Skip to main content

Thrombelastography (TEG®)

  • Chapter
  • First Online:
Book cover Trauma Induced Coagulopathy

Abstract

Thromboelastography (TEG) is a point-of-care assay of the viscoelastic properties of blood that provides a comprehensive real-time analysis of hemostasis, from initial fibrin fiber formation, to platelet interactions, to fibrinolysis. Such insight into hemostasis has not only allowed for a better understanding of the biology of coagulation after injury, but has also allowed for development of a recently validated goal-directed transfusion therapy of trauma induced coagulopathy. This chapter reviews the technology principles that support TEG and provide a data-driven guide for the use of this tool during resuscitation of trauma induced coagulopathy as well as in hemostasis research applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nielsen VG. Beyond cell based models of coagulation: analyses of coagulation with clot “lifespan” resistance-time relationships. Thromb Res. 2008;122(2):145–52.

    Article  CAS  PubMed  Google Scholar 

  2. Hartert H. Blutgerinnungsstudien mit der Thrombelastographie; einem neuen Untersuchungs verfahren. Klin Wochenschr. 1948;26(37–38):577–83.

    Article  CAS  PubMed  Google Scholar 

  3. De Nicola P, Mazzetti GM. Evaluation of thrombelastography. Am J Clin Pathol. 1955;23(4):447–52.

    Google Scholar 

  4. Von Kaulla KN, Weiner M. Studies of coagulation and fibrinolysis by new technic of continuous recording. Blood. 1955;10(4):362–9.

    Google Scholar 

  5. Von Kaulla KN, Swan H. Clotting deviations in man during cardiac bypass: fibrinolysis and circulating anticoagulant. J Thorac Surg. 1958;36(4):519–30.

    Google Scholar 

  6. Kang YG, Martin DJ, Marquez J, Lewis JH, Bontempo FA, Shaw Jr BW, et al. Intraoperative changes in blood coagulation and thrombelastographic monitoring in liver transplantation. Anesth Analg. 1985;64(9):888–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Von Kaulla KN, Kaye H, von Kaulla E, Marchioro TL, Starzl TE. Changes in blood coagulation. Arch Surg. 1966;92(1):71–9.

    Article  Google Scholar 

  8. Tuman KJ, Spiess BD, McCarthy RJ, Ivankovich AD. Comparison of viscoelastic measures of coagulation after cardiopulmonary bypass. Anesth Analg. 1989;69(1):69–75.

    Article  CAS  PubMed  Google Scholar 

  9. Gibbs NM, Crawford GP, Michalopoulos N. Thrombelastographic patterns following abdominal aortic surgery. Anaesth Intensive Care. 1994;22(5):534–8.

    CAS  PubMed  Google Scholar 

  10. Wasowicz M, Srinivas C, Meineri M, Banks B, McCluskey SA, Karkouti K. Technical report: analysis of citrated blood with thromboelastography: comparison with fresh blood samples. Can J Anaesth. 2008;55(5):284–9.

    Article  PubMed  Google Scholar 

  11. Vig S, Chitolie A, Bevan DH, Halliday A, Dormandy J. Thromboelastography: a reliable test? Blood Coagul Fibrinolysis. 2001;12(7):555–61.

    Article  CAS  PubMed  Google Scholar 

  12. Bowbrick VA, Mikhailidis DP, Stansby G. The use of citrated whole blood in thromboelastography. Anesth Analg. 2000;90(5):1086–8.

    Article  CAS  PubMed  Google Scholar 

  13. Zambruni A, Thalheimer U, Leandro G, Perry D, Burroughs AK. Thromboelastography with citrated blood: comparability with native blood, stability of citrate storage and effect of repeated sampling. Blood Coagul Fibrinolysis. 2004;15(1):103–7.

    Article  CAS  PubMed  Google Scholar 

  14. Nelles NJ, Chandler WL. Platelet mapping assay interference due to platelet activation in heparinized samples. Am J Clin Pathol. 2014;142(3):331–8.

    Article  PubMed  Google Scholar 

  15. Johansson PI, Bochsen L, Andersen S, Viuff D. Investigation of the effect of kaolin and tissue-factor-activated citrated whole blood, on clot-forming variables, as evaluated by thromboelastography. Transfusion. 2008;48(11):2377–83.

    Article  CAS  PubMed  Google Scholar 

  16. Nielsen VG, Cohen BM, Cohen E. Effects of coagulation factor deficiency on plasma coagulation kinetics determined via thrombelastography: critical roles of fibrinogen and factors II, VII, X and XII. Acta Anaesthesiol Scand. 2005;49(2):222–31.

    Article  CAS  PubMed  Google Scholar 

  17. Gonzalez E, Moore EE, Moore HB, Chapman MP, Silliman CC, Banerjee A. Trauma-induced coagulopathy: an institution's 35 year perspective on practice and research. Scand J Surg. 2014;103(2):89–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Moore HB, Moore EE, Chin TL, Gonzalez E, Chapman MP, Walker CB, et al. Activated clotting time of thrombelastography (T-ACT) predicts early postinjury blood component transfusion beyond plasma. Surgery. 2014;156(3):564–9.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cotton BA, Faz G, Hatch QM, Radwan ZA, Podbielski J, Wade C, et al. Rapid thrombelastography delivers real-time results that predict transfusion within 1 hour of admission. J Trauma. 2011;71(2):407–14. discussion 14–7.

    Article  PubMed  Google Scholar 

  20. Harr JN, Moore EE, Ghasabyan A, Chin TL, Sauaia A, Banerjee A, et al. Functional fibrinogen assay indicates that fibrinogen is critical in correcting abnormal clot strength following trauma. Shock. 2013;39(1):45–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Bowbrick VA, Mikhailidis DP, Stansby G. Influence of platelet count and activity on thromboelastography parameters. Platelets. 2003;14(4):219–24.

    Article  CAS  PubMed  Google Scholar 

  22. Kornblith LZ, Kutcher ME, Redick BJ, Calfee CS, Vilardi RF, Cohen MJ. Fibrinogen and platelet contributions to clot formation: implications for trauma resuscitation and thromboprophylaxis. J Trauma Acute Care Surg. 2014;76(2):255–6. discussion 62–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cotton BA, Harvin JA, Kostousouv V, Minei KM, Radwan ZA, Schochl H, et al. Hyperfibrinolysis at admission is an uncommon but highly lethal event associated with shock and prehospital fluid administration. J Trauma Acute Care Surg. 2012;73(2):365–70. discussion 70.

    Article  CAS  PubMed  Google Scholar 

  24. Quinn BGE, Moore EE, Moore HB, Chapman MP, Morton AP, Sauaia A, Banerjee A, Silliman CC. Defining the optimal thrombelastography assay to detect tissue plasminogen induced fibrinolysis. Surgery. 2015 [Epub ahead of print].

    Google Scholar 

  25. Moore HB, Moore EE, Gonzalez E, Chapman MP, Chin TL, Silliman CC, et al. Hyperfibrinolysis, physiologic fibrinolysis, and fibrinolysis shutdown: The spectrum of postinjury fibrinolysis and relevance to antifibrinolytic therapy. J Trauma Acute Care Surg. 2014;77:811–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nielsen VG, Lyerly 3rd VG, Gurley WQ. The effect of dilution on plasma coagulation kinetics determined by thrombelastography is dependent on antithrombin activity and mode of activation. Anesth Analg. 2004;99(6):1587–92. table of contents.

    Article  CAS  PubMed  Google Scholar 

  27. Ellis TC, Nielsen VG, Marques MB, Kirklin JK. Thrombelastographic measures of clot propagation: a comparison of alpha with the maximum rate of thrombus generation. Blood Coagul Fibrinolysis. 2007;18(1):45–8.

    Article  PubMed  Google Scholar 

  28. Quarterman C, Shaw M, Johnson I, Agarwal S. Intra- and inter-centre standardisation of thromboelastography (TEG(R)). Anaesthesia. 2014;69(8):883–90.

    Article  CAS  PubMed  Google Scholar 

  29. Kashuk JL, Moore EE, Sawyer M, Le T, Johnson J, Biffl WL, et al. Postinjury coagulopathy management: goal directed resuscitation via POC thrombelastography. Ann Surg. 2010;251(4):604–14.

    Article  PubMed  Google Scholar 

  30. Margolis J. The kaolin clotting time; a rapid one-stage method for diagnosis of coagulation defects. J Clin Pathol. 1958;11(5):406–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhu S, Diamond SL. Contact activation of blood coagulation on a defined kaolin/collagen surface in a microfluidic assay. Thromb Res. 2014;134(6):1335–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Altman R, Hemker HC. Contact activation in the extrinsic blood clotting system. Thromb Diath Haemorrh. 1967;18(3–4):525–31.

    CAS  PubMed  Google Scholar 

  33. Perez-Requejo JL. A standardized bioassay for platelet factor 3 released by kaolin. Br J Haematol. 1976;33(1):39–51.

    Article  CAS  PubMed  Google Scholar 

  34. Dietrich CP, Silva ME, Michelacci YM. Sequential degradation of heparin in Flavobacterium heparinum. Purification and properties of five enzymes involved in heparin degradation. J Biol Chem. 1973;248(18):6408–15.

    CAS  PubMed  Google Scholar 

  35. Tuman KJ, McCarthy RJ, Djuric M, Rizzo V, Ivankovich AD. Evaluation of coagulation during cardiopulmonary bypass with a heparinase-modified thromboelastographic assay. J Cardiothorac Vasc Anesth. 1994;8(2):144–9.

    Article  CAS  PubMed  Google Scholar 

  36. Moreland V, Teruya J, Jariwala P. Artifact hyperfibrinolysis in thromboelastography with the use of a heparinase cup. Arch Pathol Lab Med. 2010;134(12):1736.

    PubMed  Google Scholar 

  37. Durila M, Kalincik T, Cvachovec K, Filho R. Heparinase-modified thromboelastography can result in a fibrinolytic pattern. Anaesthesia. 2010;65(8):864–5.

    Article  CAS  PubMed  Google Scholar 

  38. Matzelle SJ, Gibbs NM, Weightman W, Sheminant M, Rowe R, Baker S. Systemic anticoagulant effect of low-dose subcutaneous unfractionated heparin as determined using thrombelastography. Anaesth Intensive Care. 2007;35(4):498–504.

    CAS  PubMed  Google Scholar 

  39. Coppell JA, Thalheimer U, Zambruni A, Triantos CK, Riddell AF, Burroughs AK, et al. The effects of unfractionated heparin, low molecular weight heparin and danaparoid on the thromboelastogram (TEG): an in-vitro comparison of standard and heparinase-modified TEGs with conventional coagulation assays. Blood Coagul Fibrinolysis. 2006;17(2):97–104.

    Article  CAS  PubMed  Google Scholar 

  40. Carroll RC, Craft RM, Chavez JJ, Snider CC, Kirby RK, Cohen E. Measurement of functional fibrinogen levels using the thrombelastograph. J Clin Anesth. 2008;20(3):186–90.

    Article  CAS  PubMed  Google Scholar 

  41. Yang Lu S, Tanaka KA, Abuelkasem E, Planinsic RM, Sakai T. Clinical applicability of rapid thrombelastography and functional fibrinogen thrombelastography to adult liver transplantation. Liver Transpl. 2014;20(9):1097–105.

    Article  PubMed  Google Scholar 

  42. Swallow RA, Agarwala RA, Dawkins KD, Curzen NP. Thromboelastography: potential bedside tool to assess the effects of antiplatelet therapy? Platelets. 2006;17(6):385–92.

    Article  CAS  PubMed  Google Scholar 

  43. Agarwal S, Coakley M, Reddy K, Riddell A, Mallett S. Quantifying the effect of antiplatelet therapy: a comparison of the platelet function analyzer (PFA-100) and modified thromboelastography (mTEG) with light transmission platelet aggregometry. Anesthesiology. 2006;105(4):676–83.

    Article  CAS  PubMed  Google Scholar 

  44. Kwak YL, Kim JC, Choi YS, Yoo KJ, Song Y, Shim JK. Clopidogrel responsiveness regardless of the discontinuation date predicts increased blood loss and transfusion requirement after off-pump coronary artery bypass graft surgery. J Am Coll Cardiol. 2010;56(24):1994–2002.

    Article  CAS  PubMed  Google Scholar 

  45. Wohlauer MV, Moore EE, Thomas S, Sauaia A, Evans E, Harr J, et al. Early platelet dysfunction: an unrecognized role in the acute coagulopathy of trauma. J Am Coll Surg. 2012;214(5):739–46.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kutcher ME, Redick BJ, McCreery RC, Crane IM, Greenberg MD, Cachola LM, et al. Characterization of platelet dysfunction after trauma. Journal Trauma Acute Care Surg. 2012;73(1):13–9.

    Article  CAS  Google Scholar 

  47. Castellino FJ, Chapman MP, Donahue DL, Thomas S, Moore EE, Wohlauer MV, et al. Traumatic brain injury causes platelet adenosine diphosphate and arachidonic acid receptor inhibition independent of hemorrhagic shock in humans and rats. J Trauma Acute Care Surg. 2014;76(5):1169–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Johansson PI, Stensballe J, Rasmussen LS, Ostrowski SR. High circulating adrenaline levels at admission predict increased mortality after trauma. J Trauma Acute Care Surg. 2012;72(2):428–36.

    CAS  PubMed  Google Scholar 

  49. Wang SC, Shieh JF, Chang KY, Chu YC, Liu CS, Loong CC, et al. Thromboelastography-guided transfusion decreases intraoperative blood transfusion during orthotopic liver transplantation: randomized clinical trial. Transplant Proc. 2010;42(7):2590–3.

    Article  PubMed  Google Scholar 

  50. Gorlinger K. Coagulation management during liver transplantation. Hamostaseologie. 2006;26(3 Suppl 1):S64–76.

    CAS  PubMed  Google Scholar 

  51. Kozek-Langenecker SA, Afshari A, Albaladejo P, Santullano CA, De Robertis E, Filipescu DC, et al. Management of severe perioperative bleeding: guidelines from the European Society of Anaesthesiology. Eur J Anaesthesiol. 2013;30(6):270–382.

    Article  PubMed  Google Scholar 

  52. Shore-Lesserson L, Manspeizer HE, DePerio M, Francis S, Vela-Cantos F, Ergin MA. Thromboelastography-guided transfusion algorithm reduces transfusions in complex cardiac surgery. Anesth Analg. 1999;88(2):312–9.

    CAS  PubMed  Google Scholar 

  53. Ak K, Isbir CS, Tetik S, Atalan N, Tekeli A, Aljodi M, et al. Thromboelastography-based transfusion algorithm reduces blood product use after elective CABG: a prospective randomized study. J Card Surg. 2009;24(4):404–10.

    Article  PubMed  Google Scholar 

  54. Romlin BS, Wahlander H, Berggren H, Synnergren M, Baghaei F, Nilsson K, et al. Intraoperative thromboelastometry is associated with reduced transfusion prevalence in pediatric cardiac surgery. Anesth Analg. 2011;112(1):30–6.

    Article  PubMed  Google Scholar 

  55. Westbrook AJ, Olsen J, Bailey M, Bates J, Scully M, Salamonsen RF. Protocol based on thromboelastograph (TEG) out-performs physician preference using laboratory coagulation tests to guide blood replacement during and after cardiac surgery: a pilot study. Heart Lung Circ. 2009;18(4):277–88.

    Article  PubMed  Google Scholar 

  56. Nuttall GA, Oliver WC, Santrach PJ, Bryant S, Dearani JA, Schaff HV, et al. Efficacy of a simple intraoperative transfusion algorithm for nonerythrocyte component utilization after cardiopulmonary bypass. Anesthesiology. 2001;94(5):773–81. discussion 5A–6A.

    Article  CAS  PubMed  Google Scholar 

  57. Bolliger D, Tanaka KA. Roles of thrombelastography and thromboelastometry for patient blood management in cardiac surgery. Transfus Med Rev. 2013;27(4):213–20.

    Article  PubMed  Google Scholar 

  58. Gurbel PA, Becker RC, Mann KG, Steinhubl SR, Michelson AD. Platelet function monitoring in patients with coronary artery disease. J Am Coll Cardiol. 2007;50(19):1822–34.

    Article  CAS  PubMed  Google Scholar 

  59. Tantry US, Bliden KP, Gurbel PA. Overestimation of platelet aspirin resistance detection by thrombelastograph platelet mapping and validation by conventional aggregometry using arachidonic acid stimulation. J Am Coll Cardiol. 2005;46(9):1705–9.

    Article  CAS  PubMed  Google Scholar 

  60. Tantry US, Gesheff M, Liu F, Bliden KP, Gurbel PA. Resistance to antiplatelet drugs: what progress has been made? Expert Opin Pharmacother. 2014;15(17):2553–64.

    Article  CAS  PubMed  Google Scholar 

  61. Tantry US, Mahla E, Gurbel PA. Aspirin resistance. Prog Cardiovasc Dis. 2009;52(2):141–52.

    Article  CAS  PubMed  Google Scholar 

  62. Gurbel PA, Bliden KP, DiChiara J, Newcomer J, Weng W, Neerchal NK, et al. Evaluation of dose-related effects of aspirin on platelet function: results from the Aspirin-Induced Platelet Effect (ASPECT) study. Circulation. 2007;115(25):3156–64.

    Article  CAS  PubMed  Google Scholar 

  63. Gurbel PA, Tantry US. Do platelet function testing and genotyping improve outcome in patients treated with antithrombotic agents?: platelet function testing and genotyping improve outcome in patients treated with antithrombotic agents. Circulation. 2012;125(10):1276–87. discussion 87.

    Article  PubMed  Google Scholar 

  64. Gurbel PA, Bliden KP, Hiatt BL, O'Connor CM. Clopidogrel for coronary stenting: response variability, drug resistance, and the effect of pretreatment platelet reactivity. Circulation. 2003;107(23):2908–13.

    Article  PubMed  Google Scholar 

  65. Bonello L, Tantry US, Marcucci R, Blindt R, Angiolillo DJ, Becker R, et al. Consensus and future directions on the definition of high on-treatment platelet reactivity to adenosine diphosphate. J Am Coll Cardiol. 2010;56(12):919–33.

    Article  CAS  PubMed  Google Scholar 

  66. Tantry US, Bonello L, Aradi D, Price MJ, Jeong YH, Angiolillo DJ, et al. Consensus and update on the definition of on-treatment platelet reactivity to adenosine diphosphate associated with ischemia and bleeding. J Am Coll Cardiol. 2013;62(24):2261–73.

    Article  CAS  PubMed  Google Scholar 

  67. Stone GW, Witzenbichler B, Weisz G, Rinaldi MJ, Neumann FJ, Metzger DC, et al. Platelet reactivity and clinical outcomes after coronary artery implantation of drug-eluting stents (ADAPT-DES): a prospective multicentre registry study. Lancet. 2013;382(9892):614–23.

    Article  PubMed  Google Scholar 

  68. Tantry US, Gurbel PA. Assessment of oral antithrombotic therapy by platelet function testing. Nat Rev Cardiol. 2011;8(10):572–9.

    Article  CAS  PubMed  Google Scholar 

  69. Bonello L, Mancini J, Pansieri M, Maillard L, Rossi P, Collet F, et al. Relationship between post-treatment platelet reactivity and ischemic and bleeding events at 1-year follow-up in patients receiving prasugrel. J Thromb Haemost. 2012;10(10):1999–2005.

    Article  CAS  PubMed  Google Scholar 

  70. Levine GN, Bates ER, Blankenship JC, Bailey SR, Bittl JA, Cercek B, et al. 2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. J Am Coll Cardiol. 2011;58(24):e44–122.

    Article  PubMed  Google Scholar 

  71. Ferraris VA, Saha SP, Oestreich JH, Song HK, Rosengart T, Reece TB, et al. 2012 update to the Society of Thoracic Surgeons guideline on use of antiplatelet drugs in patients having cardiac and noncardiac operations. Ann Thorac Surg. 2012;94(5):1761–81.

    Article  PubMed  Google Scholar 

  72. Owen Jr CA. Historical account of tests of hemostasis. Am J Clin Pathol. 1990;93(4 Suppl 1):S3–8.

    PubMed  Google Scholar 

  73. Eckman MH, Erban JK, Singh SK, Kao GS. Screening for the risk for bleeding or thrombosis. Ann Intern Med. 2003;138(3):W15–24.

    Article  PubMed  Google Scholar 

  74. Kaufmann CR, Dwyer KM, Crews JD, Dols SJ, Trask AL. Usefulness of thrombelastography in assessment of trauma patient coagulation. J Trauma. 1997;42(4):716–20. discussion 20–2.

    Article  CAS  PubMed  Google Scholar 

  75. Kashuk JL, Moore EE. The emerging role of rapid thromboelastography in trauma care. J Trauma. 2009;67(2):417–8.

    Article  PubMed  Google Scholar 

  76. Gonzalez E, Pieracci FM, Moore EE, Kashuk JL. Coagulation abnormalities in the trauma patient: the role of point-of-care thromboelastography. Semin Thromb Hemost. 2010;36(7):723–37.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Tapia NM, Chang A, Norman M, Welsh F, Scott B, Wall Jr MJ, et al. TEG-guided resuscitation is superior to standardized MTP resuscitation in massively transfused penetrating trauma patients. J Trauma Acute Care Surg. 2013;74(2):378–85. discussion 85–6.

    Article  CAS  PubMed  Google Scholar 

  78. Gonzalez EME, Moore H, Chapman MP, Chin TL, Ghasabayan A, Wohlauer MV, Barnett CC, Bensard DD, Biffl, WL, Burlew CC, Pieracci FM, Jurkovich GJ, Silliman CC, Sauaia A. Goal-directed hemostatic resuscitation of trauma induced coagulopathy: a randomized clinical trial of massive transfusion guided by thrombelastography compared to conventional coagulation assays. Ann Surg. 2015. [Epub ahead of print].

    Google Scholar 

  79. Chin TL, Moore EE, Moore HB, Gonzalez E, Chapman MP, Stringham JR, et al. A principal component analysis of postinjury viscoelastic assays: clotting factor depletion versus fibrinolysis. Surgery. 2014;156(3):570–7.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Kutcher ME, Ferguson AR, Cohen MJ. A principal component analysis of coagulation after trauma. J Trauma Acute Care Surg. 2013;74(5):1223–9. discussion 9–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Schochl H, Frietsch T, Pavelka M, Jambor C. Hyperfibrinolysis after major trauma: differential diagnosis of lysis patterns and prognostic value of thrombelastometry. J Trauma. 2009;67(1):125–31.

    Article  PubMed  Google Scholar 

  82. Kashuk JL, Moore EE, Sawyer M, Wohlauer M, Pezold M, Barnett C, et al. Primary fibrinolysis is integral in the pathogenesis of the acute coagulopathy of trauma. Ann Surg. 2010;252(3):434–42. discussion 43–4.

    PubMed  Google Scholar 

  83. Shakur H, Roberts I, Bautista R, Caballero J, Coats T, Dewan Y, et al. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet. 2010;376(9734):23–32.

    Article  CAS  PubMed  Google Scholar 

  84. Napolitano LM, Cohen MJ, Cotton BA, Schreiber MA, Moore EE. Tranexamic acid in trauma: how should we use it? J Trauma Acute Care Surg. 2013;74(6):1575–86.

    Article  PubMed  Google Scholar 

  85. Chapman MPME, Ghasabyan A, Harr JN, Chin TL, Ramos CR, Stringham JR, Silliman CC, Banerjee A. TEG fibrinolysis above 3% is the critical value for initiation of antifibrinolytic therapy. J Trauma Acute Care Surg. 2013;75(6):961–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Gonzalez M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gonzalez, E., Moore, E.E., Moore, H.B. (2016). Thrombelastography (TEG®). In: Gonzalez, E., Moore, H., Moore, E. (eds) Trauma Induced Coagulopathy. Springer, Cham. https://doi.org/10.1007/978-3-319-28308-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28308-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28306-7

  • Online ISBN: 978-3-319-28308-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics