Skip to main content

The Complement System and Coagulation

  • Chapter
  • First Online:
Trauma Induced Coagulopathy

Abstract

Severe trauma, commonly followed by substantial blood loss and sepsis, represents a major cause of mortality and morbidity in emergency and intensive care units. Massive activation of the hemostatic and complement systems is a common denominator of trauma and sepsis. While local activation of these proteolytic cascades contributes to the host defense, their uncontrolled systemic activation has major tissue-damaging effects that lead to multiple organ failure and death. This chapter reviews the molecular pathways of complement activation and the regulatory mechanisms controlling the formation of the terminal cytolytic complex C5b-9, and the signaling events triggered by the complement-derived anaphylatoxins. The cross talk between complement and coagulation and the contribution of these pathways to the integrated host response to vascular injury and sepsis are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Magor BG, Magor KE. Evolution of effectors and receptors of innate immunity. Dev Comp Immunol. 2001;25(8-9):651–82.

    Article  CAS  PubMed  Google Scholar 

  2. Rast JP, Smith LC, Loza-Coll M, Hibino T, Litman GW. Genomic insights into the immune system of the sea urchin. Science. 2006;314(5801):952–6. doi:10.1126/science.1134301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ricklin D, Hajishengallis G, Yang K, Lambris JD. Complement: a key system for immune surveillance and homeostasis. Nat Immunol. 2010;11(9):785–97. doi:10.1038/ni.1923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Carroll MC. The role of complement and complement receptors in induction and regulation of immunity. Annu Rev Immunol. 1998;16:545–68. doi:10.1146/annurev.immunol.16.1.545.

    Article  CAS  PubMed  Google Scholar 

  5. Holers VM. Complement and its receptors: new insights into human disease. Annu Rev Immunol. 2014;32:433–59. doi:10.1146/annurev-immunol-032713-120154.

    Article  CAS  PubMed  Google Scholar 

  6. Botto M, Kirschfink M, Macor P, Pickering MC, Wurzner R, Tedesco F. Complement in human diseases: lessons from complement deficiencies. Mol Immunol. 2009;46(14):2774–83. doi:10.1016/j.molimm.2009.04.029.

    Article  CAS  PubMed  Google Scholar 

  7. Underhill DM, Ozinsky A. Phagocytosis of microbes: complexity in action. Annu Rev Immunol. 2002;20:825–52. doi:10.1146/annurev.immunol.20.103001.114744.

    Article  CAS  PubMed  Google Scholar 

  8. Roos A, Xu W, Castellano G, Nauta AJ, Garred P, Daha MR, et al. Mini-review: a pivotal role for innate immunity in the clearance of apoptotic cells. Eur J Immunol. 2004;34(4):921–9. doi:10.1002/eji.200424904.

    Article  CAS  PubMed  Google Scholar 

  9. Holers VM. Complement receptors and the shaping of the natural antibody repertoire. Springer Semin Immunopathol. 2005;26(4):405–23. doi:10.1007/s00281-004-0186-y.

    Article  CAS  PubMed  Google Scholar 

  10. Zabel MK, Kirsch WM. From development to dysfunction: microglia and the complement cascade in CNS homeostasis. Ageing Res Rev. 2013;12(3):749–56. doi:10.1016/j.arr.2013.02.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stephan AH, Barres BA, Stevens B. The complement system: an unexpected role in synaptic pruning during development and disease. Annu Rev Neurosci. 2012;35:369–89. doi:10.1146/annurev-neuro-061010-113810.

    Article  CAS  PubMed  Google Scholar 

  12. Chen M, Daha MR, Kallenberg CG. The complement system in systemic autoimmune disease. J Autoimmun. 2010;34(3):J276–86. doi:10.1016/j.jaut.2009.11.014.

    Article  CAS  PubMed  Google Scholar 

  13. Lupu F, Keshari RS, Lambris JD, Mark Coggeshall K. Crosstalk between the coagulation and complement systems in sepsis. Thromb Res. 2014;133 Suppl 1:S28–31. doi:10.1016/j.thromres.2014.03.014.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Java A, Atkinson J, Salmon J. Defective complement inhibitory function predisposes to renal disease. Annu Rev Med. 2013;64:307–24. doi:10.1146/annurev-med-072211-110606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Muller-Eberhard HJ. Molecular organization and function of the complement system. Annu Rev Biochem. 1988;57:321–47. doi:10.1146/annurev.bi.57.070188.001541.

    Article  CAS  PubMed  Google Scholar 

  16. Gaboriaud C, Thielens NM, Gregory LA, Rossi V, Fontecilla-Camps JC, Arlaud GJ. Structure and activation of the C1 complex of complement: unraveling the puzzle. Trends Immunol. 2004;25(7):368–73. doi:10.1016/j.it.2004.04.008.

    Article  CAS  PubMed  Google Scholar 

  17. Garlanda C, Bottazzi B, Bastone A, Mantovani A. Pentraxins at the crossroads between innate immunity, inflammation, matrix deposition, and female fertility. Annu Rev Immunol. 2005;23:337–66. doi:10.1146/annurev.immunol.23.021704.115756.

    Article  CAS  PubMed  Google Scholar 

  18. Ip WK, Takahashi K, Ezekowitz RA, Stuart LM. Mannose-binding lectin and innate immunity. Immunol Rev. 2009;230(1):9–21. doi:10.1111/j.1600-065X.2009.00789.x.

    Article  PubMed  Google Scholar 

  19. Runza VL, Schwaeble W, Mannel DN. Ficolins: novel pattern recognition molecules of the innate immune response. Immunobiology. 2008;213(3-4):297–306. doi:10.1016/j.imbio.2007.10.009.

    Article  CAS  PubMed  Google Scholar 

  20. Selman L, Hansen S. Structure and function of collectin liver 1 (CL-L1) and collectin 11 (CL-11, CL-K1). Immunobiology. 2012;217(9):851–63. doi:10.1016/j.imbio.2011.12.008.

    Article  CAS  PubMed  Google Scholar 

  21. Dahl MR, Thiel S, Matsushita M, Fujita T, Willis AC, Christensen T, et al. MASP-3 and its association with distinct complexes of the mannan-binding lectin complement activation pathway. Immunity. 2001;15(1):127–35.

    Article  CAS  PubMed  Google Scholar 

  22. Heja D, Kocsis A, Dobo J, Szilagyi K, Szasz R, Zavodszky P, et al. Revised mechanism of complement lectin-pathway activation revealing the role of serine protease MASP-1 as the exclusive activator of MASP-2. Proc Natl Acad Sci U S A. 2012;109(26):10498–503. doi:10.1073/pnas.1202588109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Thiel S, Vorup-Jensen T, Stover CM, Schwaeble W, Laursen SB, Poulsen K, et al. A second serine protease associated with mannan-binding lectin that activates complement. Nature. 1997;386(6624):506–10. doi:10.1038/386506a0.

    Article  CAS  PubMed  Google Scholar 

  24. Dobo J, Schroeder V, Jenny L, Cervenak L, Zavodszky P, Gal P. Multiple roles of complement MASP-1 at the interface of innate immune response and coagulation. Mol Immunol. 2014;61(2):69–78. doi:10.1016/j.molimm.2014.05.013.

    Article  CAS  PubMed  Google Scholar 

  25. Lachmann PJ. The amplification loop of the complement pathways. Adv Immunol. 2009;104:115–49. doi:10.1016/S0065-2776(08)04004-2.

    Article  CAS  PubMed  Google Scholar 

  26. Pangburn MK, Muller-Eberhard HJ. Initiation of the alternative complement pathway due to spontaneous hydrolysis of the thioester of C3. Ann N Y Acad Sci. 1983;421:291–8.

    Article  CAS  PubMed  Google Scholar 

  27. Nilsson B, Nilsson Ekdahl K. The tick-over theory revisited: is C3 a contact-activated protein? Immunobiology. 2012;217(11):1106–10. doi:10.1016/j.imbio.2012.07.008.

    Article  CAS  PubMed  Google Scholar 

  28. Huber-Lang M, Sarma JV, Zetoune FS, Rittirsch D, Neff TA, McGuire SR, et al. Generation of C5a in the absence of C3: a new complement activation pathway. Nat Med. 2006;12(6):682–7. doi:10.1038/nm1419.

    Article  CAS  PubMed  Google Scholar 

  29. Amara U, Flierl MA, Rittirsch D, Klos A, Chen H, Acker B, et al. Molecular intercommunication between the complement and coagulation systems. J Immunol. 2010;185(9):5628–36. doi:10.4049/jimmunol.0903678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Harboe M, Mollnes TE. The alternative complement pathway revisited. J Cell Mol Med. 2008;12(4):1074–84. doi:10.1111/j.1582-4934.2008.00350.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Klos A, Wende E, Wareham KJ, Monk PN. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXVII. Complement peptide C5a, C4a, and C3a receptors. Pharmacol Rev. 2013;65(1):500–43.

    Article  PubMed  CAS  Google Scholar 

  32. Sahu A, Lambris JD. Structure and biology of complement protein C3, a connecting link between innate and acquired immunity. Immunol Rev. 2001;180:35–48.

    Article  CAS  PubMed  Google Scholar 

  33. Woodruff TM, Nandakumar KS, Tedesco F. Inhibiting the C5-C5a receptor axis. Mol Immunol. 2011;48(14):1631–42. doi:10.1016/j.molimm.2011.04.014.

    Article  CAS  PubMed  Google Scholar 

  34. Gancz D, Fishelson Z. Cancer resistance to complement-dependent cytotoxicity (CDC): problem-oriented research and development. Mol Immunol. 2009;46(14):2794–800. doi:10.1016/j.molimm.2009.05.009.

    Article  CAS  PubMed  Google Scholar 

  35. Kim DD, Song WC. Membrane complement regulatory proteins. Clin Immunol. 2006;118(2-3):127–36. doi:10.1016/j.clim.2005.10.014.

    Article  CAS  PubMed  Google Scholar 

  36. Niculescu F, Rus H. Mechanisms of signal transduction activated by sublytic assembly of terminal complement complexes on nucleated cells. Immunol Res. 2001;24(2):191–9.

    Article  CAS  PubMed  Google Scholar 

  37. Kemper C, Pangburn MK, Fishelson Z. Complement nomenclature 2014. Mol Immunol. 2014;61(2):56–8. doi:10.1016/j.molimm.2014.07.004.

    Article  CAS  PubMed  Google Scholar 

  38. Klickstein LB, Barbashov SF, Liu T, Jack RM, Nicholson-Weller A. Complement receptor type 1 (CR1, CD35) is a receptor for C1q. Immunity. 1997;7(3):345–55.

    Article  CAS  PubMed  Google Scholar 

  39. Krych-Goldberg M, Atkinson JP. Structure-function relationships of complement receptor type 1. Immunol Rev. 2001;180:112–22.

    Article  CAS  PubMed  Google Scholar 

  40. Krych-Goldberg M, Hauhart RE, Subramanian VB, Yurcisin 2nd BM, Crimmins DL, Hourcade DE, et al. Decay accelerating activity of complement receptor type 1 (CD35). Two active sites are required for dissociating C5 convertases. J Biol Chem. 1999;274(44):31160–8.

    Article  CAS  PubMed  Google Scholar 

  41. Roozendaal R, Carroll MC. Complement receptors CD21 and CD35 in humoral immunity. Immunol Rev. 2007;219:157–66. doi:10.1111/j.1600-065X.2007.00556.x.

    Article  CAS  PubMed  Google Scholar 

  42. Donius LR, Handy JM, Weis JJ, Weis JH. Optimal germinal center B cell activation and T-dependent antibody responses require expression of the mouse complement receptor Cr1. J Immunol. 2013;191(1):434–47. doi:10.4049/jimmunol.1203176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Carroll MC. The role of complement in B cell activation and tolerance. Adv Immunol. 2000;74:61–88.

    Article  CAS  PubMed  Google Scholar 

  44. Thiel J, Kimmig L, Salzer U, Grudzien M, Lebrecht D, Hagena T, et al. Genetic CD21 deficiency is associated with hypogammaglobulinemia. J Allergy Clin Immunol. 2012;129(3):801–10.e6. doi:10.1016/j.jaci.2011.09.027.

    Article  CAS  PubMed  Google Scholar 

  45. Wagner C, Hansch GM, Stegmaier S, Denefleh B, Hug F, Schoels M. The complement receptor 3, CR3 (CD11b/CD18), on T lymphocytes: activation-dependent up-regulation and regulatory function. Eur J Immunol. 2001;31(4):1173–80. doi:10.1002/1521-4141(200104)31:4<1173::AID-IMMU1173>3.0.CO;2-9.

    Article  CAS  PubMed  Google Scholar 

  46. Helmy KY, Katschke Jr KJ, Gorgani NN, Kljavin NM, Elliott JM, Diehl L, et al. CRIg: a macrophage complement receptor required for phagocytosis of circulating pathogens. Cell. 2006;124(5):915–27. doi:10.1016/j.cell.2005.12.039.

    Article  CAS  PubMed  Google Scholar 

  47. Wiesmann C, Katschke KJ, Yin J, Helmy KY, Steffek M, Fairbrother WJ, et al. Structure of C3b in complex with CRIg gives insights into regulation of complement activation. Nature. 2006;444(7116):217–20. doi:10.1038/nature05263.

    Article  CAS  PubMed  Google Scholar 

  48. Lienenklaus S, Ames RS, Tornetta MA, Sarau HM, Foley JJ, Crass T, et al. Human anaphylatoxin C4a is a potent agonist of the guinea pig but not the human C3a receptor. J Immunol. 1998;161(5):2089–93.

    CAS  PubMed  Google Scholar 

  49. Guo RF, Ward PA. Role of C5a in inflammatory responses. Annu Rev Immunol. 2005;23:821–52. doi:10.1146/annurev.immunol.23.021704.115835.

    Article  CAS  PubMed  Google Scholar 

  50. Klos A, Tenner AJ, Johswich KO, Ager RR, Reis ES, Kohl J. The role of the anaphylatoxins in health and disease. Mol Immunol. 2009;46(14):2753–66. doi:10.1016/j.molimm.2009.04.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Guo RF, Huber-Lang M, Wang X, Sarma V, Padgaonkar VA, Craig RA, et al. Protective effects of anti-C5a in sepsis-induced thymocyte apoptosis. J Clin Invest. 2000;106(10):1271–80. doi:10.1172/JCI10793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Laudes IJ, Chu JC, Sikranth S, Huber-Lang M, Guo RF, Riedemann N, et al. Anti-c5a ameliorates coagulation/fibrinolytic protein changes in a rat model of sepsis. Am J Pathol. 2002;160(5):1867–75. doi:10.1016/S0002-9440(10)61133-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Guo RF, Riedemann NC, Ward PA. Role of C5a-C5aR interaction in sepsis. Shock. 2004;21(1):1–7. doi:10.1097/01.shk.0000105502.75189.5e.

    Article  PubMed  CAS  Google Scholar 

  54. Gal P, Dobo J, Beinrohr L, Pal G, Zavodszky P. Inhibition of the serine proteases of the complement system. Adv Exp Med Biol. 2013;735:23–40.

    Article  CAS  PubMed  Google Scholar 

  55. Krem MM, Di Cera E. Evolution of enzyme cascades from embryonic development to blood coagulation. Trends Biochem Sci. 2002;27(2):67–74.

    Article  CAS  PubMed  Google Scholar 

  56. Iwanaga S. The molecular basis of innate immunity in the horseshoe crab. Curr Opin Immunol. 2002;14(1):87–95.

    Article  CAS  PubMed  Google Scholar 

  57. Iwanaga S, Lee BL. Recent advances in the innate immunity of invertebrate animals. J Biochem Mol Biol. 2005;38(2):128–50.

    Article  CAS  PubMed  Google Scholar 

  58. Renne T, Schmaier AH, Nickel KF, Blomback M, Maas C. In vivo roles of factor XII. Blood. 2012;120(22):4296–303. doi:10.1182/blood-2012-07-292094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Muller F, Mutch NJ, Schenk WA, Smith SA, Esterl L, Spronk HM, et al. Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo. Cell. 2009;139(6):1143–56. doi:10.1016/j.cell.2009.11.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rapala-Kozik M, Bras G, Chruscicka B, Karkowska-Kuleta J, Sroka A, Herwald H, et al. Adsorption of components of the plasma kinin-forming system on the surface of Porphyromonas gingivalis involves gingipains as the major docking platforms. Infect Immun. 2011;79(2):797–805. doi:10.1128/IAI.00966-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mackman N. The many faces of tissue factor. J Thromb Haemost. 2009;7 Suppl 1:136–9. doi:10.1111/j.1538-7836.2009.03368.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Delvaeye M, Conway EM. Coagulation and innate immune responses: can we view them separately? Blood. 2009;114(12):2367–74. doi:10.1182/blood-2009-05-199208.

    Article  CAS  PubMed  Google Scholar 

  63. Markiewski MM, Nilsson B, Ekdahl KN, Mollnes TE, Lambris JD. Complement and coagulation: strangers or partners in crime? Trends Immunol. 2007;28(4):184–92. doi:10.1016/j.it.2007.02.006.

    Article  CAS  PubMed  Google Scholar 

  64. Ivanciu L, Krishnaswamy S, Camire RM. New insights into the spatiotemporal localization of prothrombinase in vivo. Blood. 2014;124(11):1705–14. doi:10.1182/blood-2014-03-565010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. High KA. Antithrombin III, protein C, and protein S. Naturally occurring anticoagulant proteins. Arch Pathol Lab Med. 1988;112(1):28–36.

    CAS  PubMed  Google Scholar 

  66. Rau JC, Beaulieu LM, Huntington JA, Church FC. Serpins in thrombosis, hemostasis and fibrinolysis. J Thromb Haemost. 2007;5 Suppl 1:102–15. doi:10.1111/j.1538-7836.2007.02516.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Parej K, Dobo J, Zavodszky P, Gal P. The control of the complement lectin pathway activation revisited: both C1-inhibitor and antithrombin are likely physiological inhibitors, while alpha2-macroglobulin is not. Mol Immunol. 2013;54(3-4):415–22. doi:10.1016/j.molimm.2013.01.009.

    Article  CAS  PubMed  Google Scholar 

  68. Hess K, Ajjan R, Phoenix F, Dobo J, Gal P, Schroeder V. Effects of MASP-1 of the complement system on activation of coagulation factors and plasma clot formation. PLoS One. 2012;7(4):e35690. doi:10.1371/journal.pone.0035690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Krarup A, Gulla KC, Gal P, Hajela K, Sim RB. The action of MBL-associated serine protease 1 (MASP1) on factor XIII and fibrinogen. Biochim Biophys Acta. 2008;1784(9):1294–300. doi:10.1016/j.bbapap.2008.03.020.

    Article  CAS  PubMed  Google Scholar 

  70. Levy JH, Greenberg C. Biology of Factor XIII and clinical manifestations of Factor XIII deficiency. Transfusion. 2013;53(5):1120–31. doi:10.1111/j.1537-2995.2012.03865.x.

    Article  CAS  PubMed  Google Scholar 

  71. Hajela K, Kojima M, Ambrus G, Wong KH, Moffatt BE, Ferluga J, et al. The biological functions of MBL-associated serine proteases (MASPs). Immunobiology. 2002;205(4-5):467–75.

    Article  CAS  PubMed  Google Scholar 

  72. Megyeri M, Mako V, Beinrohr L, Doleschall Z, Prohaszka Z, Cervenak L, et al. Complement protease MASP-1 activates human endothelial cells: PAR4 activation is a link between complement and endothelial function. J Immunol. 2009;183(5):3409–16. doi:10.4049/jimmunol.0900879.

    Article  CAS  PubMed  Google Scholar 

  73. Jani PK, Kajdacsi E, Megyeri M, Dobo J, Doleschall Z, Futosi K, et al. MASP-1 induces a unique cytokine pattern in endothelial cells: a novel link between complement system and neutrophil granulocytes. PLoS One. 2014;9(1):e87104. doi:10.1371/journal.pone.0087104.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Silasi-Mansat R, Zhu H, Popescu NI, Peer G, Sfyroera G, Magotti P, et al. Complement inhibition decreases the procoagulant response and confers organ protection in a baboon model of Escherichia coli sepsis. Blood. 2010;116(6):1002–10. doi:10.1182/blood-2010-02-269746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Landsem A, Nielsen EW, Fure H, Christiansen D, Ludviksen JK, Lambris JD, et al. C1-inhibitor efficiently inhibits Escherichia coli-induced tissue factor mRNA up-regulation, monocyte tissue factor expression and coagulation activation in human whole blood. Clin Exp Immunol. 2013;173(2):217–29. doi:10.1111/cei.12098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ritis K, Doumas M, Mastellos D, Micheli A, Giaglis S, Magotti P, et al. A novel C5a receptor-tissue factor cross-talk in neutrophils links innate immunity to coagulation pathways. J Immunol. 2006;177(7):4794–802.

    Article  CAS  PubMed  Google Scholar 

  77. Peerschke EI, Yin W, Ghebrehiwet B. Complement activation on platelets: implications for vascular inflammation and thrombosis. Mol Immunol. 2010;47(13):2170–5. doi:10.1016/j.molimm.2010.05.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Schwertz H, Tolley ND, Foulks JM, Denis MM, Risenmay BW, Buerke M, et al. Signal-dependent splicing of tissue factor pre-mRNA modulates the thrombogenicity of human platelets. J Exp Med. 2006;203(11):2433–40. doi:10.1084/jem.20061302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ikeda K, Nagasawa K, Horiuchi T, Tsuru T, Nishizaka H, Niho Y. C5a induces tissue factor activity on endothelial cells. Thromb Haemost. 1997;77(2):394–8.

    CAS  PubMed  Google Scholar 

  80. Zhang M, Takahashi K, Alicot EM, Vorup-Jensen T, Kessler B, Thiel S, et al. Activation of the lectin pathway by natural IgM in a model of ischemia/reperfusion injury. J Immunol. 2006;177(7):4727–34.

    Article  CAS  PubMed  Google Scholar 

  81. Steffel J, Luscher TF, Tanner FC. Tissue factor in cardiovascular diseases: molecular mechanisms and clinical implications. Circulation. 2006;113(5):722–31. doi:10.1161/CIRCULATIONAHA.105.567297.

    Article  CAS  PubMed  Google Scholar 

  82. Langer F, Spath B, Fischer C, Stolz M, Ayuk FA, Kroger N, et al. Rapid activation of monocyte tissue factor by antithymocyte globulin is dependent on complement and protein disulfide isomerase. Blood. 2013;121(12):2324–35. doi:10.1182/blood-2012-10-460493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Langer F, Ruf W. Synergies of phosphatidylserine and protein disulfide isomerase in tissue factor activation. Thromb Haemost. 2014;111(4):590–7. doi:10.1160/TH13-09-0802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cines DB, Pollak ES, Buck CA, Loscalzo J, Zimmerman GA, McEver RP, et al. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood. 1998;91(10):3527–61.

    CAS  PubMed  Google Scholar 

  85. Crawley JT, Lane DA. The haemostatic role of tissue factor pathway inhibitor. Arterioscler Thromb Vasc Biol. 2008;28(2):233–42. doi:10.1161/ATVBAHA.107.141606.

    Article  CAS  PubMed  Google Scholar 

  86. Van de Wouwer M, Collen D, Conway EM. Thrombomodulin-protein C-EPCR system: integrated to regulate coagulation and inflammation. Arterioscler Thromb Vasc Biol. 2004;24(8):1374–83. doi:10.1161/01.ATV.0000134298.25489.92.

    Article  PubMed  CAS  Google Scholar 

  87. Van de Wouwer M, Plaisance S, De Vriese A, Waelkens E, Collen D, Persson J, et al. The lectin-like domain of thrombomodulin interferes with complement activation and protects against arthritis. J Thromb Haemost. 2006;4(8):1813–24. doi:10.1111/j.1538-7836.2006.02033.x.

    Article  PubMed  Google Scholar 

  88. Bossi F, Bulla R, Tedesco F. Endothelial cells are a target of both complement and kinin system. Int Immunopharmacol. 2008;8(2):143–7. doi:10.1016/j.intimp.2007.08.006.

    Article  CAS  PubMed  Google Scholar 

  89. Ihrcke NS, Platt JL. Shedding of heparan sulfate proteoglycan by stimulated endothelial cells: evidence for proteolysis of cell-surface molecules. J Cell Physiol. 1996;168(3):625–37. doi:10.1002/(SICI)1097-4652(199609)168:3<625::AID-JCP15>3.0.CO;2-Y.

    Article  CAS  PubMed  Google Scholar 

  90. Gotte M. Syndecans in inflammation. FASEB J. 2003;17(6):575–91. doi:10.1096/fj.02-0739rev.

    Article  CAS  PubMed  Google Scholar 

  91. Foreman KE, Vaporciyan AA, Bonish BK, Jones ML, Johnson KJ, Glovsky MM, et al. C5a-induced expression of P-selectin in endothelial cells. J Clin Invest. 1994;94(3):1147–55. doi:10.1172/JCI117430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Monsinjon T, Gasque P, Chan P, Ischenko A, Brady JJ, Fontaine MC. Regulation by complement C3a and C5a anaphylatoxins of cytokine production in human umbilical vein endothelial cells. FASEB J. 2003;17(9):1003–14. doi:10.1096/fj.02-0737com.

    Article  CAS  PubMed  Google Scholar 

  93. Albrecht EA, Chinnaiyan AM, Varambally S, Kumar-Sinha C, Barrette TR, Sarma JV, et al. C5a-induced gene expression in human umbilical vein endothelial cells. Am J Pathol. 2004;164(3):849–59. doi:10.1016/S0002-9440(10)63173-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tedesco F, Pausa M, Nardon E, Introna M, Mantovani A, Dobrina A. The cytolytically inactive terminal complement complex activates endothelial cells to express adhesion molecules and tissue factor procoagulant activity. J Exp Med. 1997;185(9):1619–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hamilton KK, Hattori R, Esmon CT, Sims PJ. Complement proteins C5b-9 induce vesiculation of the endothelial plasma membrane and expose catalytic surface for assembly of the prothrombinase enzyme complex. J Biol Chem. 1990;265(7):3809–14.

    CAS  PubMed  Google Scholar 

  96. Vieira-de-Abreu A, Campbell RA, Weyrich AS, Zimmerman GA. Platelets: versatile effector cells in hemostasis, inflammation, and the immune continuum. Semin Immunopathol. 2012;34(1):5–30. doi:10.1007/s00281-011-0286-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wagner DD, Burger PC. Platelets in inflammation and thrombosis. Arterioscler Thromb Vasc Biol. 2003;23(12):2131–7. doi:10.1161/01.ATV.0000095974.95122.EC.

    Article  CAS  PubMed  Google Scholar 

  98. Weyrich AS, Zimmerman GA. Platelets: signaling cells in the immune continuum. Trends Immunol. 2004;25(9):489–95. doi:10.1016/j.it.2004.07.003.

    Article  CAS  PubMed  Google Scholar 

  99. Italiano Jr JE, Mairuhu AT, Flaumenhaft R. Clinical relevance of microparticles from platelets and megakaryocytes. Curr Opin Hematol. 2010;17(6):578–84. doi:10.1097/MOH.0b013e32833e77ee.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Andonegui G, Kerfoot SM, McNagny K, Ebbert KV, Patel KD, Kubes P. Platelets express functional Toll-like receptor-4. Blood. 2005;106(7):2417–23. doi:10.1182/blood-2005-03-0916.

    Article  CAS  PubMed  Google Scholar 

  101. Blair P, Rex S, Vitseva O, Beaulieu L, Tanriverdi K, Chakrabarti S, et al. Stimulation of Toll-like receptor 2 in human platelets induces a thromboinflammatory response through activation of phosphoinositide 3-kinase. Circ Res. 2009;104(3):346–54. doi:10.1161/CIRCRESAHA.108.185785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wiedmer T, Ando B, Sims PJ. Complement C5b-9-stimulated platelet secretion is associated with a Ca2+-initiated activation of cellular protein kinases. J Biol Chem. 1987;262(28):13674–81.

    CAS  PubMed  Google Scholar 

  103. Wiedmer T, Esmon CT, Sims PJ. Complement proteins C5b-9 stimulate procoagulant activity through platelet prothrombinase. Blood. 1986;68(4):875–80.

    CAS  PubMed  Google Scholar 

  104. Del Conde I, Cruz MA, Zhang H, Lopez JA, Afshar-Kharghan V. Platelet activation leads to activation and propagation of the complement system. J Exp Med. 2005;201(6):871–9. doi:10.1084/jem.20041497.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Peerschke EI, Yin W, Grigg SE, Ghebrehiwet B. Blood platelets activate the classical pathway of human complement. J Thromb Haemost. 2006;4(9):2035–42. doi:10.1111/j.1538-7836.2006.02065.x.

    Article  CAS  PubMed  Google Scholar 

  106. Hamad OA, Ekdahl KN, Nilsson PH, Andersson J, Magotti P, Lambris JD, et al. Complement activation triggered by chondroitin sulfate released by thrombin receptor-activated platelets. J Thromb Haemost. 2008;6(8):1413–21. doi:10.1111/j.1538-7836.2008.03034.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Maynard DM, Heijnen HF, Horne MK, White JG, Gahl WA. Proteomic analysis of platelet alpha-granules using mass spectrometry. J Thromb Haemost. 2007;5(9):1945–55. doi:10.1111/j.1538-7836.2007.02690.x.

    Article  CAS  PubMed  Google Scholar 

  108. Sun D, Popescu NI, Raisley B, Keshari RS, Dale GL, Lupu F, et al. Bacillus anthracis peptidoglycan activates human platelets through FcgammaRII and complement. Blood. 2013;122(4):571–9. doi:10.1182/blood-2013-02-486613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ley K. The role of selectins in inflammation and disease. Trends Mol Med. 2003;9(6):263–8.

    Article  CAS  PubMed  Google Scholar 

  110. Celi A, Pellegrini G, Lorenzet R, De Blasi A, Ready N, Furie BC, et al. P-selectin induces the expression of tissue factor on monocytes. Proc Natl Acad Sci U S A. 1994;91(19):8767–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. del Conde I, Nabi F, Tonda R, Thiagarajan P, Lopez JA, Kleiman NS. Effect of P-selectin on phosphatidylserine exposure and surface-dependent thrombin generation on monocytes. Arterioscler Thromb Vasc Biol. 2005;25(5):1065–70. doi:10.1161/01.ATV.0000159094.17235.9b.

    Article  PubMed  CAS  Google Scholar 

  112. Del Conde I, Shrimpton CN, Thiagarajan P, Lopez JA. Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood. 2005;106(5):1604–11. doi:10.1182/blood-2004-03-1095.

    Article  PubMed  CAS  Google Scholar 

  113. Ghebrehiwet B, Randazzo BP, Dunn JT, Silverberg M, Kaplan AP. Mechanisms of activation of the classical pathway of complement by Hageman factor fragment. J Clin Invest. 1983;71(5):1450–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Clark A, Weymann A, Hartman E, Turmelle Y, Carroll M, Thurman JM, et al. Evidence for non-traditional activation of complement factor C3 during murine liver regeneration. Mol Immunol. 2008;45(11):3125–32. doi:10.1016/j.molimm.2008.03.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Delvaeye M, Noris M, De Vriese A, Esmon CT, Esmon NL, Ferrell G, et al. Thrombomodulin mutations in atypical hemolytic-uremic syndrome. N Engl J Med. 2009;361(4):345–57. doi:10.1056/NEJMoa0810739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Spijkers PP, Denis CV, Blom AM, Lenting PJ. Cellular uptake of C4b-binding protein is mediated by heparan sulfate proteoglycans and CD91/LDL receptor-related protein. Eur J Immunol. 2008;38(3):809–17. doi:10.1002/eji.200737722.

    Article  CAS  PubMed  Google Scholar 

  117. Campbell WD, Lazoura E, Okada N, Okada H. Inactivation of C3a and C5a octapeptides by carboxypeptidase R and carboxypeptidase N. Microbiol Immunol. 2002;46(2):131–4.

    Article  CAS  PubMed  Google Scholar 

  118. Bhole D, Stahl GL. Molecular basis for complement component 6 (C6) deficiency in rats and mice. Immunobiology. 2004;209(7):559–68. doi:10.1016/j.imbio.2004.08.001.

    Article  CAS  PubMed  Google Scholar 

  119. Skattum L, van Deuren M, van der Poll T, Truedsson L. Complement deficiency states and associated infections. Mol Immunol. 2011;48(14):1643–55. doi:10.1016/j.molimm.2011.05.001.

    Article  CAS  PubMed  Google Scholar 

  120. Pettigrew HD, Teuber SS, Gershwin ME. Clinical significance of complement deficiencies. Ann N Y Acad Sci. 2009;1173:108–23. doi:10.1111/j.1749-6632.2009.04633.x.

    Article  CAS  PubMed  Google Scholar 

  121. Taylor Jr FB, Kinasewitz GT, Lupu F. Pathophysiology, staging and therapy of severe sepsis in baboon models. J Cell Mol Med. 2012;16(4):672–82. doi:10.1111/j.1582-4934.2011.01454.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Cugno M, Zanichelli A, Foieni F, Caccia S, Cicardi M. C1-inhibitor deficiency and angioedema: molecular mechanisms and clinical progress. Trends Mol Med. 2009;15(2):69–78. doi:10.1016/j.molmed.2008.12.001.

    Article  CAS  PubMed  Google Scholar 

  123. Pickering MC, Cook HT. Translational mini-review series on complement factor H: renal diseases associated with complement factor H: novel insights from humans and animals. Clin Exp Immunol. 2008;151(2):210–30. doi:10.1111/j.1365-2249.2007.03574.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Rodriguez de Cordoba S, Esparza-Gordillo J, Goicoechea de Jorge E, Lopez-Trascasa M, Sanchez-Corral P. The human complement factor H: functional roles, genetic variations and disease associations. Mol Immunol. 2004;41(4):355–67. doi:10.1016/j.molimm.2004.02.005.

    Article  CAS  PubMed  Google Scholar 

  125. Rother RP, Rollins SA, Mojcik CF, Brodsky RA, Bell L. Discovery and development of the complement inhibitor eculizumab for the treatment of paroxysmal nocturnal hemoglobinuria. Nat Biotechnol. 2007;25(11):1256–64. doi:10.1038/nbt1344.

    Article  CAS  PubMed  Google Scholar 

  126. Nurnberger J, Philipp T, Witzke O, Opazo Saez A, Vester U, Baba HA, et al. Eculizumab for atypical hemolytic-uremic syndrome. N Engl J Med. 2009;360(5):542–4. doi:10.1056/NEJMc0808527.

    Article  PubMed  Google Scholar 

  127. Bomback AS, Smith RJ, Barile GR, Zhang Y, Heher EC, Herlitz L, et al. Eculizumab for dense deposit disease and C3 glomerulonephritis. Clin J Am Soc Nephrol. 2012;7(5):748–56. doi:10.2215/CJN.12901211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Risitano AM. Paroxysmal nocturnal hemoglobinuria and other complement-mediated hematological disorders. Immunobiology. 2012;217(11):1080–7. doi:10.1016/j.imbio.2012.07.014.

    Article  CAS  PubMed  Google Scholar 

  129. Parker CJ. Paroxysmal nocturnal hemoglobinuria. Curr Opin Hematol. 2012;19(3):141–8. doi:10.1097/MOH.0b013e328351c348.

    Article  CAS  PubMed  Google Scholar 

  130. Hillmen P, Muus P, Duhrsen U, Risitano AM, Schubert J, Luzzatto L, et al. Effect of the complement inhibitor eculizumab on thromboembolism in patients with paroxysmal nocturnal hemoglobinuria. Blood. 2007;110(12):4123–8. doi:10.1182/blood-2007-06-095646.

    Article  CAS  PubMed  Google Scholar 

  131. Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med. 2003;348(2):138–50. doi:10.1056/NEJMra021333.

    Article  CAS  PubMed  Google Scholar 

  132. Rice TW, Bernard GR. Therapeutic intervention and targets for sepsis. Annu Rev Med. 2005;56:225–48. doi:10.1146/annurev.med.56.082103.104356.

    Article  CAS  PubMed  Google Scholar 

  133. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001;29(7):1303–10.

    Article  CAS  PubMed  Google Scholar 

  134. Keshari RS, Silasi-Mansat R, Zhu H, Popescu NI, Peer G, Chaaban H, et al. Acute lung injury and fibrosis in a baboon model of Escherichia coli sepsis. Am J Respir Cell Mol Biol. 2014;50(2):439–50. doi:10.1165/rcmb.2013-0219OC.

    PubMed  PubMed Central  Google Scholar 

  135. Gotz T, Gunther A, Witte OW, Brunkhorst FM, Seidel G, Hamzei F. Long-term sequelae of severe sepsis: cognitive impairment and structural brain alterations - an MRI study (LossCog MRI). BMC Neurol. 2014;14:145. doi:10.1186/1471-2377-14-145.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Winters BD, Eberlein M, Leung J, Needham DM, Pronovost PJ, Sevransky JE. Long-term mortality and quality of life in sepsis: a systematic review. Crit Care Med. 2010;38(5):1276–83. doi:10.1097/CCM.0b013e3181d8cc1d.

    Article  PubMed  Google Scholar 

  137. Taylor Jr FB, Hack E, Lupu F. Observations on complement activity in the two-stage inflammatory/hemostatic response in the baboon and human models of E. coli sepsis and endotoxemia. Adv Exp Med Biol. 2006;586:203–16. doi:10.1007/0-387-34134-X_14.

    Article  CAS  PubMed  Google Scholar 

  138. Schuerholz T, Leuwer M, Cobas-Meyer M, Vangerow B, Kube F, Kirschfink M, et al. Terminal complement complex in septic shock with capillary leakage: marker of complement activation? Eur J Anaesthesiol. 2005;22(7):541–7.

    Article  CAS  PubMed  Google Scholar 

  139. Yan C, Gao H. New insights for C5a and C5a receptors in sepsis. Front Immunol. 2012;3:368. doi:10.3389/fimmu.2012.00368.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Nakae H, Endo S, Inada K, Yoshida M. Chronological changes in the complement system in sepsis. Surg Today. 1996;26(4):225–9.

    Article  CAS  PubMed  Google Scholar 

  141. Pawlinski R, Mackman N. Cellular sources of tissue factor in endotoxemia and sepsis. Thromb Res. 2010;125 Suppl 1:S70–3. doi:10.1016/j.thromres.2010.01.042.

    Article  CAS  PubMed  Google Scholar 

  142. Nickel KF, Renne T. Crosstalk of the plasma contact system with bacteria. Thromb Res. 2012;130 Suppl 1:S78–83. doi:10.1016/j.thromres.2012.08.284.

    Article  PubMed  Google Scholar 

  143. Esmon CT. The interactions between inflammation and coagulation. Br J Haematol. 2005;131(4):417–30. doi:10.1111/j.1365-2141.2005.05753.x.

    Article  CAS  PubMed  Google Scholar 

  144. Lupu C, Westmuckett AD, Peer G, Ivanciu L, Zhu H, Taylor Jr FB, et al. Tissue factor-dependent coagulation is preferentially up-regulated within arterial branching areas in a baboon model of Escherichia coli sepsis. Am J Pathol. 2005;167(4):1161–72. doi:10.1016/S0002-9440(10)61204-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Pawlinski R, Wang JG, Owens 3rd AP, Williams J, Antoniak S, Tencati M, et al. Hematopoietic and nonhematopoietic cell tissue factor activates the coagulation cascade in endotoxemic mice. Blood. 2010;116(5):806–14. doi:10.1182/blood-2009-12-259267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Tang H, Ivanciu L, Popescu N, Peer G, Hack E, Lupu C, et al. Sepsis-induced coagulation in the baboon lung is associated with decreased tissue factor pathway inhibitor. Am J Pathol. 2007;171(3):1066–77. doi:10.2353/ajpath.2007.070104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Zhu H, Tang Y, Ivanciu L, Centola M, Lupu C, Taylor Jr FB, et al. Temporal dynamics of gene expression in the lung in a baboon model of E. coli sepsis. BMC Genomics. 2007;8:58. doi:10.1186/1471-2164-8-58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Sims PJ, Faioni EM, Wiedmer T, Shattil SJ. Complement proteins C5b-9 cause release of membrane vesicles from the platelet surface that are enriched in the membrane receptor for coagulation factor Va and express prothrombinase activity. J Biol Chem. 1988;263(34):18205–12.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florea Lupu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Popescu, N.I., Lupu, F. (2016). The Complement System and Coagulation. In: Gonzalez, E., Moore, H., Moore, E. (eds) Trauma Induced Coagulopathy. Springer, Cham. https://doi.org/10.1007/978-3-319-28308-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28308-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28306-7

  • Online ISBN: 978-3-319-28308-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics