therapy, special considerations, and reduction of allogenic blood transfusions. Paediatr Anaesth. 2005;15:814–30.

    Article  PubMed  Google Scholar 

  65. Stewart CL, Mulligan J, Grudic GZ, Convertino VA, Moulton SL. Detection of low-volume blood loss: compensatory reserve versus traditional vital signs. J Trauma Acute Care Surg. 2014;77:892–7.

    Article  PubMed  Google Scholar 

  66. Avarello JT, Cantor RM. Pediatric major trauma: an approach to evaluation and management. Emerg Med Clin North Am. 2007;25:803–36.

    Article  PubMed  Google Scholar 

  67. Chidester SJ, Williams N, Wang W, Groner JL. A pediatric massive transfusion protocol. J Trauma Acute Care Surg. 2012;73:1273–7.

    Article  PubMed  Google Scholar 

  68. Hebert PC, Wells G, Blajchman MA, et al. A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. Transfusion Requirements in Critical Care Investigators, Canadian Critical Care Trials Group. N Engl J Med. 1999;340:409–17.

    Article  CAS  PubMed  Google Scholar 

  69. Kirpalani H, Whyte RK, Andersen C, et al. The premature infants in need of transfusion (PINT) study: a randomized, controlled trial of a restrictive (low) versus liberal (high) transfusion threshold for extremely low birth weight infants. J Pediatr. 2006;149:301–7.

    Article  PubMed  Google Scholar 

  70. Lacroix J, Hebert PC, Hutchison JS, et al. Transfusion strategies for patients in pediatric intensive care units. TRIPICU Investigators, the Canadial Critical Care Trials Group, and the Pediatric Acute Lung Injury and Sepaia Investigators Network. N Engl J Med. 2007;356:1609–19.

    Article  CAS  PubMed  Google Scholar 

  71. Willems A, Harrington K, Lacroix J, TRIPICU Investigators; Canadian Critical Care Trials Group; Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network, et al. Comparison of two red-cell transfusion strategies after pediatric cardiac surgery: A subgroup analysis. Crit Care Med. 2010;38:649–56.

    Article  PubMed  Google Scholar 

  72. Cholette JM, Rubenstein JS, Alfieris GM, et al. Children with single-ventricle physiology do not benefit from higher hemoglobin levels post cavopulmonary connection: results of a prospective, randomized, controlled trial of a restrictive versus liberal red-cell transfusion strategy. Pediatr Crit Care Med. 2011;12:39–45.

    Article  PubMed  Google Scholar 

  73. Hendrickson JE, Shaz BH, Pereira G, et al. Implementation of a pediatric trauma massive transfusion protocol: one institution’s experience. Transfusion. 2012;52:1228–36.

    Article  CAS  PubMed  Google Scholar 

  74. Nosanov L, Inaba K, Okoye O, et al. The impact of blood product ratios in massively transfused pediatric trauma patients. Am J Surg. 2013;20:655–60.

    Article  Google Scholar 

  75. Marijianowski MM, van der Loos CM, Mohrschladt MF, Becker AE. The neonatal heart has a relatively high content of total collagen and type I collagen, a condition that may explain the less compliant state. J Am Coll Cardiol. 1994;23(5):1204–8.

    Article  CAS  PubMed  Google Scholar 

  76. Stone TJ, Riesenman PJ, Charles AG. Red blood cell transfusion within the first 24 hrs of admission is associated with increased mortality in the pediatric trauma population: a retrospective cohort study. J Trauma Manag Outcomes. 2008;2(1):9. doi:10.1186/1752-2897-2-9.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Kneyber MC, Hersi MI, Twisk JVV, Markhorst DG, Ploz FB. Red blood cell transfusion in critically ill children is independently associated with increased mortality. Intensive Care Med. 2007;33(8):1414–22.

    Article  PubMed  Google Scholar 

  78. Gauvin F, Spinella PC, Lacroix J, Canadian Critical Care Trials Group and the Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network, et al. Association between length of storage of transfused red blood cells and multiple organ dysfunction syndrome in pediatric intensive care patients. Transfusion. 2010;50(9):1902–13.

    Article  PubMed  Google Scholar 

  79. Karam O, Tucci M, Bateman ST, et al. Association between length of storage of red blood cell units and outcome of critically ill children: a prospective observational study. Crit Care. 2010;14:R57. doi:10.1186/cc8953.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Lacroix J, Hebert PC, Fergusson DA, et al. ABLE Investigators; Canadian Critical Care Trials Group. Age of transfused blood in critically ill adults. N Engl J Med 2015;372:1410–18.

    Google Scholar 

  81. Vogel AM, Radwan ZA, Cox Jr CS, Cotton BA. Admission rapid thromboelastography delivers real-time “actionable” data in pediatric trauma. J Pediatr Surg. 2013;48:1371–6.

    Article  PubMed  Google Scholar 

  82. Faraoni D, Fenger-Eriksen C, Gillard S, Willems A, Levy JH, Van der Linden P. Evaluation of dynamic parameters of thrombus formation measured on whole blood using rotational thromboelastometry in children undergoing cardiac surgery: a descriptive study. Pediatr Anesth. 2015;25(6):573–9. doi: 10.111/pan.12570.

    Article  Google Scholar 

  83. Chan KL, Summerhayes RG, Ignjatovic V, Horton SB, Monagle PT. Reference values for kaolin-activated thromboelastography in healthy children. Anesth Analg. 2007;105:1610–3.

    Article  PubMed  Google Scholar 

  84. Romlin BS, Wahlander H, Berggren H, et al. Intraoperative thromboelastometry is associated with reduced transfusion prevalence in pediatric cardiac surgery. Anesth Analg. 2011;112:30–6.

    Article  PubMed  Google Scholar 

  85. Oswald E, Stalzer B, Heitz E, et al. Thromboelastometry (ROTEM) in children: age-related reference ranges and correlations with standard coagulation tests. Br J Anaesth. 2010;105:827–35.

    Article  CAS  PubMed  Google Scholar 

  86. Josephson C. Neonatal and pediatric transfusion practice. In: Roback JD, editor. AABB technical manual. 17th ed. Bethesda, MD: AABB; 2011. p. 645–760.

    Google Scholar 

  87. Parker RI. Transfusion in critically ill children: indications, risks and challenges. Crit Care Med. 2014;42:675–90.

    Article  PubMed  Google Scholar 

  88. Kutcher ME, Howard BM, Sperry JL, et al. Evolving beyond the vicious triad: differential mediation of traumatic coagulopathy by injury, shock and resuscitation. J Trauma Acute Care Surg. 2015;78:516–23.

    Article  CAS  PubMed  Google Scholar 

  89. Cap A, Hunt BJ. The pathogenesis of traumatic coagulopathy. Anaesthesia. 2015;70 Suppl 1:96–101.

    Article  PubMed  Google Scholar 

  90. Nishi K, Takasu A, Shinozaki H, Yamamoto Y, Sakamoto T. Hemodilution as a result of aggressive fluid resuscitation aggravates coagulopathy in a rat model of uncontrolled hemorrhagic shock. J Trauma Acute Care Surg. 2013;74:808–12.

    Article  CAS  PubMed  Google Scholar 

  91. Moore HB, Moore EE, Gonzalez E, et al. Plasma is the physiologic buffer of tissue plasminogen activator-mediated fibrinolysis: rationale for plasma-first resuscitation after life-threatening hemorrhage. J Am Coll Surg. 2015;220:872–9.

    Article  PubMed  Google Scholar 

  92. Hussmann B, Lefering R, Kauther MD, et al. Influence of prehospital volume replacement on outcome in polytraumatized children. Crit Care. 2012;16:R201.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Raffini L, Huang YS, Witmer C, Feudtner C. Dramatic increase in venous thromboembolism in children's hospitals in the United States from 2001 to 2007. Pediatrics. 2009;124:1001–8.

    Article  PubMed  Google Scholar 

  94. Hanson SJ, Punzalan RC, Greenup RA, Liu H, Sato TT, Havens PL. Incidence and risk factors for venous thromboembolism in critically ill children after trauma. J Trauma. 2010;68:52–8.

    Article  PubMed  Google Scholar 

  95. Takemoto CM, Sohi S, Desai K, et al. Hospital-associated venous thromboembolism in children: incidence and clinical characteristics. J Pediatr. 2014;164:332–8.

    Article  PubMed  Google Scholar 

  96. Li X, Zoller B, Sundquist K, Cramp C. Gestational age and risk of thromboembolism from birth through young adulthood. Pediatrics. 2014;134:e473–80.

    Article  PubMed  Google Scholar 

  97. Arendonk KJ, Schneider EB, Haidu AM, Colombani PM, Stewart FD, Haut ER. Venous thromboembolism after trauma: when do children become adults. JAMA Surg. 2013;148:1123–30.

    Article  PubMed  Google Scholar 

  98. Thompson AJ, McSwin SD, Webb S, Stroud MA, Streck CJ. Venous thromboembolism prophylaxis in the pediatric trauma population. J Pediatr Surg. 2013;48:1413–21.

    Article  PubMed  Google Scholar 

  99. Stokes S, Breheny P, Radulescu A, Radulescu VC. Impact of obesity on the risk of venous thromboembolism in an inpatient pediatric population. Pediatr Hematol Oncol. 2014;31:475–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hanson SJ, Punzalan RC, Area MJ, et al. Effectiveness of clinical guidelines for deep venous thrombosis prophylaxis in reducing the incidence of venous thromboembolism in critically ill children after trauma. J trauma Acute Care Surg. 2012;72:1291–7.

    Article  Google Scholar 

  101. Atchison CM, Arliker S, Amankwah E, et al. Development of a new risk score for hospital-associated venous thromboembolism in noncritically ill children: findings from a large single-institutional case-control study. J Pediatr. 2014;165:793–8.

    Article  PubMed  Google Scholar 

  102. Meier KA, Clark E, Tarango C, Chima RS, Shaughnessy E. Venous thromboembolism in hospital adolescents: an approach to risk assessment and prophylaxis. Hosp Pediatr. 2015;5:44–51.

    Article  PubMed  Google Scholar 

  103. Morfini M, Marchesini E, Paladino E, Santoro C, Zanon E, Iorio A. Pharmacokinetics of plasma-derived vs recombinant FVIII concentrates: a comparative study. Haemophilia. 2015;21:204–9.

    Article  CAS  PubMed  Google Scholar 

  104. Kepa S, Horvath B, Reitter-Pfoertner S, et al. Parameters influencing FVIII pharmacokinetics in patients with severe and moderate haemophilia A. Haemophilia. 2015;21:343–50.

    Article  CAS  PubMed  Google Scholar 

  105. Mahlangu J, Powell JS, Ragni MV, A-LONG Investigators, et al. Phase 3 study of recombinant factor VIII Fc fusion protein in severe hemophilia A. Blood. 2014;123:317–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Alamelu J, Bevan D, Sorensen B, Rangarajan S. Pharmacokinetic and pharmacodynamic properties of a plasma-derived vs. recombinant factor IX in patients with hemophilia B: a prospective crossover study. J Thromb Haemost. 2014;12:2044–8.

    Article  CAS  PubMed  Google Scholar 

  107. Powell JS, Pasi KJ, Ragni MV, B-LONG Investigators, et al. Phase 3 study of recombinant factor IX Fc fusion protein in hemophilia B. N Engl J Med. 2013;369:2313–23.

    Article  CAS  PubMed  Google Scholar 

  108. Collins PW, Young G, Knobe K, et al. Paradigm 2 investigators. Blood. 2014;124:3880–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mathijssen NC, Masereeuw R, Holme PA, et al. Increased volume of distribution for recombinant activated factor VII and longer plasma-derived factor VII half-life may explain their long lasting prophylactic effect. Thromb Res. 2013;132:256–62.

    Article  CAS  PubMed  Google Scholar 

  110. Golor G, Bensen-Kennedy D, Haffner S, et al. Safety and pharmacokinetics of a recombinant fusion protein linking coagulation factor VIIa with albumin in healthy volunteers. J Thromb Haemost. 2013;11:1977–85.

    Article  CAS  PubMed  Google Scholar 

  111. Salas J, Liu T, Lu Q, et al. Enhanced pharmacokinetics of factor VIIa as a monomeric Fc fusion. Thromb Res. 2015;135:970–6.

    Article  CAS  PubMed  Google Scholar 

  112. Nugent DJ, Ashley C, Garcia-Talavera J, Lo LC, Mehdi AS, Mangione A. Pharmacokinetics and safety of plasma-derived factor XIII concentrate (human) in patients with congenital factor XIII deficiency. Haemophilia. 2015;21:95–101.

    Article  CAS  PubMed  Google Scholar 

  113. Brand-Staufer B, Carcao M, Kerlin BA, et al. Pharmacokinetic characterization of recombinant factor XIII (FXIII)-A2 across age groups in patients with FXIII A-subunit congenital deficiency. Haemophilia. 2015;21:380–5.

    Article  CAS  PubMed  Google Scholar 

  114. Kerlin B, Brand B, Inbal A, et al. Pharmacokinetics of recombinant factor XIII at steady state in patients with congenital factor XIII A-subunit deficiency. J Thromb Haemost. 2014;12:2038–43.

    Article  CAS  PubMed  Google Scholar 

  115. Manco-Johnson MJ, Dimichele D, Castaman G, Fibrinogen Concentrate Study Group, et al. Pharmacokinetics and safety of fibrinogen concentrate. J Thromb Haemost. 2009;7:2064–9.

    Article  CAS  PubMed  Google Scholar 

  116. Peyvandi F. Results of an international, multicentre pharmacokinetic trial in congenital fibrinogen deficiency. Thromb Res. 2009;124 Suppl 2:S9–11.

    Article  CAS  PubMed  Google Scholar 

  117. Mannuccio Mannucci P, Kyrle PA, Schulman S, DiPaola J, Schneppenheim R, Cox Gill J. Prophylactic efficacy and pharmacokinetically guided dosing of a von Willebrand factor/factor VIII concentrate in adults and children with von Willebrand’s disease undergoing elective surgery: a pooled and comparative analysis of data from USA and European Union clinical trials. Blood Transfus. 2013;11:533–40.

    PubMed  Google Scholar 

  118. Mannuci PM, Kempton C, Millar C, et al. Pharmacokinetics and safety of a novel recombinant human von Willebrand factor manufactured with a plasma-free method: a prospective clinical trial. Blood. 2013;122:648–57.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert I. Parker M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Parker, R.I. (2016). Pediatrics. In: Gonzalez, E., Moore, H., Moore, E. (eds) Trauma Induced Coagulopathy. Springer, Cham. https://doi.org/10.1007/978-3-319-28308-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28308-1_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28306-7

  • Online ISBN: 978-3-319-28308-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics