Skip to main content

Anti-fibrinolytics

  • Chapter
  • First Online:
  • 1849 Accesses

Abstract

The fibrinolytic system, driven by the plasminogen activator family of proteases, is widely known for its capacity to degrade fibrin and facilitate clot removal but also has a number of unrelated effects in the central nervous system (CNS). In the context of severe trauma, this system can be hyper-activated to varying extents and this is frequently observed in trauma-induced coagulopathy and is associated with poor outcome. Anti-fibrinolytic drugs including tranexamic acid (TXA) are currently used successfully in elective surgery and gynaecology to reduce bleeding complications. TXA, however, has been uniquely tested in recent years for its efficacy in patients who are bleeding or at risk of bleeding early after trauma. Administered within 3 h post injury, TXA reduced all-cause mortality and mortality due to bleeding, whereas later administration was surprisingly deleterious, but this may be explained by a counterintuitive effect of TXA on plasminogen under certain conditions. Moreover, while the trauma field has widely embraced the use of TXA, questions about its thromboembolic potential and the applicability for different subpopulations of trauma patients as well as the potential non-fibrinolytic consequences of plasmin blockade still remain and will be further assessed in ongoing clinical trials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

aPC:

Activated protein C

ATC:

Acute traumatic coagulopathy

CSF:

Cerebrospinal fluid

EACA:

ε-Aminocaproic acid

ICH:

Intracranial haemorrhage

ISS:

Injury severity score

LY30:

Percent clot lysis 30 min after maximum amplitude of the clot has been reached assessed with thromboelastography

PAI-1:

Plasmin activator inhibitor 1

PAI-2:

Plasmin activator inhibitor 2

TAFI:

Thrombin activatable fibrinolysis inhibitor

TBI:

Traumatic brain injury

TEG:

Thromboelastography

tPA:

Tissue-type plasminogen activator

TXA:

Tranexamic acid

uPA:

Urokinase-type plasminogen activator

References

  1. Cesarman-Maus G, Hajjar KA. Molecular mechanisms of fibrinolysis. Br J Haematol. 2005;129(3):307–21.

    Article  CAS  PubMed  Google Scholar 

  2. Soreq H, Miskin R. Plasminogen activator in the rodent brain. Brain Res. 1981;216(2):361–74.

    Article  CAS  PubMed  Google Scholar 

  3. Krystosek A, Seeds NW. Plasminogen activator release at the neuronal growth cone. Science. 1981;213(4515):1532–4.

    Article  CAS  PubMed  Google Scholar 

  4. Samson AL, Medcalf RL. Tissue-type plasminogen activator: a multifaceted modulator of neurotransmission and synaptic plasticity. Neuron. 2006;50(5):673–8.

    Article  CAS  PubMed  Google Scholar 

  5. Draxler DF, Medcalf RL. The fibrinolytic system – more than fibrinolysis? Transfus Med Rev. 2014;29(2):102–9.

    Article  PubMed  Google Scholar 

  6. McCormack PL. Tranexamic acid: a review of its use in the treatment of hyperfibrinolysis. Drugs. 2012;72(5):585–617.

    Article  CAS  PubMed  Google Scholar 

  7. Verger P, Moulinier J, Courrouge F, Marc'Hadour P. Analytic study of Quick’s time and heparin tolerance test in hemorrhagic disease of newborn; role of hyperfibrinolysis. Nourrisson. 1957;45(1):1–10.

    CAS  PubMed  Google Scholar 

  8. Bredt J. [Hyperfibrinolysis in prostatic carcinoma]. Blut. 1962;8:22–8.

    Article  CAS  PubMed  Google Scholar 

  9. Beltrametti L, Almici C. [Acute myeloid leucosis with hyperfibrinolysis. Clin blood coagulation studies in a case]. Prog Med. 1963;19:218–24.

    CAS  Google Scholar 

  10. Tolentino P. The hemorrhagic manifestations of infectious diseases. Apropos of a case of purpura fulminans of the Henoch-Glanzmann type with hyperfibrinolysis. Minerva Med. 1962;53:2087–92.

    CAS  PubMed  Google Scholar 

  11. Starzl TE, Marchioro TL, Vonkaulla KN, Hermann G, Brittain RS, Waddell WR. Homotransplantation of the liver in humans. Surg Gynecol Obstet. 1963;117:659–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Brohi K, Singh J, Heron M, Coats T. Acute traumatic coagulopathy. J Trauma. 2003;54(6):1127–30.

    Article  PubMed  Google Scholar 

  13. MacLeod JB, Lynn M, McKenney MG, Cohn SM, Murtha M. Early coagulopathy predicts mortality in trauma. J Trauma. 2003;55(1):39–44.

    Article  PubMed  Google Scholar 

  14. Frith D, Brohi K. The pathophysiology of trauma-induced coagulopathy. Curr Opin Crit Care. 2012;18(6):631–6.

    Article  PubMed  Google Scholar 

  15. Gonzalez E, Moore EE, Moore HB, Chapman MP, Silliman CC, Banerjee A. Trauma-induced coagulopathy: an institution’s 35 year perspective on practice and research. Scand J Surg. 2014;103(2):89–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gruen RL, Jacobs IG, Reade MC. study PA-T. Trauma and tranexamic acid. Med J Aust. 2013;199(5):310–1.

    Article  PubMed  Google Scholar 

  17. Brohi K, Cohen MJ, Ganter MT, Schultz MJ, Levi M, Mackersie RC, et al. Acute coagulopathy of trauma: hypoperfusion induces systemic anticoagulation and hyperfibrinolysis. J Trauma. 2008;64(5):1211–7. discussion 7.

    Article  PubMed  Google Scholar 

  18. Harhangi BS, Kompanje EJ, Leebeek FW, Maas AI. Coagulation disorders after traumatic brain injury. Acta Neurochir. 2008;150(2):165–75. discussion 75.

    Article  CAS  PubMed  Google Scholar 

  19. Moore HB, Moore EE, Gonzalez E, Chapman MP, Chin TL, Silliman CC, et al. Hyperfibrinolysis, physiologic fibrinolysis, and fibrinolysis shutdown: the spectrum of postinjury fibrinolysis and relevance to antifibrinolytic therapy. J Trauma Acute Care Surg. 2014;77(6):811–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Raza I, Davenport R, Rourke C, Platton S, Manson J, Spoors C, et al. The incidence and magnitude of fibrinolytic activation in trauma patients. J Thromb Haemost. 2013;11(2):307–14.

    Article  CAS  PubMed  Google Scholar 

  21. Ramos CR, Moore EE, Manco-Johnson ML, Silliman CC, Chapman MC, Banerjee A. The incidence and magnitude of fibrinolytic activation in trauma patients: a rebuttal. J Thromb Haemost. 2013;11(7):1435–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Samson AL, Borg RJ, Niego B, Wong CH, Crack PJ, Yongqing T, et al. A nonfibrin macromolecular cofactor for tPA-mediated plasmin generation following cellular injury. Blood. 2009;114(9):1937–46.

    Article  CAS  PubMed  Google Scholar 

  23. Samson AL, Knaupp AS, Sashindranath M, Borg RJ, Au AE, Cops EJ, et al. Nucleocytoplasmic coagulation: an injury-induced aggregation event that disulfide crosslinks proteins and facilitates their removal by plasmin. Cell Rep. 2012;2(4):889–901.

    Article  CAS  PubMed  Google Scholar 

  24. Maegele M. Coagulopathy after traumatic brain injury: incidence, pathogenesis, and treatment options. Transfusion. 2013;53 Suppl 1:28S–37.

    Article  PubMed  Google Scholar 

  25. Schochl H, Frietsch T, Pavelka M, Jambor C. Hyperfibrinolysis after major trauma: differential diagnosis of lysis patterns and prognostic value of thrombelastometry. J Trauma. 2009;67(1):125–31.

    Article  PubMed  Google Scholar 

  26. Zhang J, Jiang R, Liu L, Watkins T, Zhang F, Dong JF. Traumatic brain injury-associated coagulopathy. J Neurotrauma. 2012;29(17):2597–605.

    Article  PubMed  PubMed Central  Google Scholar 

  27. McCully SP, Schreiber MA. Traumatic brain injury and its effect on coagulopathy. Semin Thromb Hemost. 2013;39(8):896–901.

    Article  CAS  PubMed  Google Scholar 

  28. Okamoto SNT, Okamoto U, Watanabe H, Iguchi Y, Igawa T, Chien C, Hayashi T. A suppressing effect of ɛ-aminocaproic-acid on the bleeding of dogs, produced with the activation of plasmin in the circulatory blood. Keio J Med. 1959;8(4):247–66.

    Article  Google Scholar 

  29. Okamoto SOU. Amino-methyl-cyclohexane-carboxylic acid: AMCHA a new potent inhibitor of fibrinolysis. Keio J Med. 1962;6(3):105–15.

    Article  Google Scholar 

  30. Ortmann E, Besser MW, Klein AA. Antifibrinolytic agents in current anaesthetic practice. Br J Anaesth. 2013;111(4):549–63.

    Article  CAS  PubMed  Google Scholar 

  31. Fergusson DA, Hebert PC, Mazer CD, Fremes S, MacAdams C, Murkin JM, et al. A comparison of aprotinin and lysine analogues in high-risk cardiac surgery. N Engl J Med. 2008;358(22):2319–31.

    Article  CAS  PubMed  Google Scholar 

  32. Nilsson IM. Clinical pharmacology of aminocaproic and tranexamic acids. J Clin Pathol Suppl (R Coll Pathol). 1980;14:41–7.

    Article  CAS  Google Scholar 

  33. Reust DL, Reeves ST, Abernathy 3rd JH, Dixon JA, Gaillard 2nd WF, Mukherjee R, et al. Temporally and regionally disparate differences in plasmin activity by tranexamic acid. Anesth Analg. 2010;110(3):694–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fiechtner BK, Nuttall GA, Johnson ME, Dong Y, Sujirattanawimol N, Oliver Jr WC, et al. Plasma tranexamic acid concentrations during cardiopulmonary bypass. Anesth Analg. 2001;92(5):1131–6.

    Article  CAS  PubMed  Google Scholar 

  35. Colman RW, Marder VJ, Clowes AW, George JN, Goldhaber SZ. Thrombosis and hemostasis basic principles and clinical practice (Chapter 79). 5th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2006. p. 1176–7.

    Google Scholar 

  36. CYKLOKAPRON® tranexamic acid injection. Version 8; revised 2013. http://labeling.pfizer.com/ShowLabeling.aspx?id=556.

  37. Bhat A, Bhowmik DM, Vibha D, Dogra M, Agarwal SK. Tranexamic acid overdosage-induced generalized seizure in renal failure. Saudi J Kidney Dis Transpl. 2014;25(1):130–2.

    Article  PubMed  Google Scholar 

  38. Valle EJ, Allen CJ, Van Haren RM, Jouria JM, Li H, Livingstone AS, et al. Do all trauma patients benefit from tranexamic acid? J Trauma Acute Care Surg. 2014;76(6):1373–8.

    Article  CAS  PubMed  Google Scholar 

  39. Basta MN, Stricker PA, Taylor JA. A systematic review of the use of antifibrinolytic agents in pediatric surgery and implications for craniofacial use. Pediatr Surg Int. 2012;28(11):1059–69.

    Article  PubMed  Google Scholar 

  40. AMICAR® aminocaproic acid. Revised 2007. http://dailymed.nlm.nih.gov/dailymed/archives/fdaDrugInfo.cfm?archiveid=5242.

  41. TRASYLOL® aprotinin injection. Revised 2006. http://www.univgraph.com/bayer/inserts/trasylol.pdf.

  42. Ker K, Edwards P, Perel P, Shakur H, Roberts I. Effect of tranexamic acid on surgical bleeding: systematic review and cumulative meta-analysis. BMJ. 2012;344, e3054.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Collaborators C, Roberts I, Shakur H, Afolabi A, Brohi K, Coats T, et al. The importance of early treatment with tranexamic acid in bleeding trauma patients: an exploratory analysis of the CRASH-2 randomised controlled trial. Lancet. 2011;377(9771):1096–101, e1–2.

    Article  Google Scholar 

  44. Shakur H, Roberts I, Bautista R, Caballero J, Coats T, Dewan Y, et al. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant hemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet. 2010;376(9734):23–32.

    Article  CAS  PubMed  Google Scholar 

  45. Crash-2 Collaborators IBS. Effect of tranexamic acid in traumatic brain injury: a nested randomised, placebo controlled trial (CRASH-2 intracranial bleeding study). BMJ. 2011;343:3795.

    Article  Google Scholar 

  46. Ker K, Kiriya J, Perel P, Edwards P, Shakur H, Roberts I. Avoidable mortality from giving tranexamic acid to bleeding trauma patients: an estimation based on WHO mortality data, a systematic literature review and data from the CRASH-2 trial. BMC Emerg Med. 2012;12:3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Roberts I, David P-M. Applying results from clinical trials: tranexamic acid in trauma patients. J Intensive Care. 2014;2:56.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hijazi N, Abu Fanne R, Abramovich R, Yarovoi S, Higazi M, Abdeen S, et al. Endogenous plasminogen activators mediate progressive intracranial hemorrhage after traumatic brain injury. Blood. 2015;125(16):2558–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Spahn DR, Bouillon B, Cerny V, Coats TJ, Duranteau J, Fernandez-Mondejar E, et al. Management of bleeding and coagulopathy following major trauma: an updated European guideline. Crit Care. 2013;17(2):R76.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Gruen RL, Mitra B. Tranexamic acid for trauma. Lancet. 2011;377(9771):1052–4.

    Article  PubMed  Google Scholar 

  51. Mrochuk M, ÓDochartaigh D, Chang E. Rural trauma patients cannot wait: tranexamic acid administration by helicopter emergency medical services. Air Med J. 2015;34(1):37–9.

    Article  PubMed  Google Scholar 

  52. Morrison JJ, Dubose JJ, Rasmussen TE, Midwinter MJ. Military application of tranexamic acid in trauma emergency resuscitation (MATTERs) study. Arch Surg. 2012;147(2):113–9.

    Article  CAS  PubMed  Google Scholar 

  53. Inaba K. Antifibrinolytics in trauma patients: does it MATTER? Arch Surg. 2012;147(2):119.

    Article  PubMed  Google Scholar 

  54. Mitra B, Mazur S, Cameron PA, Bernard S, Burns B, Smith A, et al. Tranexamic acid for trauma: filling the 'GAP' in evidence. Emerg Med Australas. 2014;26(2):194–7.

    Article  PubMed  Google Scholar 

  55. Pusateri AE, Weiskopf RB, Bebarta V, Butler F, Cestero RF, Chaudry IH, et al. Tranexamic acid and trauma: current status and knowledge gaps with recommended research priorities. Shock. 2013;39(2):121–6.

    Article  PubMed  Google Scholar 

  56. Gong H, Wang W, Kwon TH, Jonassen T, Frokiaer J, Nielsen S. Reduced renal expression of AQP2, p-AQP2 and AQP3 in hemorrhagic shock-induced acute renal failure. Nephrol Dial Transplant. 2003;18(12):2551–9.

    Article  CAS  PubMed  Google Scholar 

  57. Faraoni D, Cacheux C, Van Aelbrouck C, Ickx BE, Barvais L, Levy JH. Effect of two doses of tranexamic acid on fibrinolysis evaluated by thromboelastography during cardiac surgery: a pilot, prospective, randomised, controlled study. Eur J Anaesthesiol. 2014;19.

    Google Scholar 

  58. Brown JB, Neal MD, Guyette FX, Peitzman AB, Billiar TR, Zuckerbraun BS, et al. Design of the study of tranexamic acid during air medical prehospital transport (STAAMP) trial: addressing the knowledge gaps. Prehosp Emerg Care. 2015;19(1):79–86.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Gando S, Sawamura A, Hayakawa M. Trauma, shock, and disseminated intravascular coagulation: lessons from the classical literature. Ann Surg. 2011;254(1):10–9.

    Article  PubMed  Google Scholar 

  60. Chapman MP, Moore EE, Ramos CR, Ghasabyan A, Harr JN, Chin TL, et al. Fibrinolysis greater than 3% is the critical value for initiation of antifibrinolytic therapy. J Trauma Acute Care Surg. 2013;75(6):961–7. discussion 7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cotton BA, Harvin JA, Kostousouv V, Minei KM, Radwan ZA, Schochl H, et al. Hyperfibrinolysis at admission is an uncommon but highly lethal event associated with shock and prehospital fluid administration. J Trauma Acute Care Surg. 2012;73(2):365–70. discussion 70.

    Article  CAS  PubMed  Google Scholar 

  62. Hunt BJ, Raza I, Brohi K. The incidence and magnitude of fibrinolytic activation in trauma patients: a reply to a rebuttal. J Thromb Haemost. 2013;11(7):1437–8.

    Article  CAS  PubMed  Google Scholar 

  63. Napolitano LM, Cohen MJ, Cotton BA, Schreiber MA, Moore EE. Tranexamic acid in trauma: how should we use it? J Trauma Acute Care Surg. 2013;74(6):1575–86.

    Article  PubMed  Google Scholar 

  64. Harvin JA, Peirce CA, Mims MM, Hudson JA, Podbielski JM, Wade CE, et al. The impact of tranexamic acid on mortality in injured patients with hyperfibrinolysis. J Trauma Acute Care Surg. 2015;78(5):905–11.

    Article  PubMed  Google Scholar 

  65. Cole E, Davenport R, Willett K, Brohi K. Tranexamic acid use in severely injured civilian patients and the effects on outcomes: a prospective cohort study. Ann Surg. 2015;261(2):390–4.

    Article  PubMed  Google Scholar 

  66. Silva MM, Thelwell C, Williams SC, Longstaff C. Regulation of fibrinolysis by C-terminal lysines operates through plasminogen and plasmin but not tissue-type plasminogen activator. J Thromb Haemost. 2012;10(11):2354–60.

    Article  CAS  PubMed  Google Scholar 

  67. Medcalf RL. The traumatic side of fibrinolysis. Blood. 2015;125(16):2457–8.

    Article  CAS  PubMed  Google Scholar 

  68. Niego B, Medcalf RL. Plasmin-dependent modulation of the blood-brain barrier: a major consideration during tPA-induced thrombolysis? J Cereb Blood Flow Metab. 2014;34(8):1283–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Romer J, Bugge TH, Pyke C, Lund LR, Flick MJ, Degen JL, et al. Impaired wound healing in mice with a disrupted plasminogen gene. Nat Med. 1996;2(3):287–92.

    Article  CAS  PubMed  Google Scholar 

  70. Later AF, Sitniakowsky LS, van Hilten JA, van de Watering L, Brand A, Smit NP, et al. Antifibrinolytics attenuate inflammatory gene expression after cardiac surgery. J Thorac Cardiovasc Surg. 2013;145(6):1611–6, e1–4.

    Article  CAS  PubMed  Google Scholar 

  71. Sperzel M, Huetter J. Evaluation of aprotinin and tranexamic acid in different in vitro and in vivo models of fibrinolysis, coagulation and thrombus formation. J Thromb Haemost. 2007;5(10):2113–8.

    Article  CAS  PubMed  Google Scholar 

  72. Vermeulen M, Lindsay KW, Murray GD, Cheah F, Hijdra A, Muizelaar JP, et al. Antifibrinolytic treatment in subarachnoid hemorrhage. N Engl J Med. 1984;311(7):432–7.

    Article  CAS  PubMed  Google Scholar 

  73. Zufferey PJ, Miquet M, Quenet S, Martin P, Adam P, Albaladejo P, et al. Tranexamic acid in hip fracture surgery: a randomized controlled trial. Br J Anaesth. 2010;104(1):23–30.

    Article  CAS  PubMed  Google Scholar 

  74. Dewan Y, Komolafe EO, Mejia-Mantilla JH, Perel P, Roberts I, Shakur H, et al. CRASH-3 – tranexamic acid for the treatment of significant traumatic brain injury: study protocol for an international randomized, double-blind, placebo-controlled trial. Trials. 2012;13:87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Resuscitation Outcomes Consortium (ROC) progress report (2003–2013) and promise for the future. https://roc.uwctc.org/tiki/tiki-index.php?page=roc-public-home.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Medcalf Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Draxler, D.F., Medcalf, R.L., Gruen, R.L. (2016). Anti-fibrinolytics. In: Gonzalez, E., Moore, H., Moore, E. (eds) Trauma Induced Coagulopathy. Springer, Cham. https://doi.org/10.1007/978-3-319-28308-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28308-1_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28306-7

  • Online ISBN: 978-3-319-28308-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics