Skip to main content

Thrombin-Antithrombin System

  • Chapter
  • First Online:
Trauma Induced Coagulopathy
  • 1875 Accesses

Abstract

To sustain blood circulation and continue on with life after a serious traumatic injury, it is equally necessary to prevent hemorrhage and exsanguination, and to check the development of subsequent systemic thrombosis by escaped clotting enzymes. Complex endogenous anticoagulant mechanisms have evolved to allow rapid, focal blood coagulation and hemostasis, and to prevent distal thrombosis which can lead to pathological—and sometimes fatal—circulatory disruption. Antithrombin (antithrombin III, AT) is an essential component of the body’s endogenous anticoagulant network, and works in concert with other endogenous anticoagulant and procoagulant components of the hemostatic system to keep blood flowing in the face of diverse challenges. The goals of this chapter are to provide a foundation for understanding the normal physiological functioning of AT, and to examine how AT becomes dysregulated in patients with severe injury, and contributes to trauma induced coagulopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huber R, Carrell R. Implications of the three-dimensional structure of alpha1-antitrypsin for structure and function of serpins. Biochemistry. 1989;28:8951–65.

    Article  CAS  PubMed  Google Scholar 

  2. Olson ST, Gettins PG. Regulation of proteases by protein inhibitors of the serpin superfamily. Prog Mol Biol Transl Sci. 2011;99:185–240. doi:10.1016/b978-0-12-385504-6.00005-1.

    Article  CAS  PubMed  Google Scholar 

  3. Petersen T, Dudek-Wojciechowska G, Sottrup-Jensen L, Magnusson S. Primary structure of antithrombin-III (heparin cofactor). Partial homology between alpha1-antitrypsin and antithrombin-III. In: D. Collen, B. Wiman, M. Verstraete (Eds.) The Physiological Inhibitors of Blood Coagulation and Fibrinolysis. Elsevier/North-Holland Biomedical Press, Amsterdam; 1979. p. 43–54.

    Google Scholar 

  4. Schechter I, Berger A. On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun. 1967;27:157–62.

    Article  CAS  PubMed  Google Scholar 

  5. Lawrence D, Ginsburg D, Day D, Berkenpas M, Verhamme I, Kvassman J, et al. Serpin-protease complexes are trapped as stable acyl-enzyme intermediates. J Biol Chem. 1995;270:25309–12.

    Article  CAS  PubMed  Google Scholar 

  6. Wilczynska M, Fa M, Ohlsson P-I, Ny T. The inhibition mechanism of serpins. Evidence that the mobile reactive center loop is cleaved in the native protease-inhibitor complex. J Biol Chem. 1995;270:29652–5.

    Article  CAS  PubMed  Google Scholar 

  7. Skinner R, Abrahams J, Whisstock J, Lesk A, Carrell R, Wardell M. The 2.6A structure of antithrombin indicates a conformational change at the heparin binding site. J Mol Biol. 1997;266:601–9.

    Article  CAS  PubMed  Google Scholar 

  8. Pike R, Potempa J, Skinner R, Fitton H, McGraw W, Travis J, et al. Heparin-dependent modification of the reactive center arginine of antithrombin and consequent increase in heparin binding affinity. J Biol Chem. 1997;272:19652–5.

    Article  CAS  PubMed  Google Scholar 

  9. Gettins PG, Olson ST. Activation of antithrombin as a factor IXa and Xa inhibitor involves mitigation of repression rather than positive enhancement. FEBS Lett. 2009;583(21):3397–400. doi:10.1016/j.febslet.2009.10.005. S0014-5793(09)00775-3 [pii].

    Article  CAS  PubMed  Google Scholar 

  10. Olson ST, Richard B, Izaguirre G, Schedin-Weiss S, Gettins PG. Molecular mechanisms of antithrombin-heparin regulation of blood clotting proteinases. A paradigm for understanding proteinase regulation by serpin family protein proteinase inhibitors. Biochimie. 2010;92(11):1587–96. doi:10.1016/j.biochi.2010.05.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Olson S, Bjork I, Bock S. Identification of critical molecular interactions mediating heparin activation of antithrombin. Implications for the design of improved heparin anticoagulants. Trends Cardiovasc Med. 2002;12:198–205.

    Article  CAS  PubMed  Google Scholar 

  12. dela_Cruz R, Jairajpuri M, Bock S. Disruption of a tight cluster surrounding tyrosine 131 in the native conformation of antithrombin III activates it for factor Xa inhibition. J Biol Chem. 2006;281(42):31668–76.

    Article  CAS  PubMed  Google Scholar 

  13. Dementiev A, Swanson R, Roth R, Isetti G, Izaguirre G, Olson ST, et al. The allosteric mechanism of activation of antithrombin as an inhibitor of factor IXa and factor Xa: heparin-independent full activation through mutations adjacent to helix D. J Biol Chem. 2013;288(47):33611–9. doi:10.1074/jbc.M113.510727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Izaguirre G, Aguila S, Qi L, Swanson R, Roth R, Rezaie AR, et al. Conformational activation of antithrombin by heparin involves an altered exosite interaction with protease. J Biol Chem. 2014;289(49):34049–64. doi:10.1074/jbc.M114.611707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Izaguirre G, Olson ST. Residues Tyr253 and Glu255 in strand 3 of beta-sheet C of antithrombin are key determinants of an exosite made accessible by heparin activation to promote rapid inhibition of factors Xa and IXa. J Biol Chem. 2006;281(19):13424–32. doi:10.1074/jbc.M600415200. M600415200 [pii].

    Article  CAS  PubMed  Google Scholar 

  16. Izaguirre G, Zhang W, Swanson R, Bedsted T, Olson S. Localization of an antithrombin exosite that promotes rapid inhibition of factors Xa and IXa dependent on heparin activation of the serpin. J Biol Chem. 2003;278:51433–40.

    Article  CAS  PubMed  Google Scholar 

  17. Li W, Johnson DJ, Esmon CT, Huntington JA. Structure of the antithrombin-thrombin-heparin ternary complex reveals the antithrombotic mechanism of heparin. Nat Struct Mol Biol. 2004;11(9):857–62. doi:10.1038/nsmb811. nsmb811 [pii].

    Article  CAS  PubMed  Google Scholar 

  18. Olson S, Bjork I. Predominant contribution of surface approximation to the mechanism of heparin acceleration of the antithrombin-thrombin reaction. Elucidation from salt concentration effects. J Biol Chem. 1991;266:6353–64.

    CAS  PubMed  Google Scholar 

  19. Olson S, Swanson R, Raub-Segall E, Bedsted T, Sadri M, Petitou M, et al. Accelerating ability of synthetic oligosaccharides on antithrombin inhibition of proteinases of the clotting and fibrinolytic systems. Comparison with heparin and low-molecular-weight heparin. Thromb Haemost. 2004;92:929–39.

    CAS  PubMed  Google Scholar 

  20. deAgostini A, Watkins S, Slayter H, Youssoufian H, Rosenberg R. Localization of anticoagulantly active heparan sulfate proteoglycans in vascular endothelium: Antithrombin binding on cultured endothelial cells and perfused rat aorta. J Cell Biol. 1990;111:1293–304.

    Article  CAS  Google Scholar 

  21. Dewerchin M, Herault JP, Wallays G, Petitou M, Schaeffer P, Millet L, et al. Life-threatening thrombosis in mice with targeted Arg48-to-Cys mutation of the heparin-binding domain of antithrombin. Circ Res. 2003;93(11):1120–6. doi:10.1161/01.res.0000103634.69868.4f.

    Article  CAS  PubMed  Google Scholar 

  22. Hoffman M, Monroe 3rd DM. A cell-based model of hemostasis. Thromb Haemost. 2001;85(6):958–65.

    CAS  PubMed  Google Scholar 

  23. Hoffman M, Monroe DM. Coagulation 2006: a modern view of hemostasis. Hematol Oncol Clin North Am. 2007;21(1):1–11. doi:10.1016/j.hoc.2006.11.004.

    Article  PubMed  Google Scholar 

  24. Roberts HR, Hoffman M, Monroe DM. A cell-based model of thrombin generation. Semin Thromb Hemost. 2006;32 Suppl 1:32–8. doi:10.1055/s-2006-939552.

    Article  CAS  PubMed  Google Scholar 

  25. Hoffman M, Monroe DM, Oliver JA, Roberts HR. Factors IXa and Xa play distinct roles in tissue factor-dependent initiation of coagulation. Blood. 1995;86(5):1794–801.

    CAS  PubMed  Google Scholar 

  26. Murano G, Williams L, Miller-Anderson M, Aronson D, King C. Some properties of antithrombin III and its concentration in human plasma. Thromb Res. 1980;18:259–62.

    Article  CAS  PubMed  Google Scholar 

  27. Skriver K, Wikoff WR, Patston PA, Tausk F, Schapira M, Kaplan AP, et al. Substrate properties of C1 inhibitor Ma (alanine 434----glutamic acid). Genetic and structural evidence suggesting that the P12-region contains critical determinants of serine protease inhibitor/substrate status. J Biol Chem. 1991;266(14):9216–21.

    CAS  PubMed  Google Scholar 

  28. Carrell RW, Owen MC. Plakalbumin, alpha 1-antitrypsin, antithrombin and the mechanism of inflammatory thrombosis. Nature. 1985;317(6039):730–2.

    Article  CAS  PubMed  Google Scholar 

  29. Jochum M, Lander S, Heimburger N, Fritz H. Effect of human granulocytic elastase on isolated human antithrombin III. Hoppe Seylers Z Physiol Chem. 1981;362:103–12.

    Article  CAS  PubMed  Google Scholar 

  30. Jordan R, Kilpatrick J, Nelson R. Heparin promotes the inactivation of antithrombin by neutrophil elastase. Science (New York, NY). 1987;237:777–9.

    Article  CAS  Google Scholar 

  31. Ishiguro K, Kojima T, Kadomatsu K, Nakayama Y, Takagi A, Suzuki M, et al. Complete antithrombin deficiency in mice results in embryonic lethalilty. J Clin Invest. 2000;106:873–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yanada M, Kojima T, Ishiguro K, Nakayama Y, Yamamoto K, Matsushita T, et al. Impact of antithrombin deficiency in thrombogenesis: lipopolysaccharide and stress-induced thrombus formation in heterozygous antithrombin-deficient mice. Blood. 2002;99:2455–8.

    Article  CAS  PubMed  Google Scholar 

  33. Patnaik MM, Moll S. Inherited antithrombin deficiency: a review. Haemophilia. 2008;14(6):1229–39. doi:10.1111/j.1365-2516.2008.01830.x.

    Article  CAS  PubMed  Google Scholar 

  34. van Boven H, Lane D. Antithrombin III and its inherited deficiency states. Semin Hematol. 1997;34:188–204.

    CAS  PubMed  Google Scholar 

  35. Aasen AO, Kierulf P, Vaage J, Godal HC, Aune S. Determination of components of the plasma proteolytic enzyme systems gives information of prognostic value in patients with multiple trauma. Adv Exp Med Biol. 1983;156(Pt B):1037–47.

    PubMed  Google Scholar 

  36. Kierulf P, Aasen AO, Aune S, Godal HC, Ruud TE, Vaage J. Chromogenic peptide substrate assays in patients with multiple trauma. Acta Chir Scand Suppl. 1982;509:69–72.

    CAS  PubMed  Google Scholar 

  37. Miller RS, Weatherford DA, Stein D, Crane MM, Stein M. Antithrombin III and trauma patients: factors that determine low levels. J Trauma. 1994;37(3):442–5.

    Article  CAS  PubMed  Google Scholar 

  38. Seyfer AE, Seaber AV, Dombrose FA, Urbaniak JR. Coagulation changes in elective surgery and trauma. Ann Surg. 1981;193(2):210–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liener UC, Bruckner UB, Strecker W, Steinbach G, Kinzl L, Gebhard F. Trauma severity-dependent changes in AT III activity. Shock (Augusta, Ga). 2001;15(5):344–7.

    Article  CAS  Google Scholar 

  40. Gando S, Nanzaki S, Kemmotsu O. Coagulofibrinolytic changes after isolated head injury are not different from those in trauma patients without head injury. J Trauma. 1999;46(6):1070–6. discussion 6–7.

    Article  CAS  PubMed  Google Scholar 

  41. Owings JT, Bagley M, Gosselin R, Romac D, Disbrow E. Effect of critical injury on plasma antithrombin activity: low antithrombin levels are associated with thromboembolic complications. J Trauma. 1996;41(3):396–405. discussion −6.

    Article  CAS  PubMed  Google Scholar 

  42. Waydhas C, Nast-Kolb D, Gippner-Steppert C, Trupka A, Pfundstein C, Schweiberer L, et al. High-dose antithrombin III treatment of severely injured patients: results of a prospective study. J Trauma. 1998;45(5):931–40.

    Article  CAS  PubMed  Google Scholar 

  43. Waydhas C, Nast-Kolb D, Jochum M, Trupka A, Lenk S, Fritz H, et al. Inflammatory mediators, infection, sepsis, and multiple organ failure after severe trauma. Arch Surg (Chicago, Ill: 1960). 1992;127(4):460–7.

    Article  CAS  Google Scholar 

  44. Boldt J, Papsdorf M, Rothe A, Kumle B, Piper S. Changes of the hemostatic network in critically ill patients--is there a difference between sepsis, trauma, and neurosurgery patients? Crit Care Med. 2000;28(2):445–50.

    Article  CAS  PubMed  Google Scholar 

  45. Schreiber MA, Differding J, Thorborg P, Mayberry JC, Mullins RJ. Hypercoagulability is most prevalent early after injury and in female patients. J Trauma. 2005;58(3):475–80. discussion 80–1.

    Article  PubMed  Google Scholar 

  46. Hayakawa M, Sawamura A, Gando S, Kubota N, Uegaki S, Shimojima H, et al. Disseminated intravascular coagulation at an early phase of trauma is associated with consumption coagulopathy and excessive fibrinolysis both by plasmin and neutrophil elastase. Surgery. 2011;149(2):221–30. doi:10.1016/j.surg.2010.06.010.

    Article  PubMed  Google Scholar 

  47. Jochum M, Gippner-Steppert C, Machleidt W, Fritz H. The role of phagocyte proteinases and proteinase inhibitors in multiple organ failure. Am J Respir Crit Care Med. 1994;150(6 Pt 2):S123–30. doi:10.1164/ajrccm/150.6_Pt_2.S123.

    Article  CAS  PubMed  Google Scholar 

  48. Nast-Kolb D, Waydhas C, Gippner-Steppert C, Schneider I, Trupka A, Ruchholtz S, et al. Indicators of the posttraumatic inflammatory response correlate with organ failure in patients with multiple injuries. J Trauma. 1997;42(3):446–54. discussion 54–5.

    Article  CAS  PubMed  Google Scholar 

  49. Shworak NW, Kobayashi T, de Agostini A, Smits NC. Anticoagulant heparan sulfate to not clot--or not? Prog Mol Biol Transl Sci. 2010;93:153–78. doi:10.1016/s1877-1173(10)93008-1.

    Article  CAS  PubMed  Google Scholar 

  50. Haywood-Watson RJ, Holcomb JB, Gonzalez EA, Peng Z, Pati S, Park PW, et al. Modulation of syndecan-1 shedding after hemorrhagic shock and resuscitation. PLoS One. 2011;6(8), e23530. doi:10.1371/journal.pone.0023530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ostrowski SR, Johansson PI. Endothelial glycocalyx degradation induces endogenous heparinization in patients with severe injury and early traumatic coagulopathy. J Trauma Acute Care Surg. 2012;73(1):60–6. doi:10.1097/TA.0b013e31825b5c10.

    Article  CAS  PubMed  Google Scholar 

  52. Blauhut B, Kramar H, Vinazzer H, Bergmann H. Substitution of antithrombin III in shock and DIC: a randomized study. Thromb Res. 1985;39(1):81–9.

    Article  CAS  PubMed  Google Scholar 

  53. Diaz-Cremades JM, Lorenzo R, Sanchez M, Moreno MJ, Alsar MJ, Bosch JM, et al. Use of antithrombin III in critical patients. Intensive Care Med. 1994;20(8):577–80.

    Article  CAS  PubMed  Google Scholar 

  54. Harper PL, Williamson L, Park G, Smith JK, Carrell RW. A pilot study of antithrombin replacement in intensive care management: the effects on mortality, coagulation and renal function. Transfus Med (Oxford, England). 1991;1(2):121–8.

    Article  CAS  Google Scholar 

  55. Warren B, Eid A, Singer P, Pillay S, Carl P, Novak I, et al. High-dose antithrombin III in severe sepsis: a randomized controlled trial. JAMA. 2001;286:1869–78.

    Article  CAS  PubMed  Google Scholar 

  56. Retractions. Mizutani A, Okajima K, Uchiba M, Noguchi T. Activated protein C reduces ischemia/reperfusion-induced renal injury in rats by inhibiting leukocyte activation. Blood. 2000;95(12):3781–3787 and Mizutani A, Okajima K, Uchiba M, Isobe H, Harada N, Mizutani S, Noguchi T. Antithrombin reduces ischemia/reperfusion-induced renal injury in rats by inhibiting leukocyte activation through promotion of prostacyclin production. Blood. 2003;101(8):3029–3036. Blood. 2013;122(2):302. doi:10.1182/blood-2013-03-493585.

    Google Scholar 

  57. Hoffmann JN, Wiedermann CJ, Juers M, Ostermann H, Kienast J, Briegel J, et al. Benefit/risk profile of high-dose antithrombin in patients with severe sepsis treated with and without concomitant heparin. Thromb Haemost. 2006;95(5):850–6.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan C. Bock Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bock, S.C. (2016). Thrombin-Antithrombin System. In: Gonzalez, E., Moore, H., Moore, E. (eds) Trauma Induced Coagulopathy. Springer, Cham. https://doi.org/10.1007/978-3-319-28308-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28308-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28306-7

  • Online ISBN: 978-3-319-28308-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics