Skip to main content

Disseminated Intravascular Coagulation

  • Chapter
  • First Online:

Abstract

Following trauma, local hemostasis and thrombosis act to induce physiological wound healing and innate immune responses, respectively, to impede the dissemination of damage-associated molecular patterns (DAMPs) into the systemic circulation. However, if overwhelmed by systemic inflammation caused by extensive tissue damage and tissue hypoperfusion, both of these processes cause pathologic changes, which manifest as systemic disseminated intravascular coagulation (DIC). High levels of DAMPs and inflammatory cytokines activate both extrinsic and intrinsic coagulation pathways. Impaired anticoagulation pathways induce insufficient control of coagulation, leading to systemic thrombin generation and ultimately consumption coagulopathy. Fibrin(ogen)olysis due to tissue-type plasminogen activator is highly active in the early phase of trauma due to endothelial hypoperfusion and hypoxia in DIC with the fibrinolytic phenotype, contributing to the oozing-type coagulopathic bleeding. Persistently high levels of plasminogen activator inhibitor-1 expressed in the endothelium change DIC with the fibrinolytic phenotype into the thrombotic phenotype, which is followed by microvascular thrombosis and then multiple organ dysfunction syndrome. Microvascular thrombosis has been observed in both types of DIC, but especially in the fibrinolytic phenotype, where it can be exacerbated by antifibrinolytic therapy. DIC should be diagnosed by DIC scoring systems, and key to managing DIC is treating the trauma itself and hemorrhagic shock. The mechanisms of hemostatic changes in trauma are multifactorial; the coexistence of hypothermia, acidosis, and dilution aggravate DIC and lead to so-called trauma induced coagulopathy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hardaway RM. Disseminated intravascular coagulation syndrome. Arch Surg. 1961;83:842–50.

    Article  CAS  PubMed  Google Scholar 

  2. Mackay DG. Trauma and disseminated intravascular coagulation. J Trauma. 1969;9:646–60.

    Article  Google Scholar 

  3. Flute PT. Coagulation and fibrinolysis after injury. J Clin Path (R Coll Pathol). 1970;23 Suppl 4:102–9.

    Article  Google Scholar 

  4. Damus PS, Salzman EW. Disseminated intravascular coagulation. Arch Surg. 1972;104:262–5.

    Article  CAS  PubMed  Google Scholar 

  5. Murray DJ, Olson J, Strauss R, Tinker JH. Coagulation changes during packed red blood cell replacement of major blood loss. Anesthesiology. 1988;69:839–45.

    Article  CAS  PubMed  Google Scholar 

  6. Bergentz SE, Leandoer L. Disseminated intravascular coagulation in shock. Ann Chir Gynecol Fenn. 1971;60:175–9.

    CAS  Google Scholar 

  7. Blombäck M, Eklund J, Hellgren M, Lagerkranser M, Swedenborg J. Blood coagulation and fibrinolytic factors as well as their inhibitors in trauma. Scand J Clin Lab Invest. 1985;45 Suppl 178:15–23.

    Google Scholar 

  8. Gando S, Tedo I, Kubota M. Posttrauma coagulation and fibrinolysis. Crit Care Med. 1992;20:594–600.

    Article  CAS  PubMed  Google Scholar 

  9. Engelman DT, Gabram SGA, Allen L, Ens GE, Jacobs LM. Hypercoagulability following multiple trauma. World J Surg. 1996;20:5–10.

    Article  CAS  PubMed  Google Scholar 

  10. Guay J, Ozier Y, de Moerloose P, Samana CM, Bélisle S, Hardy JF. Polytrauma and hemostatic abnormalities. Can J Anesth. 1998;45:683–91.

    Article  CAS  PubMed  Google Scholar 

  11. Ordog GJ, Wasserberger J, Balasubramanium S. Coagulation abnormalities in traumatic shock. Ann Emerg Med. 1985;14:650–5.

    Article  CAS  PubMed  Google Scholar 

  12. Hiippala S. Replacement of massive blood loss. Vox Sang. 1998;74 Suppl 2:399–407.

    Article  CAS  PubMed  Google Scholar 

  13. Ledgerwood AM, Lucas CE. A review of studies on the effects of hemorrhagic shock and resuscitation on the coagulation profile. J Trauma. 2003;54:S68–74.

    PubMed  Google Scholar 

  14. Gando S, Sawamura A, Hayakawa M. Trauma, shock, and disseminated intravascular coagulation. Ann Surg. 2011;254:10–9.

    Article  PubMed  Google Scholar 

  15. Taylor Jr FB, Toh CH, Hoots WK, Wada H, Levi M. Towards definition, clinical and laboratory criteria, and a scoring system for disseminated intravascular coagulation. Thromb Haemost. 2001;86:1327–30.

    CAS  PubMed  Google Scholar 

  16. Gando S, Wada H, Thachil J. Differentiating disseminated intravascular coagulation (DIC) with the fibrinolytic phenotype from coagulopathy of trauma and acute coagulopathy of trauma-shock (COT/ACOTS). J Thromb Haemost. 2013;11:826–35.

    Article  CAS  PubMed  Google Scholar 

  17. Bakhtiari K, Meijers JCM, de Jonge E, Levi M. Prospective validation of the International Society of Thrombosis and Haemostasis scoring system for disseminated intravascular coagulation. Crit Care Med. 2004;32:2416–21.

    Article  PubMed  Google Scholar 

  18. Gando S, Saitoh D, Ogura H, Mayumi T, Koseki K, Ikeda T, Ishikura H, Iba T, Ueyama M, Eguchi Y, Otomo Y, Okamoto K, Kushimoto S, Endo S, Shimazaki S. Japanese Association for Acute Medicine disseminated intravascular coagulation (JAAM DIC) study group: natural history of disseminated intravascular coagulation diagnosed based on the newly established diagnostic criteria for critically ill patients: results of a multicenter, prospective survey. Crit Care Med. 2008;6:145–50.

    Article  Google Scholar 

  19. Sawamura A, Hayakawa M, Gando S, Kubota N, Sugano M, Wada T, Katabami K. Disseminated intravascular coagulation with a fibrinolytic phenotype at an early phase of trauma predicts mortality. Thromb Res. 2009;124:608–13.

    Article  CAS  PubMed  Google Scholar 

  20. Sawamura A, Hayakawa M, Gando S, Kubota N, Sugano M, Wada T, Katabami K. Application of the Japanese Association for Acute Medicine disseminated intravascular coagulation diagnostic criteria for patients at an early phase of trauma. Thromb Res. 2009;124:706–10.

    Article  CAS  PubMed  Google Scholar 

  21. Oshiro A, Yanagida Y, Gando S, Henzan N, Takahashi I, Makise H. Hemostasis during the early stage of trauma: comparison with disseminated intravascular coagulation. Crit Care. 2014;18:R61.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Marder VJ, Feinstein DI, Colman RW, Levi M. Consumptive thrombohemorrhagic disorders. In: Colman RW, Marder VJ, Clowes AW, George JN, Goldhaber SZ, editors. Hemostasis and thrombosis. Basic principles and clinical practice. 5th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2006. p. 1571–600.

    Google Scholar 

  23. Asakura H. Classifying types of disseminated intravascular coagulation: clinical and animal models. J Intensive Care. 2014;2:20.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Levi M. Disseminated intravascular coagulation. Crit Care Med. 2007;35:2191–5.

    Article  CAS  PubMed  Google Scholar 

  25. Gando S, Otomo Y. Local hemostasis, immunothrombosis and systemic disseminated intravascular coagulation in trauma and traumatic shock. Crit Care. 2015;19:72.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gando S. Disseminated intravascular coagulation in trauma patients. Semin Thromb Haemost. 2001;27:585–91.

    Article  CAS  Google Scholar 

  27. Castellheim A, Brekke OL, Espevik T, Harboe M, Mollnes TE. Innate immune responses to danger signals in systemic inflammatory response syndrome and sepsis. Scand J Immunol. 2009;69:479–91.

    Article  CAS  PubMed  Google Scholar 

  28. Esmon CT. Inflammation and thrombosis. J Thromb Haemost. 2003;1:1343–8.

    Article  CAS  PubMed  Google Scholar 

  29. Esmon CT, Xu J, Lupu F. Innate immunity and coagulation. J Thromb Haemost. 2011;9 Suppl 1:182–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Engelmann B, Massberg S. Thrombosis and intravascular effector of innate immunity. Nat Rev Immunol. 2013;3:34–45.

    Google Scholar 

  31. Rivers RP, Hathaway WE, Weston W. The endotoxin-induced coagulant activity of human monocytes. Br J Haematol. 1975;30:311–6.

    Article  CAS  PubMed  Google Scholar 

  32. Müller I, Klocke A, Alex M, Kotzsch M, Luther T, Morgenstern E, Zieseniss S, Zahler S, Preissner K, Engelmann B. Intravascular tissue factor initiates coagulation via circulating microvesicles and platelets. FASEB J. 2003;17:476–8.

    PubMed  Google Scholar 

  33. McDonald B, Pittman K, Menezes GB, Hirota SA, Slaba I, Waterhouse CCM, Beck PL, Muruve DA, Kubes P. Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science. 2010;330:362–6.

    Article  CAS  PubMed  Google Scholar 

  34. Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD, Wrobleski SK, Wakerfield TW, Hartwig JH, Wanger DD. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A. 2010;107:15880–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fuchs TA, Bhandari AA, Wanger DD. Histones induce rapid and profound thrombocytopenia in mice. Blood. 2011;18:3708–14.

    Article  CAS  Google Scholar 

  36. Semeraro F, Ammollo CT, Morrissey JH, Dale GL, Friese P, Esmon NL, Esmon CT. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood. 2011;18:1952–61.

    Article  CAS  Google Scholar 

  37. Ammollo CT, Semeraro F, Xu J, Esmon NL, Esmon CT. Extracellular histones increase plasma thrombin generation by impairing thrombomodulin-dependent protein C activation. J Thromb Haemost. 2011;9:1795–803.

    Article  CAS  PubMed  Google Scholar 

  38. von Brühl ML, Stark K, Steinhart A, Chandraratne S, Konrad I, Lorenz M, Khandoga A, Tirniceriu A, Coletti R, Köllnberger M, Byrne RA, Latinen I, Walch A, Brill A, Pfeiler S, Manukyan D, Braun S, Lange P, Riegger J, Ware J, Eckart A, Haidari S, Rudelius M, Schulz C, Echtler K, Brinkmann V, Schwaiger M, Preissner KT, Wanger DD, Mackman N, Engelmann B, Massberg S. Monocytes, neutrophils, and platelet cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med. 2012;209:819–35.

    Article  CAS  Google Scholar 

  39. Markiewski MM, Nilsson B, Ekdahl KN, Mollnes TE, Lambris JD. Complement and coagulation: strangers or partners in crime? Trends Immunol. 2007;28:184–92.

    Article  CAS  PubMed  Google Scholar 

  40. Kannemeier C, Shibamiya A, Nakazawa F, Trusheim H, Ruppert C, Markart P, Song Y, Tzima E, Kennerknecht E, Niepmann M, von Bruehl ML, Sedding D, Massberg S, Günther A, Engelmann B, Preissner KT. Extracellular RNA constitutes a natural procoagulant cofactor in blood coagulation. Proc Natl Acad Sci U S A. 2007;104:6388–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rapaport SI, Rao VM. Initiation and regulation of tissue factor-dependent blood coagulation. Arterioscler Thromb. 1992;12:1111–21.

    Article  CAS  PubMed  Google Scholar 

  42. Massberg S, Grahl L, von Bruehl ML, Manukyan D, Pfeiler S, Goosmann C, Brinkmann V, Lorenz M, Bidzhekov K, Khandagale AB, Konrad I, Kennerknecht E, Reges K, Holdenrieder S, Braun S, Reinhardt C, Spannagl M, Preissner K, Engelmann B. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med. 2010;16:887–96.

    Article  CAS  PubMed  Google Scholar 

  43. Ishii H, Majerus PW. Thrombomodulin is present in human plasma and urine. J Clin Invest. 1985;76:2178–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ishii H, Uchiyama H, Kazama M. Soluble thrombomodulin antigen in conditioned medium is increased by damage of endothelial cells. Thromb Haemost. 1991;65:618–23.

    CAS  PubMed  Google Scholar 

  45. Hoffman M, Monroe III DM. A cell-based model of hemostasis. Thromb Haemost. 2001;85:958–65.

    CAS  PubMed  Google Scholar 

  46. Manson J, Thiemermann C, Brohi K. Trauma alarmins as activators of damage-induced inflammation. Br J Surg. 2012;99 Suppl 1:12–20.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, Brohi K, Itagaki K, Hauser CJ. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464:104–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yamanouchi S, Kudo D, Yamada M, Miyagawa N, Furukawa H, Kushimoto S. Plasma mitochondrial DNA levels in patients with trauma and severe sepsis: time course and the association with clinical status. J Crit Care. 2013;28:1027–31.

    Article  CAS  PubMed  Google Scholar 

  49. Simmons JD, Lee YL, Mulekar S, Kuck JL, Brevard SB, Gonzalez RP, Gillespie MN, Richards WO. Elevated levels of plasma mitochondrial DNA DAMPs are linked to clinical outcome in severely injured human subjects. Ann Surg. 2013;258:591–8.

    PubMed  Google Scholar 

  50. Cohen MJ, Brohi K, Calfee CS, Rhan P, Chesebro BB, Christiaans SC, Carles M, Howard M, Pittet JF. Early release of high mobility group box nuclear protein 1 after severe trauma in humans: role of injury severity and tissue hypoperfusion. Crit Care. 2009;13:R174.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kutcher ME, Xu J, Vilardi RF, Ho C, Esmon CT, Cohen MJ. Extracellular histone release in response to traumatic injury: implications for compensatory role of activated protein C. J Trauma Acute Care Surg. 2012;73:1389–94.

    Article  PubMed  CAS  Google Scholar 

  52. Abrams ST, Zhang N, Manson J, Liu T, Dart C, Baluwa F, Wang SS, Brohi K, Kipar A, Yu W, Wang G, Toh CH. Circulating histones are mediators of trauma-associated lung injury. Am J Crit Care Med. 2013;187:160–9.

    Article  CAS  Google Scholar 

  53. Ito T, Kawahara K, Nakamura T, Yamada S, Nakamura T, Abeyama K, Hashiguchi T, Maruyama I. High-mobility group box 1 protein promotes development of microvascular thrombosis in rats. J Thromb Haemost. 2007;5:109–16.

    Article  CAS  PubMed  Google Scholar 

  54. Xu J, Zhang X, Monestier M, Esmon NL, Esmon CT. Extracellular histones are mediators of death through TLR2 and TLR4 in mouse fatal liver injury. J Immunol. 2011;187:2626–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gando S, Nakanishi Y, Tedo I. Cytokines and plasminogen activator inhibitor-1 in posttrauma disseminated intravascular coagulation: relationship to multiple organ dysfunction. Crit Care Med. 1995;23:1835–42.

    Article  CAS  PubMed  Google Scholar 

  56. Jawa RS, Anillo S, Huntoon K, Baumann H, Kulayat M. Interleukin-6 in surgery, trauma, and critical care. Part II. Clinical implications. J Intensive Care Med. 2011;26:73–87.

    Article  PubMed  Google Scholar 

  57. van der Poll T, de Jonge E, Levi M. Regulatory role of cytokines in disseminated intravascular coagulation. Semin Thromb Hemost. 2001;27:639–51.

    Article  PubMed  Google Scholar 

  58. Esmon CT. Possible involvement of cytokines in diffuse intravascular coagulation and thrombosis. Clin Haematol. 1999;12:343–59.

    CAS  Google Scholar 

  59. Boehme MWJ, Deng Y, Raeth U, Bierhaus A, Ziegler R, Stremmel W, Nawroth PP. Release of thrombomodulin from endothelial cells by concerted action of TNF-alpha and neutrophils: in vivo and in vitro studies. Immunology. 1996;87:134–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Burnier L, Fontana P, Kwak BR, Angelillo-Scherrer A. Cell-derived microparticles in haemostasis and vascular medicine. Thromb Haemost. 2009;101:439–51.

    CAS  PubMed  Google Scholar 

  61. Owens III AP, Mackman N. Microparticles in hemostasis and thrombosis. Circ Res. 2011;108:1284–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ogura H, Kawasaki T, Tanaka H, Koh T, Tanaka R, Ozeki Y, Hosotsubo H, Kuwagata Y, Shimazu T, Sugimoto H. Activated platelets enhance microparticle formation and platelet-leucocyte interaction in severe trauma and sepsis. J Trauma. 2001;50:801–9.

    Article  CAS  PubMed  Google Scholar 

  63. Park MS, Owen BAL, Ballinger BA, Sarr MG, Schiller HJ, Zietlow SP, Jenkins DH, Ereth MH, Owen WG, Heit JA. Quantification of hypercoagulable state after blunt trauma: microparticle and thrombin generation are increased relative to injury severity, while standard markers are no. Surgery. 2012;151:831–6.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Allam R, Kumar SVR, Darisipudi MN, Anders HJ. Extracellular histones in tissue injury and inflammation. J Mol Med. 2014;92:465–72.

    Article  CAS  PubMed  Google Scholar 

  65. Gando S, Nanzaki S, Morimoto Y, Ishitani T, Kemmotsu O. Tissue factor pathway inhibitor does not correlate with tissue-factor induced disseminated intravascular coagulation and multiple organ dysfunction syndrome in trauma patients. Crit Care Med. 2001;29:262–6.

    Article  CAS  PubMed  Google Scholar 

  66. Petersen LC, Valentin S, Hedner U. Regulation of the extrinsic pathway system in health and disease: the role of factor VIIa and tissue factor pathway inhibitor. Thromb Res. 1995;79:1–47.

    Article  CAS  PubMed  Google Scholar 

  67. Hayakawa M, Sawamura A, Gando S, Kubota N, Uegaki S, Shimojima H, Sugano M, Ieko M. Disseminated intravascular coagulation at an early phase of trauma is associated with consumption coagulopathy and excessive fibrinolysis both by plasmin and neutrophil elastase. Surgery. 2011;149:221–30.

    Article  PubMed  Google Scholar 

  68. Gando S, Nakanishi Y, Kameue T, Nanzaki S. Soluble thrombomodulin increases in patients with disseminated intravascular coagulation and in those with multiple organ dysfunction syndrome after trauma: role of neutrophil elastase. J Trauma. 1995;39:660–4.

    Article  CAS  PubMed  Google Scholar 

  69. Ogawa S, Shreeniwas R, Butura C, Brett J, Stern DM. Modulation of endothelial function by hypoxia: perturbation of barrier and anticoagulant function, and induction of a novel factor X activator. Adv Exp Med Biol. 1990;281:303–12.

    Article  CAS  PubMed  Google Scholar 

  70. Ogawa S, Gerlach H, Esposito C, Pasagian-Macaulay A, Brett J, Stern D. Hypoxia modulates the barrier and coagulant function of cultured bovine endothelium. Increased monolayer permeability and induction of procoagulant properties. J Clin Invest. 1990;85:1090–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Öhlin AK, Larsson K, Hansson M. Soluble thrombomodulin activity and soluble thrombomodulin antigen in plasma. J Thromb Haemost. 2005;3:976–82.

    Article  PubMed  Google Scholar 

  72. Taylor FB, Chang A, Ferrell G, Mather T, Catlett R, Blick K, Esmon CT. C4b-binding protein exacerbates the host response to Escherichia coli. Blood. 1991;78:357–63.

    CAS  PubMed  Google Scholar 

  73. Liaw PCY, Ferrell G, Esmon CT. A monoclonal antibody against activated protein C allows rapid detection of activated protein C in plasma and reveals a calcium ion dependent epitope involved in factor Va inactivation. J Thromb Haemost. 2003;1:662–70.

    Article  CAS  PubMed  Google Scholar 

  74. Cohen MJ, Call M, Nelson M, Calfee CS, Esmon CT, Brohi K, Pittet JF. Critical role of activated protein C in early coagulopathy and later organ failure, infection and death in trauma patients. Ann Surg. 2012;255:379–85.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Butenas S, van’t Veer C, Mann KG. “Normal” thrombin generation. Blood. 1999;94:2169–78.

    CAS  PubMed  Google Scholar 

  76. Grottke O, Braunschweig T, Spronk HMH, Esch S, Rieg AD, van Oerle R, ten Cate H, Fitzner C, Tolba R, Rossaint R. Increasing concentrations of prothrombin complex concentrate induce disseminated intravascular coagulation in a pig model of coagulopathy with blunt liver injury. Blood. 2011;118:1943–51.

    Article  CAS  PubMed  Google Scholar 

  77. Miller RS, Weatherford DA, Stein D, Crane MM, Stein M. Antithrombin III and trauma patients: factors that determine low levels. J Trauma. 1994;37:442–5.

    Article  CAS  PubMed  Google Scholar 

  78. Liener UC, Brückner UB, Strecker W, Steinback G, Kinzl L, Gebhard F. Trauma severity-dependent changes in ATIII activity. Shock. 2001;15:344–7.

    Article  CAS  PubMed  Google Scholar 

  79. Owings JT, Bagley M, Gosselin R, Romac D, Disbrow E. Effect of critical injury on plasma antithrombin activity: low antithrombin levels are associated with thromboembolic complications. J Trauma. 1996;41:396–406.

    Article  CAS  PubMed  Google Scholar 

  80. Yanagida Y, Gando S, Hayakawa M, Sawamura A, Uegaki S, Kubota N, Homma T, Ono Y, Honma Y, Wada T, Jesmin S. Normal prothrombinase activity, increased systemic thrombin generation, and lower antithrombin levels in patients with disseminated intravascular coagulation at an early phase of trauma: comparison with acute coagulopathy of trauma-shock. Surgery. 2013;154:48–57.

    Article  PubMed  Google Scholar 

  81. Dunbar NM, Chandler WL. Thrombin generation in trauma patients. Transfusion. 2009;49:2652–60.

    Article  CAS  PubMed  Google Scholar 

  82. Chandler WL. Procoagulant activity in trauma patients. Am J Clin Pathol. 2010;134:90–6.

    Article  PubMed  Google Scholar 

  83. Gando S, Nanzaki S, Sasaki S, Kemmotsu O. Significant correlations between tissue factor and thrombin markers in trauma and septic patients with disseminated intravascular coagulation. Thromb Haemost. 1998;79:1111–5.

    CAS  PubMed  Google Scholar 

  84. Nakashima M, Uematsu T, Umemura K, Maruyama I, Tsuruta K. A novel recombinant human soluble thrombomodulin, ART-123, activates the protein C pathway in healthy male volunteers. J Clin Pharmacol. 1998;38:540–4.

    Article  CAS  PubMed  Google Scholar 

  85. Mohri M, Sata M, Gomi K, Maruyama Y, Osame M, Maruyama I. Abnormalities in the protein C anticoagulant pathway detected by a novel assay using human thrombomodulin. Lupus. 1997;6:590–6.

    Article  CAS  PubMed  Google Scholar 

  86. Giles AR, Nesheim ME, Mann KG. Studies of factors V and VIII:C in an animal model of disseminated intravascular coagulation. J Clin Invest. 1984;74:2219–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wyshock EG, Sufferendini AF, Parrillo JE, Colman RE. Cofactors V and VIII after endotoxin administration to human volunteers. Thromb Res. 1995;80:377–89.

    Article  CAS  PubMed  Google Scholar 

  88. Lowenstein CJ, Morrell CN, Yamakuchi M. Regulation of Weibel-Palade body exocytosis. Trends Cardivasc Med. 2005;15:302–8.

    Article  CAS  Google Scholar 

  89. Terraube V, O’Donnell JS, Jenkins PV. Factor VIII and von Willebrand factor interaction: biological, clinical and therapeutic importance. Haemophilia. 2010;16:3–13.

    Article  CAS  PubMed  Google Scholar 

  90. Clarke BJ, Sridhara S, Woskowska Z, Blajchman MA. Consumption of plasma factor VII in a rabbit model of non-overt disseminated intravascular coagulation. Thromb Res. 2003;108:329–34.

    Article  CAS  Google Scholar 

  91. Gando I, Makise H, Tedo I. Variation in wound healing factors in trauma patients. Jpn J Surg. 1990;91:17–22.

    CAS  Google Scholar 

  92. Risberg B. Fibrinolysis in trauma. Eur Surg Res. 1978;10:373–81.

    Article  CAS  PubMed  Google Scholar 

  93. Raza I, Davenport R, Rourke C, Platton S, Manson J, Spoors C, Khan S, De’ath HD, Allard S, Hart DP, Pasi KJ, Hunt BJ, Stanworth S, Maccallums PK, Brohi K. The incidence and magnitude of fibrinolytic activation in trauma patients. J Thromb Haemost. 2013;11:307–14.

    Article  CAS  PubMed  Google Scholar 

  94. Stump DC, Taylor FBJ, Nesheim ME, Giles AR, Dzik WH, Bovill EG. Pathologic fibrinolysis as a cause of clinical bleeding. Semin Thromb Hemost. 1990;16:260–73.

    Article  CAS  PubMed  Google Scholar 

  95. Levi M, ten Cate H, van der Poll T, van Daventer SJH. Pathogenesis of disseminated intravascular coagulation in sepsis. JAMA. 1993;270:975–9.

    Article  CAS  PubMed  Google Scholar 

  96. Gando S, Kameue T, Nanzaki S, Nakanishi Y. Massive fibrin formation with consecutive impairment of fibrinolysis in patients with out-of-hospital cardiac arrest. Thromb Hemost. 1997;77:278–82.

    CAS  Google Scholar 

  97. Hayakawa M, Gando S, Ieko M, Honma Y, Homma T, Yanagida Y, Kubota N, Uegaki S, Sawamura A, Asakura H. Massive amount of tissue factor induce fibrinogenolysis without tissue hypoperfusion in rats. Shock. 2013;39:514–9.

    Article  CAS  PubMed  Google Scholar 

  98. Murakami H, Gando S, Hayakawa M, Sawamura A, Sugano M, Kubota N, Uegaki S, Jesmin S. Disseminated intravascular coagulation (DIC) at an early phase of trauma continuously proceeds to DIC at a late phase of trauma. Clin Appl Thromb Hemost. 2012;18:364–9.

    Article  PubMed  Google Scholar 

  99. Gando S. Microvascular thrombosis and multiple organ dysfunction syndrome. Crit Care Med. 2010;38(Suppl):S35–42.

    Article  PubMed  Google Scholar 

  100. Bergentz SE, Leandoer L. Disseminated intravascular coagulation in shock. Ann Chir Gynecol Fenn. 1971;197(60):175–9.

    Google Scholar 

  101. Turpini R, Stefanini M. The nature and mechanism of the hemostatic breakdown in the course of experimental hemorrhagic shock. J Clin Invest. 1959;38:53–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Borgström S, Gelin LE, Zederfeldt B. The formation of vein thrombi following tissue injury. An experimental study in rabbits. Act Chir Scand. 1959;247(Suppl):1–36.

    Google Scholar 

  103. Allardyce B, Hamit HF, Matsumoto T, Moseley RV. Pulmonary vascular changes in hypovolemic shock: radiography of the pulmonary microcirculation and the possible role of platelet embolism in increasing vascular resistance. J Trauma. 1999;9:403–11.

    Article  Google Scholar 

  104. Lungqvist U, Bergentz SE, Lewis DH. The distribution of platelets, fibrin and erythrocytes in various organs following experimental trauma. Eur Surg Res. 1971;3:293–300.

    Article  Google Scholar 

  105. Leandoer L, Bergentz SE. Haemorrhagic shock in the dog. The formation of thromboemboli during antifibrinolytic therapy. Eur Surg Res. 1970;2:341–7.

    Article  CAS  PubMed  Google Scholar 

  106. Avikainen V, Eklund B. Disseminated intravascular coagulation after inhibition of fibrinolysis with tranexamic acid (AMCA) and proteinase inhibitor trasylol in experimental traumatic and haemorrhagic shock. Ann Chir Gynecol Fenn. 1974;63:226–34.

    CAS  Google Scholar 

  107. Hardaway RM. The significance of coagulative and thrombotic changes after haemorrhage and injury. J Clin Pathol (R Coll Pathol). 1970;4(Suppl):110–20.

    Article  CAS  Google Scholar 

  108. Nuytinck HKS, Offermans XJMW, Kubat K, Goris RJA. Whole-body inflammation in trauma patients. An autopsy study. Arch Surg. 1988;123:1519–24.

    Article  CAS  PubMed  Google Scholar 

  109. Kaufman HH, Hui KS, Mattson JC, Borit A, Childs TL, Hoots WK, Bernstein DP, Makekla ME, Wnger KA, Kahan BD, Gildenberg PL. Clinicopathological correlations of disseminated intravascular coagulation in patients with head injury. Neurosurgery. 1984;15:34–42.

    Article  CAS  PubMed  Google Scholar 

  110. Stein SC, Smith DH. Coagulopathy in traumatic brain injury. Neurocrit Care. 2004;1:479–88.

    Article  PubMed  Google Scholar 

  111. Gando S, Nanzaki S, Kemmotsu O. Coagulofibriolytic changes after isolated head injury are not different from those in trauma patients without head injury. J Trauma. 1999;46:1070–7.

    Article  CAS  PubMed  Google Scholar 

  112. Stein SC, Chen XH, Sinson GP, Smith DH. Intravascular coagulation: a major secondary insult in nonfatal traumatic brain injury. J Neurosurg. 2002;97:1373–7.

    Article  PubMed  Google Scholar 

  113. Stein SC, Graham DI, Chen XH, Smith DH. Association between intravascular microthrombosis and cerebral ischemia in traumatic brain injury. Neurosurgery. 2004;54:687–91.

    Article  PubMed  Google Scholar 

  114. Schwarzmaier SM, Kim SW, Trabold R, Plesnila N. Temporal profile of thrombogenesis in the cerebral microcirculation after traumatic brain injury in mice. J Neurotrauma. 2010;27:121–30.

    Article  PubMed  Google Scholar 

  115. Bergentz SE, Nilsson IM. Effect of trauma on coagulation and fibrinolysis in dogs. Acta Chir Scand. 1961;122:21–9.

    Google Scholar 

  116. Riseborough E, Herndon JH. Alterations in pulmonary function, coagulation and fat metabolism in patients with fractures of the lower limbs. Clin Orthopedic Relat Res. 1976;115:248–67.

    Google Scholar 

  117. Shier MR, Wilson RF. Fat embolism syndrome: traumatic coagulopathy with respiratory distress. Surg Annu. 1980;12:139–68.

    CAS  PubMed  Google Scholar 

  118. Saldeen T. The importance of intravascular coagulation and inhibition of the fibrinolytic system in experimental fat embolism. J Trauma. 1970;10:287–98.

    Article  CAS  PubMed  Google Scholar 

  119. Saldeen T. Fat embolism and signs of intravascular coagulation in a posttraumatic autopsy material. J Trauma. 1970;10:273–86.

    Article  CAS  PubMed  Google Scholar 

  120. Kao SJ, Yeh DYW, Chen HI. Clinical and pathological features of fat embolism with acute respiratory distress syndrome. Clin Sci. 2007;113:279–85.

    Article  CAS  PubMed  Google Scholar 

  121. Serck-Hanssen A. Posttraumatic fat embolism. Red cell aggregation, hyaline microthrombi and platelet aggregates in 5 fatal cases. Acta Path Microbiol Scand. 1965;65:31–45.

    Google Scholar 

  122. Arai F, Kita T, Nakai T, Hori T, Maki N, Kakiuchi M, Sasaki S. Histopathologic features of fat embolism in fulminant fat embolism syndrome. Anesthesiology. 2007;107:509–11.

    Article  PubMed  Google Scholar 

  123. Noble RL, Collip JB. A quantitative method for the production of experimental traumatic shock without hemorrhage in unanesthetized animals. Quart J Exper Physiol. 1942;31:187–99.

    Article  Google Scholar 

  124. Tanabe K, Yoshitake J. A study on coagulation and fibrinolytic dynamics in experimental traumatic shock. Masui (Jpn J Anesthesiol). 1981;30:826–31.

    CAS  Google Scholar 

  125. Kugimiya H. A pathophysiological and biochemical study on the experimental traumatic shock in rats. A relationship between coagulation/fibrinolytic system and DIC. Masui (Jpn J Anesthesiol). 1982;31:75–84.

    CAS  Google Scholar 

  126. Armstead VE, Opetanova IL, Minchenko AG, Lefer AM. Tissue factor expression in vital organs during murine traumatic shock. Anesthesiology. 1999;91:1844–52.

    Article  CAS  PubMed  Google Scholar 

  127. Hayakawa M, Gando S, Ono Y, Wada T, Yanagida Y, Sawamura A, Ieko M. Noble-Collip drum induces disseminated intravascular coagulation but not acute coagulopathy of trauma-shock. Shock. 2015;43:261–7.

    Article  PubMed  Google Scholar 

  128. Parr MJ, Bouillon B, Brohi K, Dutton RP, Hauser CJ, Hess JR, Holcomb JB, Kluger Y, Mackway-Jones K, Rizoli SB, Yukioka T, Hoyt DB. Traumatic coagulopathy: where are the good experimental models? J Trauma. 2008;65:766–71.

    Article  PubMed  Google Scholar 

  129. Wada H, Thachil J, Di Nisio M, Mathew P, Kurosawa S, Gando S, Kim HK, Nielsen JD, Dempfle CE, Levi M, Toh CH. Guidance for diagnosis and treatment of disseminated intravascular coagulation from harmonization of the recommendations from three guidelines. J Thromb Haemost. 2013;11:761–7.

    Article  CAS  Google Scholar 

  130. Gando S, Wada H, Kim HK, Kurosawa S, Nielsen JD, Thachil J, Toh CH. Comparison of disseminated intravascular coagulation in trauma with coagulopathy of trauma/acute coagulopathy of trauma-shock. J Thromb Haemost. 2012;10:2593–5.

    Article  CAS  PubMed  Google Scholar 

  131. Jansen JO, Thomas R, Loudon MA, Brooks A. Damage control resuscitation for patients with major trauma. BMJ. 2009;338:b1778.

    Article  PubMed  Google Scholar 

  132. Spahn DR, Bouillon B, Cerny V, Coats TJ, Duranteau J, Fernández-Mondéjar E, Filipescu D, Hunt BJ, Komadina R, Nardi G, Neugebauer E, Ozier Y, Riddez L, Schultz A, Vincent JL, Rossaint R. Management of bleeding and coagulopathy following major trauma: an updated European guideline. Crit Care. 2013;17:R76.

    Article  PubMed  PubMed Central  Google Scholar 

  133. CRASH-2 collaborators. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant hemorrhage (CRASH-2): a randomized, placebo-controlled trial. Lancet. 2010;376:23–32.

    Article  CAS  Google Scholar 

  134. CRASH-2 collaborators, The importance of early treatment with tranexamic acid in bleeding trauma patients: an exploratory analysis of the CRASH-2 randomized controlled trial. Lancet. 2011;377:1096–101.

    Article  CAS  Google Scholar 

  135. Pusateri A, Weiskopf R, Bebarta V, Butler F, Cestero RF, Chaudy IH, Deal V, Doriac WC, Gerhardt RT, Given MB, Hansen DR, Hoots WK, Klein HG, MacDonald VW, Mattox KL, Michael RA, Mogford J, Montcalm-Smith EA, Niemeyer DM, Prusaczyk WK, Rappold JF, Rassmussen T, Rentas F, Ross J, Thompson C, Tucker LD, US DoD Hemorrhage and Resuscitation Research and Development Committee. Tranexamic acid and trauma: current status and knowledge gaps with recommended research priorities. Shock. 2013;39:121–6.

    Article  PubMed  Google Scholar 

  136. Naplitano LM, Cohen MJ, Cotton RA, Schreiber MA, Moore EE. Tranexamic acid in trauma: how should we use it? J Trauma Acute Care Surg. 2013;74:1575–86.

    Article  Google Scholar 

  137. Roberts I, Prieto-Merino D. Applying results from clinical trials: tranexamic acid in trauma patients. J Intensive Care. 2014;2:56.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Brohi K, Singh J, Heron M, Coats T. Acute traumatic coagulopathy. J Trauma. 2003;54:1127–30.

    Article  PubMed  Google Scholar 

  139. Hess J, Brohi K, Dutton RP, Hauser CJ, Holcomb JB, Mackway-Jones K, Parr MJ, Rizoli SB, Yukioka T, Hoyt DB, Bouillon B. The coagulopathy of trauma: a review of mechanisms. J Trauma. 2008;65:748–54.

    Article  CAS  PubMed  Google Scholar 

  140. Gando S. Hemostasis and thrombosis in trauma patients. Semin Thromb Haemost. 2015;41:26–34.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Gando M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gando, S. (2016). Disseminated Intravascular Coagulation. In: Gonzalez, E., Moore, H., Moore, E. (eds) Trauma Induced Coagulopathy. Springer, Cham. https://doi.org/10.1007/978-3-319-28308-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28308-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28306-7

  • Online ISBN: 978-3-319-28308-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics