Skip to main content

Platelet Transfusion

  • Chapter
  • First Online:
Trauma Induced Coagulopathy

Abstract

Platelet (PLT) biology is deceptively complicated. From a morphological aspect, the elegant discoid shape of the resting platelet belies the intricate cytoskeleton and convoluted tubular systems that enable spectacular shape change upon activation. The evolution of platelet products and their use in transfusion is similarly convoluted and requires an immersion in history to understand. As described below, the current state of the art in platelet transfusion rests on surprisingly little robust clinical data, minimal efforts to tailor product characteristics to patient needs, and a regulatory framework that supports the inadequate status quo. Development of new platelet products and optimal transfusion strategies for bleeding patients represent opportunities for major advances in surgical care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Donné A. De l’origine des globules du sang de leur mode de formation et leur fin. C R Acad Sci. 1842;14:366–8.

    Google Scholar 

  2. Hajdu SI. A note from history: the discovery of blood cells. Ann Clin Lab Sci. 2003;33(2):237–8.

    PubMed  Google Scholar 

  3. Wright JH, Kinnicutt R. A new method of counting the blood platelets for clinical purposes. JAMA. 1911;56(20):1457–9.

    Article  Google Scholar 

  4. Prat JH. A critical study of the various methods employed for enumerating blood platelets. JAMA. 1905;XLV:1999.

    Article  Google Scholar 

  5. Brecher G, Cronkite EP. Morphology and enumeration of human blood platelets. J Appl Physiol. 1950;3(6):365–77.

    CAS  PubMed  Google Scholar 

  6. Duke WW. The relation of blood platelets to hemorrhagic disease. JAMA. 1910;55:1185–92.

    Article  Google Scholar 

  7. Gardner FH, Cohen P. The value of platelet transfusions. Med Clin North Am. 1960;44:1425–39.

    CAS  PubMed  Google Scholar 

  8. Churchill ED. The surgical management of the wounded in the Mediterranean theater at the time of the fall of rome—[Foreword by Brig. Gen'l Fred W. Rankin, M.C.]. Ann Surg. 1944;120(3):268–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Beecher HK. Preparation of battle casualties for surgery. Ann Surg. 1945;121(6):769–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cohn EJ, Oncley JL, Strong LE, Hughes WL, Armstrong SH. Chemical, clinical, and immunological studies on the products of human plasma fractionation: I. The characterization of the protein fractions of human plasma. J Clin Invest. 1944;23(4):417–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cohn EJ. Demonstration of new processes of blood collection and separation of red blood cells, white blood cells, and platelets; protein glycoprotein, lipoprotein, and other components of plasma. Science. 1950;112(2912):450–1.

    CAS  PubMed  Google Scholar 

  12. McLeod BC. Therapeutic apheresis: history, clinical application, and lingering uncertainties. Transfusion. 2010;50(7):1413–26.

    Article  PubMed  Google Scholar 

  13. Simon TL. The collection of platelets by apheresis procedures. Transfus Med Rev. 1994;8(2):132–45.

    Article  CAS  PubMed  Google Scholar 

  14. DeVita Jr VT, Chu E. A history of cancer chemotherapy. Cancer Res. 2008;68(21):8643–53.

    Article  CAS  PubMed  Google Scholar 

  15. Mc IS. Glass vs. plastic containers for platelet transfusion. Bibl Haematol. 1958;7:481–90.

    Google Scholar 

  16. Aisner J. Platelet transfusion therapy. Med Clin North Am. 1977;61(5):1133–45.

    Article  CAS  PubMed  Google Scholar 

  17. Baldini M, Costea N, Dameshek W. The viability of stored human platelets. Blood. 1960;16:1669–92.

    CAS  PubMed  Google Scholar 

  18. Baldini M, Ebbe S, Dameshek W. The use of a special preservation medium for the maintenance of platelet viability at 4 C. Blood. 1960;15:909–17.

    CAS  PubMed  Google Scholar 

  19. Djerassi I, Farber S. Conference on obstacles to the control of acute leukemia. Control and prevention of hemorrhage: platelet transfusion. Cancer Res. 1965;25(9):1499–503.

    CAS  PubMed  Google Scholar 

  20. Murphy S, Gardner FH. Effect of storage temperature on maintenance of platelet viability—deleterious effect of refrigerated storage. N Engl J Med. 1969;280(20):1094–8.

    Article  CAS  PubMed  Google Scholar 

  21. Reddoch KM, Pidcoke HF, Montgomery RK, Fedyk CG, Aden JK, Ramasubramanian AK, et al. Hemostatic function of apheresis platelets stored at 4 degrees C and 22 degrees C. Shock. 2014;41 Suppl 1:54–61.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pidcoke HF, McFaul SJ, Ramasubramanian AK, Parida BK, Mora AG, Fedyk CG, et al. Primary hemostatic capacity of whole blood: a comprehensive analysis of pathogen reduction and refrigeration effects over time. Transfusion. 2013;53 Suppl 1:137S–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schlossberg HR, Herman JH. Platelet dosing. Transfus Apher Sci. 2003;28(3):221–6.

    Article  PubMed  Google Scholar 

  24. Slichter SJ, Kaufman RM, Assmann SF, McCullough J, Triulzi DJ, Strauss RG, et al. Dose of prophylactic platelet transfusions and prevention of hemorrhage. N Engl J Med. 2010;362(7):600–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Norol F, Bierling P, Roudot-Thoraval F, Le Coeur FF, Rieux C, Lavaux A, et al. Platelet transfusion: a dose-response study. Blood. 1998;92(4):1448–53.

    CAS  PubMed  Google Scholar 

  26. Pidcoke HF, Spinella PC, Ramasubramanian AK, Strandenes G, Hervig T, Ness PM, et al. Refrigerated platelets for the treatment of acute bleeding: a review of the literature and reexamination of current standards. Shock. 2014;41 Suppl 1:51–3.

    Article  PubMed  Google Scholar 

  27. Crosby WH, Howard JM. The hematologic response to wounding and to resuscitation accomplished by large transfusions of stored blood; a study of battle casualties in Korea. Blood. 1954;9(5):439–60.

    CAS  PubMed  Google Scholar 

  28. Blalock A, Mason MF. Blood and blood substitutes in the treatment and prevention of shock: with particular reference to their uses in warfare. Ann Surg. 1941;113(5):657–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Boyan CP. Cold or warmed blood for massive transfusions. Ann Surg. 1964;160:282–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Scott Jr R, Crosby WH. Changes in the coagulation mechanism following wounding and resuscitation with stored blood; a study of battle casualties in Korea. Blood. 1954;9(6):609–21.

    CAS  PubMed  Google Scholar 

  31. Miller RD. Massive blood transfusions: the impact of Vietnam military data on modern civilian transfusion medicine. Anesthesiology. 2009;110(6):1412–6.

    Article  PubMed  Google Scholar 

  32. Sheldon GF, Lim RC, Blaisdell FW. The use of fresh blood in the treatment of critically injured patients. J Trauma. 1975;15(8):670–7.

    Article  CAS  PubMed  Google Scholar 

  33. Michelson AD, Frelinger 3rd AL, Furman MI. Current options in platelet function testing. Am J Cardiol. 2006;98(10A):4N–10.

    Article  PubMed  Google Scholar 

  34. Brinkhous KM. W.W. Duke and his bleeding time test. A commentary on platelet function. JAMA. 1983;250(9):1210–4.

    Article  CAS  PubMed  Google Scholar 

  35. Kickler TS, William W. Duke: pioneer in platelet research. JAMA. 2009;301(21):2267–9.

    Article  CAS  PubMed  Google Scholar 

  36. Born GV. Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature. 1962;194:927–9.

    Article  CAS  PubMed  Google Scholar 

  37. Michelson AD. Evaluation of platelet function by flow cytometry. Pathophysiol Haemost Thromb. 2006;35(1–2):67–82.

    Article  PubMed  Google Scholar 

  38. Michelson AD. Methods for the measurement of platelet function. Am J Cardiol. 2009;103(3 Suppl):20A–6.

    Article  CAS  PubMed  Google Scholar 

  39. Solomon C, Hartmann J, Osthaus A, Schochl H, Raymondos K, Koppert W, et al. Platelet concentrates transfusion in cardiac surgery in relation to preoperative point-of-care assessment of platelet adhesion and aggregation. Platelets. 2010;21(3):221–8.

    Article  CAS  PubMed  Google Scholar 

  40. Velik-Salchner C, Maier S, Innerhofer P, Kolbitsch C, Streif W, Mittermayr M, et al. An assessment of cardiopulmonary bypass-induced changes in platelet function using whole blood and classical light transmission aggregometry: the results of a pilot study. Anesth Analg. 2009;108(6):1747–54.

    Article  PubMed  Google Scholar 

  41. FDA. Draft guidance for industry for platelet testing and evaluation of platelet substitute products. 1999.

    Google Scholar 

  42. McNamara JJ, Burran EL, Stremple JF, Molot MD. Coagulopathy after major combat injury: occurrence, management, and pathophysiology. Ann Surg. 1972;176(2):243–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Harrigan C, Lucas CE, Ledgerwood AM, Mammen EF. Primary hemostasis after massive transfusion for injury. Am Surg. 1982;48(8):393–6.

    CAS  PubMed  Google Scholar 

  44. Harrigan C, Lucas CE, Ledgerwood AM, Walz DA, Mammen EF. Serial changes in primary hemostasis after massive transfusion. Surgery. 1985;98(4):836–44.

    CAS  PubMed  Google Scholar 

  45. Lim Jr RC, Olcott C, Robinson AJ, Blaisdell FW. Platelet response and coagulation changes following massive blood replacement. J Trauma. 1973;13(7):577–82.

    Article  PubMed  Google Scholar 

  46. Counts RB, Haisch C, Simon TL, Maxwell NG, Heimbach DM, Carrico CJ. Hemostasis in massively transfused trauma patients. Ann Surg. 1979;190(1):91–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Burch JM, Ortiz VB, Richardson RJ, Martin RR, Mattox KL, Jordan Jr GL. Abbreviated laparotomy and planned reoperation for critically injured patients. Ann Surg. 1992;215(5):476–83. discussion 83–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rotondo MF, Schwab CW, McGonigal MD, Phillips 3rd GR, Fruchterman TM, Kauder DR, et al. ‘Damage control’: an approach for improved survival in exsanguinating penetrating abdominal injury. J Trauma. 1993;35(3):375–82. discussion 82–3.

    Article  CAS  PubMed  Google Scholar 

  49. Kashuk JL, Moore EE, Millikan JS, Moore JB. Major abdominal vascular trauma—a unified approach. J Trauma. 1982;22(8):672–9.

    Article  CAS  PubMed  Google Scholar 

  50. van der Meer PF. Platelet concentrates, from whole blood or collected by apheresis? Transfus Apher Sci. 2013;48(2):129–31.

    Article  PubMed  Google Scholar 

  51. Becker GA, Tuccelli M, Kunicki T, Chalos MK, Aster RH. Studies of platelet concentrates stored at 22 C and 4 C. Transfusion. 1973;13(2):61–8.

    Article  CAS  PubMed  Google Scholar 

  52. Strandenes G, Austlid I, Apelseth TO, Hervig TA, Sommerfelt-Pettersen J, Herzig MC, et al. Coagulation function of stored whole blood is preserved for 14 days in austere conditions: a ROTEM feasibility study during a Norwegian antipiracy mission and comparison to equal ratio reconstituted blood. J Trauma Acute Care Surg. 2015;78(6 Suppl 1):S31–8.

    Article  PubMed  Google Scholar 

  53. Nair PM, Pidcoke HF, Cap AP, Ramasubramanian AK. Effect of cold storage on shear-induced platelet aggregation and clot strength. J Trauma Acute Care Surg. 2014;77(3 Suppl 2):S88–93.

    Article  PubMed  Google Scholar 

  54. Jobes D, Wolfe Y, O'Neill D, Calder J, Jones L, Sesok-Pizzini D, et al. Toward a definition of “fresh” whole blood: an in vitro characterization of coagulation properties in refrigerated whole blood for transfusion. Transfusion. 2011;51(1):43–51.

    Article  CAS  PubMed  Google Scholar 

  55. Wenzel F, Hohlfeld T, Giers G. Soluble CD40L release as test for functional platelet loss. Clin Lab. 2012;58(3–4):337–42.

    CAS  PubMed  Google Scholar 

  56. Shrivastava M. The platelet storage lesion. Transfus Apher Sci. 2009;41(2):105–13.

    Article  PubMed  Google Scholar 

  57. Seghatchian J, Krailadsiri P. The platelet storage lesion. Transfus Med Rev. 1997;11(2):130–44.

    Article  CAS  PubMed  Google Scholar 

  58. Hussein E. Clinical and quality evaluation of apheresis vs random-donor platelet concentrates stored for 7 days. Transfus Med. 2015;25(1):20–6.

    Article  CAS  PubMed  Google Scholar 

  59. Pignatelli P, Pulcinelli FM, Ciatti F, Pesciotti M, Ferroni P, Gazzaniga PP. Effects of storage on in vitro platelet responses: comparison of ACD and Na citrate anticoagulated samples. J Clin Lab Anal. 1996;10(3):134–9.

    Article  CAS  PubMed  Google Scholar 

  60. Valeri CR. Circulation and hemostatic effectiveness of platelets stored at 4 C or 22 C: studies in aspirin-treated normal volunteers. Transfusion. 1976;16(1):20–3.

    Article  CAS  PubMed  Google Scholar 

  61. Valeri CR. Hemostatic effectiveness of liquid-preserved and previously frozen human platelets. N Engl J Med. 1974;290(7):353–8.

    Article  CAS  PubMed  Google Scholar 

  62. Pruller F, Drexler C, Archan S, Macher S, Raggam RB, Mahla E. Low platelet reactivity is recovered by transfusion of stored platelets: a healthy volunteer in vivo study. J Thromb Haemost. 2011;9(8):1670–3.

    Article  CAS  PubMed  Google Scholar 

  63. Vilahur G, Choi BG, Zafar MU, Viles-Gonzalez JF, Vorchheimer DA, Fuster V, et al. Normalization of platelet reactivity in clopidogrel-treated subjects. J Thromb Haemost. 2007;5(1):82–90.

    Article  CAS  PubMed  Google Scholar 

  64. Thiele T, Sumnig A, Hron G, Muller C, Althaus K, Schroeder HW, et al. Platelet transfusion for reversal of dual antiplatelet therapy in patients requiring urgent surgery: a pilot study. J Thromb Haemost. 2012;10(5):968–71.

    Article  CAS  PubMed  Google Scholar 

  65. Valeri CR, Feingold H, Marchionni LD. A simple method for freezing human platelets using 6 per cent dimethylsulfoxide and storage at −80 degrees C. Blood. 1974;43(1):131–6.

    CAS  PubMed  Google Scholar 

  66. Wolkers WF, Walker NJ, Tablin F, Crowe JH. Human platelets loaded with trehalose survive freeze-drying. Cryobiology. 2001;42(2):79–87.

    Article  CAS  PubMed  Google Scholar 

  67. Khuri SF, Healey N, MacGregor H, Barnard MR, Szymanski IO, Birjiniuk V, et al. Comparison of the effects of transfusions of cryopreserved and liquid-preserved platelets on hemostasis and blood loss after cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1999;117(1):172–83. discussion 83–4.

    Article  CAS  PubMed  Google Scholar 

  68. Stanworth SJ, Estcourt LJ, Powter G, Kahan BC, Dyer C, Choo L, et al. A no-prophylaxis platelet-transfusion strategy for hematologic cancers. N Engl J Med. 2013;368(19):1771–80.

    Article  CAS  PubMed  Google Scholar 

  69. Wandt H, Schaefer-Eckart K, Wendelin K, Pilz B, Wilhelm M, Thalheimer M, et al. Therapeutic platelet transfusion versus routine prophylactic transfusion in patients with haematological malignancies: an open-label, multicentre, randomised study. Lancet. 2012;380(9850):1309–16.

    Article  PubMed  Google Scholar 

  70. Spinella PC, Perkins JG, Grathwohl KW, Beekley AC, Holcomb JB. Warm fresh whole blood is independently associated with improved survival for patients with combat-related traumatic injuries. J Trauma. 2009;66(4 Suppl):S69–76.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Spinella PC, Reddy HL, Jaffe JS, Cap AP, Goodrich RP. Fresh whole blood use for hemorrhagic shock: preserving benefit while avoiding complications. Anesth Analg. 2012;115(4):751–8.

    Article  PubMed  Google Scholar 

  72. Rentas F, Lincoln D, Harding A, Maas P, Giglio J, Fryar R, et al. The Armed Services Blood Program: blood support to combat casualty care 2001 to 2011. J Trauma Acute Care Surg. 2012;73(6 Suppl 5):S472–8.

    Article  PubMed  Google Scholar 

  73. Spinella PC, Dunne J, Beilman GJ, O'Connell RJ, Borgman MA, Cap AP, et al. Constant challenges and evolution of US military transfusion medicine and blood operations in combat. Transfusion. 2012;52(5):1146–53.

    Article  PubMed  Google Scholar 

  74. Borgman MA, Spinella PC, Perkins JG, Grathwohl KW, Repine T, Beekley AC, et al. The ratio of blood products transfused affects mortality in patients receiving massive transfusions at a combat support hospital. J Trauma. 2007;63(4):805–13.

    Article  PubMed  Google Scholar 

  75. Perkins JG, Cap AP, Spinella PC, Shorr AF, Beekley AC, Grathwohl KW, et al. Comparison of platelet transfusion as fresh whole blood versus apheresis platelets for massively transfused combat trauma patients (CME). Transfusion. 2011;51(2):242–52.

    Article  PubMed  Google Scholar 

  76. Perkins JG, Cap AP, Spinella PC, Blackbourne LH, Grathwohl KW, Repine TB, et al. An evaluation of the impact of apheresis platelets used in the setting of massively transfused trauma patients. J Trauma. 2009;66(4 Suppl):S77–84. discussion S-5.

    Article  PubMed  Google Scholar 

  77. Holcomb JB, Tilley BC, Baraniuk S, Fox EE, Wade CE, Podbielski JM, et al. Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma: the PROPPR randomized clinical trial. JAMA. 2015;313(5):471–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Stansbury LG, Hess AS, Thompson K, Kramer B, Scalea TM, Hess JR. The clinical significance of platelet counts in the first 24 hours after severe injury. Transfusion. 2013;53(4):783–9.

    Article  PubMed  Google Scholar 

  79. Pidcoke HF, Aden JK, Mora AG, Borgman MA, Spinella PC, Dubick MA, et al. Ten-year analysis of transfusion in Operation Iraqi Freedom and Operation Enduring Freedom: increased plasma and platelet use correlates with improved survival. J Trauma Acute Care Surg. 2012;73(6 Suppl 5):S445–52.

    Article  PubMed  Google Scholar 

  80. Kutcher ME, Redick BJ, McCreery RC, Crane IM, Greenberg MD, Cachola LM, et al. Characterization of platelet dysfunction after trauma. J Trauma Acute Care Surg. 2012;73(1):13–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Briggs A, Gates JD, Kaufman RM, Calahan C, Gormley WB, Havens JM. Platelet dysfunction and platelet transfusion in traumatic brain injury. J Surg Res. 2015;193(2):802–6.

    Article  CAS  PubMed  Google Scholar 

  82. Chernoff A, Snyder EL. The cellular and molecular basis of the platelet storage lesion: a symposium summary. Transfusion. 1992;32(4):386–90.

    Article  CAS  PubMed  Google Scholar 

  83. Thon JN, Schubert P, Devine DV. Platelet storage lesion: a new understanding from a proteomic perspective. Transfus Med Rev. 2008;22(4):268–79.

    Article  PubMed  Google Scholar 

  84. Kilkson H, Holme S, Murphy S. Platelet metabolism during storage of platelet concentrates at 22 degrees C. Blood. 1984;64(2):406–14.

    CAS  PubMed  Google Scholar 

  85. Alhumaidan H, Sweeney J. Current status of additive solutions for platelets. J Clin Apher. 2012;27(2):93–8.

    Article  PubMed  Google Scholar 

  86. Murphy S, Sayar SN, Gardner FH. Storage of platelet concentrates at 22 degrees C. Blood. 1970;35(4):549–57.

    CAS  PubMed  Google Scholar 

  87. Ringwald J, Zimmermann R, Eckstein R. The new generation of platelet additive solution for storage at 22 degrees C: development and current experience. Transfus Med Rev. 2006;20(2):158–64.

    Article  PubMed  Google Scholar 

  88. de Wildt-Eggen J, Nauta S, Schrijver JG, van Marwijk Kooy M, Bins M, van Prooijen HC. Reactions and platelet increments after transfusion of platelet concentrates in plasma or an additive solution: a prospective, randomized study. Transfusion. 2000;40(4):398–403.

    Article  PubMed  Google Scholar 

  89. Kerkhoffs JL, Eikenboom JC, Schipperus MS, van Wordragen-Vlaswinkel RJ, Brand R, Harvey MS, et al. A multicenter randomized study of the efficacy of transfusions with platelets stored in platelet additive solution II versus plasma. Blood. 2006;108(9):3210–5.

    Article  CAS  PubMed  Google Scholar 

  90. Mathai J, Resmi KR, Sulochana PV, Sathyabhama S, Baby Saritha G, Krishnan LK. Suitability of measurement of swirling as a marker of platelet shape change in concentrates stored for transfusion. Platelets. 2006;17(6):393–6.

    Article  CAS  PubMed  Google Scholar 

  91. White JG, Krivit W. Changes in platelet microtubules and granules during early clot development. Thromb Diath Haemorrh Suppl. 1967;26:29–42.

    CAS  PubMed  Google Scholar 

  92. Behnke O. Incomplete microtubules observed in mammalian blood platelets during microtubule polymerization. J Cell Biol. 1967;34(2):697–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Oliver AE, Tablin F, Walker NJ, Crowe JH. The internal calcium concentration of human platelets increases during chilling. Biochim Biophys Acta. 1999;1416(1–2):349–60.

    Article  CAS  PubMed  Google Scholar 

  94. White JG. Effects of colchicine and Vinca alkaloids on human platelets: I. Influence on platelet microtubules and contractile function. Am J Pathol. 1968;53(2):281–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Winokur R, Hartwig JH. Mechanism of shape change in chilled human platelets. Blood. 1995;85(7):1796–804.

    CAS  PubMed  Google Scholar 

  96. Hoffmeister KM, Falet H, Toker A, Barkalow KL, Stossel TP, Hartwig JH. Mechanisms of cold-induced platelet actin assembly. J Biol Chem. 2001;276(27):24751–9.

    Article  CAS  PubMed  Google Scholar 

  97. McGill M. Temperature cycling preserves platelet shape and enhances in vitro test scores during storage at 4 degrees. J Lab Clin Med. 1978;92(6):971–82.

    CAS  PubMed  Google Scholar 

  98. Vostal JG, McCauley RB. Prothrombin plasma clearance is not mediated by hepatic asialoglycoprotein receptors. Thromb Res. 1991;63(3):299–309.

    Article  CAS  PubMed  Google Scholar 

  99. Andre P. P-selectin in haemostasis. Br J Haematol. 2004;126(3):298–306.

    Article  CAS  PubMed  Google Scholar 

  100. Perrotta PL, Perrotta CL, Snyder EL. Apoptotic activity in stored human platelets. Transfusion. 2003;43(4):526–35.

    Article  CAS  PubMed  Google Scholar 

  101. Fijnheer R, Modderman PW, Veldman H, Ouwehand WH, Nieuwenhuis HK, Roos D, et al. Detection of platelet activation with monoclonal antibodies and flow cytometry. Changes during platelet storage. Transfusion. 1990;30(1):20–5.

    Article  CAS  PubMed  Google Scholar 

  102. Snyder EL. Release of beta-thromboglobulin during storage of platelet concentrates. Vox Sang. 1981;40 Suppl 1:115–6.

    Article  CAS  PubMed  Google Scholar 

  103. Snyder EL, Hezzey A, Katz AJ, Bock J. Occurrence of the release reaction during preparation and storage of platelet concentrates. Vox Sang. 1981;41(3):172–7.

    Article  CAS  PubMed  Google Scholar 

  104. Shimizu T, Ishikawa Y, Morishima Y, Fukuda T, Kato K. Platelet factor 4 release from the platelets stored in platelet concentrates. Transfusion. 1985;25(5):420–3.

    Article  CAS  PubMed  Google Scholar 

  105. Berger G, Hartwell DW, Wagner DD. P-Selectin and platelet clearance. Blood. 1998;92(11):4446–52.

    CAS  PubMed  Google Scholar 

  106. Rinder HM, Murphy M, Mitchell JG, Stocks J, Ault KA, Hillman RS. Progressive platelet activation with storage: evidence for shortened survival of activated platelets after transfusion. Transfusion. 1991;31(5):409–14.

    Article  CAS  PubMed  Google Scholar 

  107. Triulzi DJ, Kickler TS, Braine HG. Detection and significance of alpha granule membrane protein 140 expression on platelets collected by apheresis. Transfusion. 1992;32(6):529–33.

    Article  CAS  PubMed  Google Scholar 

  108. Michelson AD, Barnard MR, Hechtman HB, MacGregor H, Connolly RJ, Loscalzo J, et al. In vivo tracking of platelets: circulating degranulated platelets rapidly lose surface P-selectin but continue to circulate and function. Proc Natl Acad Sci U S A. 1996;93(21):11877–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Jackson SP, Schoenwaelder SM. Procoagulant platelets: are they necrotic? Blood. 2010;116(12):2011–8.

    Article  CAS  PubMed  Google Scholar 

  110. Heemskerk JW, Bevers EM, Lindhout T. Platelet activation and blood coagulation. Thromb Haemost. 2002;88(2):186–93.

    CAS  PubMed  Google Scholar 

  111. Albanyan AM, Harrison P, Murphy MF. Markers of platelet activation and apoptosis during storage of apheresis- and buffy coat-derived platelet concentrates for 7 days. Transfusion. 2009;49(1):108–17.

    Article  PubMed  Google Scholar 

  112. Bertino AM, Qi XQ, Li J, Xia Y, Kuter DJ. Apoptotic markers are increased in platelets stored at 37 degrees C. Transfusion. 2003;43(7):857–66.

    Article  CAS  PubMed  Google Scholar 

  113. Gross PL, Furie BC, Merrill-Skoloff G, Chou J, Furie B. Leukocyte-versus microparticle-mediated tissue factor transfer during arteriolar thrombus development. J Leukoc Biol. 2005;78(6):1318–26.

    Article  CAS  PubMed  Google Scholar 

  114. Rebulla P. Platelet transfusion trigger in difficult patients. Transfus Clin Biol. 2001;8(3):249–54.

    Article  CAS  PubMed  Google Scholar 

  115. Ten Cate H. Thrombocytopenia: one of the markers of disseminated intravascular coagulation. Pathophysiol Haemost Thromb. 2003;33(5–6):413–6.

    Article  PubMed  Google Scholar 

  116. Grozovsky R, Hoffmeister KM, Falet H. Novel clearance mechanisms of platelets. Curr Opin Hematol. 2010;17(6):585–9.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Bergmeier W, Burger PC, Piffath CL, Hoffmeister KM, Hartwig JH, Nieswandt B, et al. Metalloproteinase inhibitors improve the recovery and hemostatic function of in vitro-aged or -injured mouse platelets. Blood. 2003;102(12):4229–35.

    Article  CAS  PubMed  Google Scholar 

  118. Bergmeier W, Piffath CL, Cheng G, Dole VS, Zhang Y, von Andrian UH, et al. Tumor necrosis factor-alpha-converting enzyme (ADAM17) mediates GPIbalpha shedding from platelets in vitro and in vivo. Circ Res. 2004;95(7):677–83.

    Article  CAS  PubMed  Google Scholar 

  119. Canault M, Duerschmied D, Brill A, Stefanini L, Schatzberg D, Cifuni SM, et al. p38 mitogen-activated protein kinase activation during platelet storage: consequences for platelet recovery and hemostatic function in vivo. Blood. 2010;115(9):1835–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Rumjantseva V, Hoffmeister KM. Novel and unexpected clearance mechanisms for cold platelets. Transfus Apher Sci. 2010;42(1):63–70.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Hoffmeister KM, Josefsson EC, Isaac NA, Clausen H, Hartwig JH, Stossel TP. Glycosylation restores survival of chilled blood platelets. Science. 2003;301(5639):1531–4.

    Article  CAS  PubMed  Google Scholar 

  122. Jansen AJ, Josefsson EC, Rumjantseva V, Liu QP, Falet H, Bergmeier W, et al. Desialylation accelerates platelet clearance after refrigeration and initiates GPIbalpha metalloproteinase-mediated cleavage in mice. Blood. 2012;119(5):1263–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Rumjantseva V, Grewal PK, Wandall HH, Josefsson EC, Sorensen AL, Larson G, et al. Dual roles for hepatic lectin receptors in the clearance of chilled platelets. Nat Med. 2009;15(11):1273–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sorensen AL, Rumjantseva V, Nayeb-Hashemi S, Clausen H, Hartwig JH, Wandall HH, et al. Role of sialic acid for platelet life span: exposure of beta-galactose results in the rapid clearance of platelets from the circulation by asialoglycoprotein receptor-expressing liver macrophages and hepatocytes. Blood. 2009;114(8):1645–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Grozovsky R, Begonja AJ, Liu K, Visner G, Hartwig JH, Falet H, et al. The Ashwell-Morell receptor regulates hepatic thrombopoietin production via JAK2-STAT3 signaling. Nat Med. 2014;21:47–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Cap AP, Perkins JG. Lyophilized platelets: challenges and opportunities. J Trauma. 2011;70(5 Suppl):S59–60.

    Article  PubMed  Google Scholar 

  127. Fatalities reported to FDA following blood collection and transfusion: annual summary for fiscal year 2011: U.S. Food & Drug Administration; 2011. Available from: http://www.fda.gov/downloads/BiologicsBloodVaccines/SafetyAvailability/ReportaProblem/TransfusionDonationFatalities/UCM300764.pdf. Cited 19 Feb 2015.

  128. McGill M, Fugman DA, Vittorio N, Darrow C. Platelet membrane vesicles reduced microvascular bleeding times in thrombocytopenic rabbits. J Lab Clin Med. 1987;109(2):127–33.

    CAS  PubMed  Google Scholar 

  129. Chao FC, Kim BK, Houranieh AM, Liang FH, Konrad MW, Swisher SN, et al. Infusible platelet membrane microvesicles: a potential transfusion substitute for platelets. Transfusion. 1996;36(6):536–42.

    Article  CAS  PubMed  Google Scholar 

  130. Sum R, Hager S, Pietramaggiori G, Orgill DP, Dee J, Rudolph A, et al. Wound-healing properties of trehalose-stabilized freeze-dried outdated platelets. Transfusion. 2007;47(4):672–9.

    Article  CAS  PubMed  Google Scholar 

  131. Fitzpatrick GM, Cliff R, Tandon N. Thrombosomes: a platelet-derived hemostatic agent for control of noncompressible hemorrhage. Transfusion. 2013;53 Suppl 1:100S–6.

    Article  PubMed  Google Scholar 

  132. Fischer TH, Bode AP, Parker BR, Russell KE, Bender DE, Ramer JK, et al. Primary and secondary hemostatic functionalities of rehydrated, lyophilized platelets. Transfusion. 2006;46(11):1943–50.

    Article  CAS  PubMed  Google Scholar 

  133. Fischer TH, Merricks E, Bellinger DA, Hayes PM, Smith RS, Raymer RA, et al. Splenic clearance mechanisms of rehydrated, lyophilized platelets. Artif Cells Blood Substit Immobil Biotechnol. 2001;29(6):439–51.

    Article  CAS  PubMed  Google Scholar 

  134. Davidow EB, Brainard B, Martin LG, Beal MW, Bode A, Ford MJ, et al. Use of fresh platelet concentrate or lyophilized platelets in thrombocytopenic dogs with clinical signs of hemorrhage: a preliminary trial in 37 dogs. J Vet Emerg Crit Care (San Antonio). 2012;22(1):116–25.

    Article  Google Scholar 

  135. Bode AP, Lust RM, Read MS, Fischer TH. Correction of the bleeding time with lyophilized platelet infusions in dogs on cardiopulmonary bypass. Clin Appl Thromb Hemost. 2008;14(1):38–54.

    Article  PubMed  Google Scholar 

  136. Bode AP, Fischer TH. Lyophilized platelets: fifty years in the making. Artif Cells Blood Substit Immobil Biotechnol. 2007;35(1):125–33.

    Article  PubMed  Google Scholar 

  137. Qiu Y, Brown AC, Myers DR, Sakurai Y, Mannino RG, Tran R, et al. Platelet mechanosensing of substrate stiffness during clot formation mediates adhesion, spreading, and activation. Proc Natl Acad Sci U S A. 2014;111(40):14430–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Brown AC, Stabenfeldt SE, Ahn B, Hannan RT, Dhada KS, Herman ES, et al. Ultrasoft microgels displaying emergent platelet-like behaviours. Nat Mater. 2014;13(12):1108–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Blajchman MA. Substitutes and alternatives to platelet transfusions in thrombocytopenic patients. J Thromb Haemost. 2003;1(7):1637–41.

    Article  CAS  PubMed  Google Scholar 

  140. Davis KB, Slichter SJ, Corash L. Corrected count increment and percent platelet recovery as measures of posttransfusion platelet response: problems and a solution. Transfusion. 1999;39(6):586–92.

    Article  CAS  PubMed  Google Scholar 

  141. Hussein MA, Fletcher R, Long TJ, Zuccaro K, Bolwell BJ, Hoeltge A. Transfusing platelets 2 h after the completion of amphotericin-B decreases its detrimental effect on transfused platelet recovery and survival. Transfus Med. 1998;8(1):43–7.

    Article  CAS  PubMed  Google Scholar 

  142. Singh RP, Marwaha N, Malhotra P, Dash S. Therapeutic efficacy of different types of platelet concentrates in thrombocytopenic patients. Ind J Hematol Blood Transfus. 2008;24(1):16–22.

    Article  Google Scholar 

  143. Aster RH. Blood platelet kinetics and platelet transfusion. J Clin Invest. 2013;123(11):4564–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Hanson SR, Slichter SJ. Platelet kinetics in patients with bone marrow hypoplasia: evidence for a fixed platelet requirement. Blood. 1985;66(5):1105–9.

    CAS  PubMed  Google Scholar 

  145. Yankee RA, Grumet FC, Rogentine GN. Platelet transfusion—the selection of compatible platelet donors for refractory patients by lymphocyte HL-A typing. N Engl J Med. 1969;281(22):1208–12.

    Article  CAS  PubMed  Google Scholar 

  146. Aster RH. Studies of the fate of platelets in rats and man. Blood. 1969;34(2):117–28.

    CAS  PubMed  Google Scholar 

  147. Cohen P, Gardner FH, Barnett GO. Reclassification of the thrombocytopenias by the Cr51-labeling method for measuring platelet life span. New Engl J Med. 1961;264:1350–5 concl.

    Google Scholar 

  148. Cohen P, Gardner FH, Barnett GO. Reclassification of the thrombocytopenias by the Cr51-labeling method for measuring platelet life span. N Engl J Med. 1961;264:1294–9 contd.

    Google Scholar 

  149. Adelson E, Kaufman RM, Lear AA, Kirby JC, Rheingold JJ. Physiology of platelet destruction as revealed by tagging of cohorts: I. Studies in dogs. J Lab Clin Med. 1963;62:385–93.

    CAS  PubMed  Google Scholar 

  150. Ebbe S, Stohlman Jr F, Donovan J, Howard D. Platelet survival in the rat as measured with tritium-labeled diisopropylfluorophosphate. J Lab Clin Med. 1966;68(2):233–43.

    CAS  PubMed  Google Scholar 

  151. Cohen JA, Leeksma CH. Determination of the life span of human blood platelets using labelled diisopropylfluorophosphonate. J Clin Invest. 1956;35(9):964–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Leeksma CH, Cohen JA. Determination of the life of human blood platelets using labelled diisopropylfluorophosphanate. Nature. 1955;175(4456):552–3.

    Article  CAS  PubMed  Google Scholar 

  153. Aas KA, Gardner FH. Survival of blood platelets labeled with chromium. J Clin Invest. 1958;37(9):1257–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Zucker MB, Ley AB, Mayer K. Studies on platelet life span and platelet depots by use of DFP-32. J Lab Clin Med. 1961;58:405–16.

    CAS  PubMed  Google Scholar 

  155. Aster RH, Jandl JH. Platelet sequestration in man: I. Methods. J Clin Invest. 1964;43:843–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Dumont LJ, Dumont DF, Unger ZM, Siegel A, Szczepiorkowski ZM, Corson JS, et al. A randomized controlled trial comparing autologous radiolabeled in vivo platelet (PLT) recoveries and survivals of 7-day-stored PLT-rich plasma and buffy coat PLTs from the same subjects. Transfusion. 2011;51(6):1241–8.

    Article  CAS  PubMed  Google Scholar 

  157. Valeri CR, MacGregor H, Barnard MR, Summaria L, Michelson AD, Ragno G. Survival of baboon biotin-X-N-hydroxysuccinimide and (111)In-oxine-labelled autologous fresh and lyophilized reconstituted platelets. Vox Sang. 2005;88(2):122–9.

    Article  CAS  PubMed  Google Scholar 

  158. Mitchell SG, Turner VS, Hawker RJ, Mead AM. A comparative study in volunteers of apheresis and buffy coat derived platelets. Platelets. 1995;6(3):146–51.

    Article  CAS  PubMed  Google Scholar 

  159. Tinmouth AT, Semple E, Shehata N, Branch DR. Platelet immunopathology and therapy: a Canadian Blood Services Research and Development Symposium. Transfus Med Rev. 2006;20(4):294–314.

    Article  PubMed  Google Scholar 

  160. Slichter SJ, Davis K, Enright H, Braine H, Gernsheimer T, Kao KJ, et al. Factors affecting posttransfusion platelet increments, platelet refractoriness, and platelet transfusion intervals in thrombocytopenic patients. Blood. 2005;105(10):4106–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Leukocyte reduction and ultraviolet B irradiation of platelets to prevent alloimmunization and refractoriness to platelet transfusions. The Trial to Reduce Alloimmunization to Platelets Study Group. N Engl J Med. 1997;337(26):1861–9.

    Google Scholar 

  162. Hod E, Schwartz J. Platelet transfusion refractoriness. Br J Haematol. 2008;142(3):348–60.

    Article  PubMed  Google Scholar 

  163. Curtis BR. Drug-induced immune thrombocytopenia: incidence, clinical features, laboratory testing, and pathogenic mechanisms. Immunohematology. 2014;30(2):55–65.

    PubMed  Google Scholar 

  164. Ishida A, Handa M, Wakui M, Okamoto S, Kamakura M, Ikeda Y. Clinical factors influencing posttransfusion platelet increment in patients undergoing hematopoietic progenitor cell transplantation—a prospective analysis. Transfusion. 1998;38(9):839–47.

    Article  CAS  PubMed  Google Scholar 

  165. Duquesnoy RJ, Filip DJ, Rodey GE, Rimm AA, Aster RH. Successful transfusion of platelets “mismatched” for HLA antigens to alloimmunized thrombocytopenic patients. Am J Hematol. 1977;2(3):219–26.

    Article  CAS  PubMed  Google Scholar 

  166. Myers TJ, Kim BK, Steiner M, Baldini MG. Selection of donor platelets for alloimmunized patients using a platelet-associated IgG assay. Blood. 1981;58(3):444–50.

    CAS  PubMed  Google Scholar 

  167. Vassallo Jr RR. New paradigms in the management of alloimmune refractoriness to platelet transfusions. Curr Opin Hematol. 2007;14(6):655–63.

    Article  CAS  PubMed  Google Scholar 

  168. Jackups Jr R, Kymes S. Comparison of two platelet transfusion strategies to minimize ABO-nonidentical transfusion, outdating, and shortages using a computer-simulated “virtual blood bank”. Transfusion. 2015;55(2):348–56.

    Article  PubMed  Google Scholar 

  169. Dunbar NM, Ornstein DL, Dumont LJ. ABO incompatible platelets: risks versus benefit. Curr Opin Hematol. 2012;19(6):475–9.

    Article  PubMed  Google Scholar 

  170. Cooling L. ABO and platelet transfusion therapy. Immunohematology. 2007;23(1):20–33.

    CAS  PubMed  Google Scholar 

  171. Shehata N, Tinmouth A, Naglie G, Freedman J, Wilson K. ABO-identical versus nonidentical platelet transfusion: a systematic review. Transfusion. 2009;49(11):2442–53.

    Article  PubMed  Google Scholar 

  172. Fung MK, Downes KA, Shulman IA. Transfusion of platelets containing ABO-incompatible plasma: a survey of 3156 North American laboratories. Arch Pathol Lab Med. 2007;131(6):909–16.

    PubMed  Google Scholar 

  173. Triulzi DJ, Assmann SF, Strauss RG, Ness PM, Hess JR, Kaufman RM, et al. The impact of platelet transfusion characteristics on posttransfusion platelet increments and clinical bleeding in patients with hypoproliferative thrombocytopenia. Blood. 2012;119(23):5553–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Julmy F, Ammann RA, Taleghani BM, Fontana S, Hirt A, Leibundgut K. Transfusion efficacy of ABO major-mismatched platelets (PLTs) in children is inferior to that of ABO-identical PLTs. Transfusion. 2009;49(1):21–33.

    Article  PubMed  Google Scholar 

  175. Heal JM, Rowe JM, McMican A, Masel D, Finke C, Blumberg N. The role of ABO matching in platelet transfusion. Eur J Haematol. 1993;50(2):110–7.

    Article  CAS  PubMed  Google Scholar 

  176. Carr R, Hutton JL, Jenkins JA, Lucas GF, Amphlett NW. Transfusion of ABO-mismatched platelets leads to early platelet refractoriness. Br J Haematol. 1990;75(3):408–13.

    Article  CAS  PubMed  Google Scholar 

  177. Pavenski K, Warkentin TE, Shen H, Liu Y, Heddle NM. Posttransfusion platelet count increments after ABO-compatible versus ABO-incompatible platelet transfusions in noncancer patients: an observational study. Transfusion. 2010;50(7):1552–60.

    Article  PubMed  Google Scholar 

  178. Transfusion Medicine Checklist Northfield (IL) College of American Pathologists; 2011. 11 July 2011: p. 31–2. Available from: http://www.cap.org/apps/docs/education/OnlineCourseContent/2011/LAP/Resources/Checklists/Transfusion.pdf. Cited 19 Feb 2015.

  179. Lozano M, Cid J. The clinical implications of platelet transfusions associated with ABO or Rh(D) incompatibility. Transfus Med Rev. 2003;17(1):57–68.

    Article  PubMed  Google Scholar 

  180. Cid J, Lozano M, Ziman A, West KA, O'Brien KL, Murphy MF, et al. Low frequency of anti-D alloimmunization following D+ platelet transfusion: the Anti-D Alloimmunization after D-incompatible Platelet Transfusions (ADAPT) study. Br J Haematol. 2015;168(4):598–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Banks AAB. AABB standards for blood banks and transfusion services. 28th ed. Bethesda, MD: AABB Press; 2012.

    Google Scholar 

  182. Transfusion ECB. European Committee on blood transfusion guide to the preparation, use and quality assurance of blood components. 16th ed. Strasbourg, France: European Directorate for the Quality of Medicines; 2010.

    Google Scholar 

  183. Menitove JE. Immunoprophylaxis for D− patients receiving platelet transfusions from D+ [correction of D−] donors? Transfusion. 2002;42(2):136–8.

    Article  PubMed  Google Scholar 

  184. Blajchman MA. The clinical benefits of the leukoreduction of blood products. J Trauma. 2006;60(6 Suppl):S83–90.

    Article  CAS  PubMed  Google Scholar 

  185. Yazer MH, Podlosky L, Clarke G, Nahirniak SM. The effect of prestorage WBC reduction on the rates of febrile nonhemolytic transfusion reactions to platelet concentrates and RBC. Transfusion. 2004;44(1):10–5.

    Article  PubMed  Google Scholar 

  186. Snyder EL, Whitley P, Kingsbury T, Miripol J, Tormey CA. In vitro and in vivo evaluation of a whole blood platelet-sparing leukoreduction filtration system. Transfusion. 2010;50(10):2145–51.

    Article  CAS  PubMed  Google Scholar 

  187. Nollet KE, Saito S, Ono T, Ngoma A, Ohto H. Microparticle formation in apheresis platelets is not affected by three leukoreduction filters. Transfusion. 2013;53(10):2293–8.

    CAS  PubMed  Google Scholar 

  188. Sakagawa H, Miyazaki T, Fujihara M, Sato S, Yamaguchi M, Fukai K, et al. Generation of inflammatory cytokines and chemokines from peripheral blood mononuclear cells by HLA Class II antibody-containing plasma unit that was associated with severe nonhemolytic transfusion reactions. Transfusion. 2007;47(1):154–61.

    Article  CAS  PubMed  Google Scholar 

  189. Corash L, Lin L. Novel processes for inactivation of leukocytes to prevent transfusion-associated ‑graft-versus-host disease. Bone Marrow Transplant. 2004;33(1):1–7.

    Google Scholar 

  190. Marschner S, Fast LD, Baldwin 3rd WM, Slichter SJ, Goodrich RP. White blood cell inactivation after treatment with riboflavin and ultraviolet light. Transfusion. 2010;50(11):2489–98.

    Article  PubMed  Google Scholar 

  191. Fast LD, Nevola M, Tavares J, Reddy HL, Goodrich RP, Marschner S. Treatment of whole blood with riboflavin plus ultraviolet light, an alternative to gamma irradiation in the prevention of transfusion-associated graft-versus-host disease? Transfusion. 2013;53(2):373–81.

    Article  CAS  PubMed  Google Scholar 

  192. Kaiser-Guignard J, Canellini G, Lion N, Abonnenc M, Osselaer JC, Tissot JD. The clinical and biological impact of new pathogen inactivation technologies on platelet concentrates. Blood Rev. 2014;28(6):235–41.

    Article  CAS  PubMed  Google Scholar 

  193. Fast LD, DiLeone G, Marschner S. Inactivation of human white blood cells in platelet products after pathogen reduction technology treatment in comparison to gamma irradiation. Transfusion. 2011;51(7):1397–404.

    Article  CAS  PubMed  Google Scholar 

  194. Pohler P, Muller M, Winkler C, Schaudien D, Sewald K, Muller TH, et al. Pathogen reduction by ultraviolet C light effectively inactivates human white blood cells in platelet products. Transfusion. 2015;55(2):337–47.

    Article  CAS  PubMed  Google Scholar 

  195. Grass JA, Wafa T, Reames A, Wages D, Corash L, Ferrara JL, et al. Prevention of transfusion-associated graft-versus-host disease by photochemical treatment. Blood. 1999;93(9):3140–7.

    CAS  PubMed  Google Scholar 

  196. Hong H, Xiao W, Maitta R, Jacobs M. Correlation between transfusion reactions and bacterially contaminated platelet transfusions. Transfusion. 2014;54:28A–9.

    Google Scholar 

  197. Yomtovian R, Jacobs M. Trends in the incidence of transfusion of bacterially contaminated platelets over two decades at an Academic Medical Center. Transfusion. 2014;54:202A.

    Google Scholar 

  198. Brecher ME, Blajchman MA, Yomtovian R, Ness P, AuBuchon JP. Addressing the risk of bacterial contamination of platelets within the United States: a history to help illuminate the future. Transfusion. 2013;53(1):221–31.

    Article  PubMed  Google Scholar 

  199. Eder AF, Kennedy JM, Dy BA, Notari EP, Skeate R, Bachowski G, et al. Limiting and detecting bacterial contamination of apheresis platelets: inlet-line diversion and increased culture volume improve component safety. Transfusion. 2009;49(8):1554–63.

    Article  PubMed  Google Scholar 

  200. Zimrin AB, Hess JR. Current issues relating to the transfusion of stored red blood cells. Vox Sang. 2009;96(2):93–103.

    Article  CAS  PubMed  Google Scholar 

  201. Esber E. Reduction of the maximum platelet storage period to 5 days in an approved container. Rockville, MD: U.S. Food and Drug Administration; 1986. FDA memorandum. Available from: http://www.fda.gov/downloads/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/OtherRecommendationsforManufacturers/MemorandumtoBloodEstablishments/UCM063013.pdf. Cited 19 Feb 2015.

  202. Pietersz RN, Reesink HW, Panzer S, Oknaian S, Kuperman S, Gabriel C, et al. Bacterial contamination in platelet concentrates. Vox Sang. 2014;106(3):256–83.

    Article  CAS  PubMed  Google Scholar 

  203. McDonald CP, Roy A, Mahajan P, Smith R, Charlett A, Barbara JA. Relative values of the interventions of diversion and improved donor-arm disinfection to reduce the bacterial risk from blood transfusion. Vox Sang. 2004;86(3):178–82.

    Article  CAS  PubMed  Google Scholar 

  204. Pietersz RN. Pooled platelet concentrates: an alternative to single donor apheresis platelets? Transfus Apher Sci. 2009;41(2):115–9.

    Article  CAS  PubMed  Google Scholar 

  205. Ness PM, Campbell-Lee SA. Single donor versus pooled random donor platelet concentrates. Curr Opin Hematol. 2001;8(6):392–6.

    Article  CAS  PubMed  Google Scholar 

  206. Schrezenmeier H, Walther-Wenke G, Muller TH, Weinauer F, Younis A, Holland-Letz T, et al. Bacterial contamination of platelet concentrates: results of a prospective multicenter study comparing pooled whole blood-derived platelets and apheresis platelets. Transfusion. 2007;47(4):644–52.

    Article  PubMed  Google Scholar 

  207. Dudaryk R, Hess AS, Varon AJ, Hess JR. What is new in the blood bank for trauma resuscitation. Curr Opin Anaesthesiol. 2015;28(2):206–9.

    Article  PubMed  Google Scholar 

  208. Whitaker BI. United States Department of Health and Human Services 2011 National Blood Collection and Utilization Survey. Rockville, MD: National Institutes of Health, Services USDoHaH; 2011 OMB Number 0990-0313.

    Google Scholar 

  209. Tomasulo P, Su L. Is it time for new initiatives in the blood center and/or the hospital to reduce bacterial risk of platelets? Transfusion. 2011;51(12):2527–33.

    Article  PubMed  Google Scholar 

  210. Dumont LJ, Kleinman S, Murphy JR, Lippincott R, Schuyler R, Houghton J, et al. Screening of single-donor apheresis platelets for bacterial contamination: the PASSPORT study results. Transfusion. 2010;50(3):589–99.

    Article  PubMed  Google Scholar 

  211. Guinet F, Carniel E, Leclercq A. Transfusion-transmitted Yersinia enterocolitica sepsis. Clin Infect Dis. 2011;53(6):583–91.

    Article  PubMed  Google Scholar 

  212. Palavecino EL, Yomtovian RA, Jacobs MR. Bacterial contamination of platelets. Transfus Apher Sci. 2010;42(1):71–82.

    Article  PubMed  Google Scholar 

  213. Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, et al. Global trends in emerging infectious diseases. Nature. 2008;451(7181):990–3.

    Article  CAS  PubMed  Google Scholar 

  214. McDowell KL, Nag N, Franco Z, Bu M, Piccardo P, Cervenak J, et al. Blood reference materials from macaques infected with variant Creutzfeldt-Jakob disease agent. Transfusion. 2015;55(2):405–12.

    Article  CAS  PubMed  Google Scholar 

  215. Lanteri MC, Lee TH, Wen L, Kaidarova Z, Bravo MD, Kiely NE, et al. West Nile virus nucleic acid persistence in whole blood months after clearance in plasma: implication for transfusion and transplantation safety. Transfusion. 2014;54(12):3232–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Tomashek KM, Margolis HS. Dengue: a potential transfusion-transmitted disease. Transfusion. 2011;51(8):1654–60.

    Article  PubMed  Google Scholar 

  217. Xu C, Wang RY, Schechterly CA, Ge S, Shih JW, Xia NS, et al. An assessment of hepatitis E virus (HEV) in US blood donors and recipients: no detectable HEV RNA in 1939 donors tested and no evidence for HEV transmission to 362 prospectively followed recipients. Transfusion. 2013;53(10 Pt 2):2505–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Katz LM, Tobian AA. Ebola virus disease, transmission risk to laboratory personnel, and pretransfusion testing. Transfusion. 2014;54(12):3247–51.

    Article  PubMed  Google Scholar 

  219. Simon MS, Leff JA, Pandya A, Cushing M, Shaz BH, Calfee DP, et al. Cost-effectiveness of blood donor screening for Babesia microti in endemic regions of the United States. Transfusion. 2014;54(3 Pt 2):889–99.

    Article  PubMed  PubMed Central  Google Scholar 

  220. Hernandez-Romano P, Camara-Contreras M, Bravo-Sarmiento E, Lopez-Balderas N. Prevalence of Trypanosoma cruzi antibodies in blood donors from Veracruz State, Mexico. Transfusion. 2015;55(3):647–56.

    Article  PubMed  Google Scholar 

  221. Tonnetti L, Thorp AM, Reddy HL, Keil SD, Doane SK, Goodrich RP, et al. Reduction of Leishmania donovani infectivity in whole blood using riboflavin and ultraviolet light. Transfusion. 2015;55(2):326–9.

    Article  CAS  PubMed  Google Scholar 

  222. Stramer SL, Hollinger FB, Katz LM, Kleinman S, Metzel PS, Gregory KR, et al. Emerging infectious disease agents and their potential threat to transfusion safety. Transfusion. 2009;49 Suppl 2:1S–29.

    Article  PubMed  Google Scholar 

  223. Hussain S, Moiz B, Ausat FA, Khurshid M. Monitoring and reporting transfusion reactions as a quality indicator—a clinical audit. Transfus Apher Sci. 2014.

    Google Scholar 

  224. Karim F, Moiz B, Shamsuddin N, Naz S, Khurshid M. Root cause analysis of non-infectious transfusion complications and the lessons learnt. Transfus Apher Sci. 2014;50(1):111–7.

    Article  PubMed  Google Scholar 

  225. Brittingham TE, Chaplin Jr H. Febrile transfusion reactions caused by sensitivity to donor leukocytes and platelets. J Am Med Assoc. 1957;165(7):819–25.

    Article  CAS  PubMed  Google Scholar 

  226. Perkins HA, Payne R, Ferguson J, Wood M. Nonhemolytic febrile transfusion reactions. Quantitative effects of blood components with emphasis on isoantigenic incompatibility of leukocytes. Vox Sang. 1966;11(5):578–600.

    Article  CAS  PubMed  Google Scholar 

  227. Milner LV, Butcher K. Transfusion reactions reported after transfusions of red blood cells and of whole blood. Transfusion. 1978;18(4):493–5.

    Article  CAS  PubMed  Google Scholar 

  228. Decary F, Ferner P, Giavedoni L, Hartman A, Howie R, Kalovsky E, et al. An investigation of nonhemolytic transfusion reactions. Vox Sang. 1984;46(5):277–85.

    Article  CAS  PubMed  Google Scholar 

  229. Imoto S, Kawamura K, Tokumine Y, Araki N, Akita S, Nishimura C, et al. Acute non-hemolytic transfusion reactions and HLA class I antibody: advantages of solid phase assay compared with conventional complement-dependent assay. Transfus Med. 2010;20(2):95–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Heddle NM, Klama LN, Griffith L, Roberts R, Shukla G, Kelton JG. A prospective study to identify the risk factors associated with acute reactions to platelet and red cell transfusions. Transfusion. 1993;33(10):794–7.

    Article  CAS  PubMed  Google Scholar 

  231. Pruss A, Kalus U, Radtke H, Koscielny J, Baumann-Baretti B, Balzer D, et al. Universal leukodepletion of blood components results in a significant reduction of febrile non-hemolytic but not allergic transfusion reactions. Transfus Apher Sci. 2004;30(1):41–6.

    Article  PubMed  Google Scholar 

  232. Gilliss BM, Looney MR, Gropper MA. Reducing noninfectious risks of blood transfusion. Anesthesiology. 2011;115(3):635–49.

    Article  PubMed  PubMed Central  Google Scholar 

  233. Hendrickson JE, Hillyer CD. Noninfectious serious hazards of transfusion. Anesth Analg. 2009;108(3):759–69.

    Article  PubMed  Google Scholar 

  234. Marti-Carvajal AJ, Sola I, Gonzalez LE, Leon de Gonzalez G, Rodriguez-Malagon N. Pharmacological interventions for the prevention of allergic and febrile non-haemolytic transfusion reactions. Cochrane Database Syst Rev. 2010(6):CD007539.

    Google Scholar 

  235. Vamvakas EC, Blajchman MA. Transfusion-related mortality: the ongoing risks of allogeneic blood transfusion and the available strategies for their prevention. Blood. 2009;113(15):3406–17.

    Article  CAS  PubMed  Google Scholar 

  236. Vlaar AP. Transfusion-related acute lung injury: current understanding and preventive strategies. Transfus Clin Biol. 2012;19(3):117–24.

    Article  CAS  PubMed  Google Scholar 

  237. Murphy EL, Kwaan N, Looney MR, Gajic O, Hubmayr RD, Gropper MA, et al. Risk factors and outcomes in transfusion-associated circulatory overload. Am J Med. 2013;126(4):357 e29–38.

    Google Scholar 

  238. Alam A, Huang M, Yi QL, Lin Y, Hannach B. Perioperative transfusion-related acute lung injury: the Canadian Blood Services experience. Transfus Apher Sci. 2014;50(3):392–8.

    Article  PubMed  Google Scholar 

  239. Toy P, Gajic O, Bacchetti P, Looney MR, Gropper MA, Hubmayr R, et al. Transfusion-related acute lung injury: incidence and risk factors. Blood. 2012;119(7):1757–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Bjursten H, Al-Rashidi F, Dardashti A, Bronden B, Algotsson L, Ederoth P. Risks associated with the transfusion of various blood products in aortic valve replacement. Ann Thorac Surg. 2013;96(2):494–9.

    Article  PubMed  Google Scholar 

  241. Vlaar AP, Hofstra JJ, Determann RM, Veelo DP, Paulus F, Kulik W, et al. The incidence, risk factors, and outcome of transfusion-related acute lung injury in a cohort of cardiac surgery patients: a prospective nested case-control study. Blood. 2011;117(16):4218–25.

    Article  CAS  PubMed  Google Scholar 

  242. Barnes A. Transfusion of universal donor and uncrossmatched blood. Bibl Haematol. 1980;46:132–42.

    PubMed  Google Scholar 

  243. Makar RS, Powers A, Stowell CP. Reducing transfusion-related acute lung injury risk: evidence for and approaches to transfusion-related acute lung injury mitigation. Transfus Med Rev. 2012;26(4):305–20.

    Article  PubMed  Google Scholar 

  244. Kenz HE, Van der Linden P. Transfusion-related acute lung injury. Eur J Anaesthesiol. 2014;31(7):345–50.

    Article  PubMed  Google Scholar 

  245. Mueller-Eckhardt C, Lechner K, Heinrich D, Marks HJ, Mueller-Eckhardt G, Bettelheim P, et al. Post-transfusion thrombocytopenic purpura: immunological and clinical studies in two cases and review of the literature. Blut. 1980;40(4):249–57.

    Article  CAS  PubMed  Google Scholar 

  246. Dwyre DM, Holland PV. Transfusion-associated graft-versus-host disease. Vox Sang. 2008;95(2):85–93.

    Article  CAS  PubMed  Google Scholar 

  247. Uchida S, Tadokoro K, Takahashi M, Yahagi H, Satake M, Juji T. Analysis of 66 patients definitive with transfusion-associated graft-versus-host disease and the effect of universal irradiation of blood. Transfus Med. 2013;23(6):416–22.

    Article  CAS  PubMed  Google Scholar 

  248. Fast LD. Developments in the prevention of transfusion-associated graft-versus-host disease. Br J Haematol. 2012;158(5):563–8.

    Article  PubMed  Google Scholar 

  249. Luban NL. Prevention of transfusion-associated graft-versus-host disease by inactivation of T cells in platelet components. Semin Hematol. 2001;38(4 Suppl 11):34–45.

    Article  CAS  PubMed  Google Scholar 

  250. Kaufman RM, Djulbegovic B, Gernsheimer T, Kleinman S, Tinmouth AT, Capocelli KE, et al. Platelet transfusion: a clinical practice guideline from the AABB. Ann Intern Med. 2015;162(3):205–13.

    Article  PubMed  Google Scholar 

  251. Wohlauer MV, Moore EE, Thomas S, Sauaia A, Evans E, Harr J, et al. Early platelet dysfunction: an unrecognized role in the acute coagulopathy of trauma. J Am Coll Surg. 2012;214(5):739–46.

    Article  PubMed  PubMed Central  Google Scholar 

  252. Brasel KJ, Vercruysse G, Spinella PC, Wade CE, Blackbourne LH, Borgman MA, et al. The association of blood component use ratios with the survival of massively transfused trauma patients with and without severe brain injury. J Trauma. 2011;71(2 Suppl 3):S343–52.

    CAS  PubMed  Google Scholar 

  253. Holcomb JB, Wade CE, Michalek JE, Chisholm GB, Zarzabal LA, Schreiber MA, et al. Increased plasma and platelet to red blood cell ratios improves outcome in 466 massively transfused civilian trauma patients. Ann Surg. 2008;248(3):447–58.

    PubMed  Google Scholar 

  254. Camazine M, Hemmila M, Leonard J, Jacobs R, Horst J, Kozar R, et al. Massive transfusion polices at trauma centers participating in the American College of Surgeons Trauma Quality Improvement Program. J Trauma Acute Care Surg. 2015;78(6 Suppl 1):S48–53.

    Article  PubMed  Google Scholar 

  255. Reed 2nd RL, Ciavarella D, Heimbach DM, Baron L, Pavlin E, Counts RB, et al. Prophylactic platelet administration during massive transfusion. A prospective, randomized, double-blind clinical study. Ann Surg. 1986;203(1):40–8.

    Article  PubMed  PubMed Central  Google Scholar 

  256. Sambasivan CN, Kunio NR, Nair PV, Zink KA, Michalek JE, Holcomb JB, et al. High ratios of plasma and platelets to packed red blood cells do not affect mortality in nonmassively transfused patients. J Trauma. 2011;71(2 Suppl 3):S329–36.

    Article  PubMed  Google Scholar 

  257. Stensballe J, Ostrowski SR, Johansson PI. Viscoelastic guidance of resuscitation. Curr Opin Anaesthesiol. 2014;27(2):212–8.

    Article  PubMed  Google Scholar 

  258. Afshari A, Wikkelso A, Brok J, Moller AM, Wetterslev J. Thrombelastography (TEG) or thromboelastometry (ROTEM) to monitor haemotherapy versus usual care in patients with massive transfusion. Cochrane Database Syst Rev. 2011(3):CD007871.

    Google Scholar 

  259. Armand R, Hess JR. Treating coagulopathy in trauma patients. Transfus Med Rev. 2003;17(3):223–31.

    Article  PubMed  Google Scholar 

  260. Spinella PC, Dressler A, Tucci M, Carroll CL, Rosen RS, Hume H, et al. Survey of transfusion policies at US and Canadian children's hospitals in 2008 and 2009. Transfusion. 2010;50(11):2328–35.

    Article  PubMed  Google Scholar 

  261. Cotton BA, Podbielski J, Camp E, Welch T, del Junco D, Bai Y, et al. A randomized controlled pilot trial of modified whole blood versus component therapy in severely injured patients requiring large volume transfusions. Ann Surg. 2013;258(4):527–32. discussion 32–3.

    PubMed  Google Scholar 

  262. Manno CS, Hedberg KW, Kim HC, Bunin GR, Nicolson S, Jobes D, et al. Comparison of the hemostatic effects of fresh whole blood, stored whole blood, and components after open heart surgery in children. Blood. 1991;77(5):930–6.

    CAS  PubMed  Google Scholar 

  263. Mou SS, Giroir BP, Molitor-Kirsch EA, Leonard SR, Nikaidoh H, Nizzi F, et al. Fresh whole blood versus reconstituted blood for pump priming in heart surgery in infants. N Engl J Med. 2004;351(16):1635–44.

    Article  CAS  PubMed  Google Scholar 

  264. Hess JR, Thomas MJ. Blood use in war and disaster: lessons from the past century. Transfusion. 2003;43(11):1622–33.

    Article  CAS  PubMed  Google Scholar 

  265. Banks AAoB, Cross AR, Centers AsB, Program ASB. Circular of information for the use of human blood and blood components 2013. Available from: http://www.aabb.org/tm/coi/Documents/coi1113.pdf. Cited 23 Feb 2015.

  266. DB K. Blood program in World War II 1964. Available from: http://history.amedd.army.mil/booksdocs/wwii/blood/DEFAULT.htm. Cited 23 Feb 2015.

  267. S N. Vietnam studies: medical support of the US Army in Vietnam 1991. Available from: http://history.amedd.army.mil/booksdocs/vietnam/medicalsupport/default.html. Cited 23 Feb 2015.

  268. Crosby WH, Akeroyd JH. Some immunohematologic results of large transfusions of group O blood in recipients of other blood groups; a study of battle casualties in Korea. Blood. 1954;9(2):103–16.

    CAS  PubMed  Google Scholar 

  269. Nessen SC, Eastridge BJ, Cronk D, Craig RM, Berseus O, Ellison R, et al. Fresh whole blood use by forward surgical teams in Afghanistan is associated with improved survival compared to component therapy without platelets. Transfusion. 2013;53 Suppl 1:107S–13.

    Article  PubMed  Google Scholar 

  270. Strandenes G, Berseus O, Cap AP, Hervig T, Reade M, Prat N, et al. Low titer group O whole blood in emergency situations. Shock. 2014;41 Suppl 1:70–5.

    Article  PubMed  Google Scholar 

  271. Eastridge BJ, Mabry RL, Seguin P, Cantrell J, Tops T, Uribe P, et al. Death on the battlefield (2001–2011): implications for the future of combat casualty care. J Trauma Acute Care Surg. 2012;73(6 Suppl 5):S431–7.

    Article  PubMed  Google Scholar 

  272. Schneider W, Gattermann N. Megakaryocytes: origin of bleeding and thrombotic disorders. Eur J Clin Invest. 1994;24 Suppl 1:16–20.

    Article  CAS  PubMed  Google Scholar 

  273. Brass LF. Did dinosaurs have megakaryocytes? New ideas about platelets and their progenitors. J Clin Invest. 2005;115(12):3329–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Meseguer J, Esteban MA, Rodriguez A. Are thrombocytes and platelets true phagocytes? Microsc Res Tech. 2002;57(6):491–7.

    Article  PubMed  Google Scholar 

  275. Yeaman MR. Platelets: at the nexus of antimicrobial defence. Nat Rev Microbiol. 2014;12(6):426–37.

    Article  CAS  PubMed  Google Scholar 

  276. Bruserud O. Bidirectional crosstalk between platelets and monocytes initiated by Toll-like receptor: an important step in the early defense against fungal infections? Platelets. 2013;24(2):85–97.

    Article  CAS  PubMed  Google Scholar 

  277. Gawaz M, Vogel S. Platelets in tissue repair: control of apoptosis and interactions with regenerative cells. Blood. 2013;122(15):2550–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew P. Cap M.D., Ph.D., F.A.C.P. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cap, A.P., Getz, T.M., Spinella, P.C., Pidcoke, H.F. (2016). Platelet Transfusion. In: Gonzalez, E., Moore, H., Moore, E. (eds) Trauma Induced Coagulopathy. Springer, Cham. https://doi.org/10.1007/978-3-319-28308-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28308-1_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28306-7

  • Online ISBN: 978-3-319-28308-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics