Skip to main content

DAMPs: Damage-Associated Molecular Pattern Molecules in Hemostasis

  • Chapter
  • First Online:
  • 1847 Accesses

Abstract

This chapter explores the role of some of the key DAMPs in modulating the coagulation and fibrinolytic cascades, how they activate platelets, and modulate platelet functions. Potential mechanisms differentiating disseminated intravascular coagulation from thrombosis are discussed with an emphasis on the generation of procoagulant membrane remnants that do or do not have adhesion molecules associated with them as a likely candidate for differential responses.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ammollo CT, Semeraro F, Xu J, Esmon NL, Esmon CT. Extracellular histones increase plasma thrombin generation by impairing TM-dependent protein C activation. J Thromb Haemost. 2011;9(9):1795–803.

    Article  CAS  PubMed  Google Scholar 

  2. Xu J, Zhang X, Pelayo R, Monestier M, Ammollo CT, Semeraro F, et al. Extracellular histones are major mediators of death in sepsis. Nat Med. 2009;15(11):1318–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Xu J, Zhang X, Monestier M, Esmon NL, Esmon CT. Extracellular histones are mediators of death through TLR2 and TLR4 in mouse fatal liver injury. J Immunol. 2011;187(5):2626–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fuchs TA, Bhandari AA, Wagner DD. Histones induce rapid and profound thrombocytopenia in mice. Blood. 2011;118(13):3708–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Huang H, Chen H-W, Evankovich J, Yan W, Rosborough BR, Nace GW, et al. Histones activate the NLRP3 inflammasome in Kupffer cells during sterile inflammatory liver injury. J Immunol. 2013;191:2665–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang H, Bloom O, Zhang M, Vishnubhakat JM, Ombrellino M, Che J, et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science. 1999;285(5425):248–51.

    Article  CAS  PubMed  Google Scholar 

  7. Yu M, Wang H, Ding A, Golenbock DT, Latz E, Czura CJ, et al. HMGB1 signals through toll-like receptor (TLR) 4 and TLR2. Shock. 2006;26:174–9.

    Article  CAS  PubMed  Google Scholar 

  8. Cohen MJ, Brohi K, Calfee CS, Rahn P, Chesebro BB, Christiaans SC, et al. Early release of high mobility group box nuclear protein 1 after severe trauma in humans: role of injury severity and tissue hypoperfusion. Crit Care. 2009;13:R174.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tracey KJ. The inflammatory reflex. Nature. 2002;420(6917):853–9.

    Article  CAS  PubMed  Google Scholar 

  10. Müller F, Mutch NJ, Schenk WA, Smith SA, Esterl L, Spronk HM, et al. Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo. Cell. 2009;139(6):1143–56.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Semeraro F, Ammollo CT, Morrissey JH, Dale GL, Friese P, Esmon NL, et al. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and 4. Blood. 2011;118(7):1952–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Choi SH, Smith SA, Morrissey JH. Polyphosphate is a cofactor for the activation of factor XI by thrombin. Blood. 2011;118(26):6730–1.

    Article  Google Scholar 

  13. Morrissey JH, Choi SH, Smith SA. Polyphosphate: an ancient molecule that links platelets, coagulation and inflammation. Blood. 2012;119:5972–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Smith SA, Morrissey JH. Polyphosphate as a general procoagulant agent. J Thromb Haemost. 2008;6:1750–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lo YMD, Rainer TH, Chan LYS, Hjelm NM, Cocks RA. Plasma DNA as a prognostic marker in trauma patients. Clin Chem. 2000;46:319–23.

    CAS  PubMed  Google Scholar 

  16. Huang H, Evankovich J, Yan W, Nace G, Zhang L, Ross M, et al. Endogenous histones function as alarmins in sterile inflammatory liver injury through toll-like receptor 9. Hepatology. 2011;54(3):999–1008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kannemeier C, Shibamiya A, Nakazawa F, Trusheim H, Ruppert C, Markart P, et al. Extracellular RNA constitutes a natural procoagulant cofactor in blood coagulation. Proc Natl Acad Sci U S A. 2007;104(15):6388–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fulan-Freguia C, Marchese P, Gruber A, Ruggeri ZM, Ruf W. P2X7 receptor signaling contributes to tissue factor-dependent thrombosis in mice. J Clin Invest. 2011;121(7):2932–44.

    Article  Google Scholar 

  19. Harker LA, Hanson SR, Kelly AB. Antithrombotic strategies targeting thrombin activities, thrombin receptors and thrombin generation. Thromb Haemost. 1997;78:7365–741.

    Google Scholar 

  20. Giles AR, Mann KG, Nesheim ME. A combination of factor Xa and phosphatidylcholine-phosphatidylserine vesicles bypasses factor VIII in vivo. Br J Haematol. 1988;69:491–7.

    Article  CAS  PubMed  Google Scholar 

  21. Taylor Jr FB, He SE, Chang ACK, Box J, Ferrell G, Lee D, et al. Infusion of phospholipid vesicles amplifies the local thrombotic response to TNF and anti-protein C into a consumptive response. Thromb Haemost. 1996;75:578–84.

    CAS  PubMed  Google Scholar 

  22. Semeraro F, Ammollo CT, Esmon NL, Esmon CT. Histones induce phosphatidylserine exposure and a procoagulant phenotype in human red blood cells. J Thromb Haemost. 2014;12:1697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brohi K, Cohen MJ, Ganter MT, Schultz MJ, Levi M, Mackersie RC, et al. Acute coagulopathy of trauma: hypoperfusion induces systemic anticoagulation and hyperfibrinolysis. J Trauma. 2008;64:1211–7.

    Article  PubMed  Google Scholar 

  24. Massberg S, Grahl L, von Bruehl M-L, Manukyan D, Pfeiler S, Gossmann C, et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med. 2010;16:887–97.

    Article  CAS  PubMed  Google Scholar 

  25. Chen GY, Nunez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol. 2010;10:826–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lin L, Hu K. Tissue plasminogen activator and inflammation: from phenotype to signaling mechanisms. Am J Clin Exp Immunol. 2014;3(1):30–6.

    PubMed  PubMed Central  Google Scholar 

  27. Siao CJ, Fernandez SR, Tsirka SE. Cell type-specific roles for tissue plasminogen activator released by neurons or microglia after excitotoxic injury. J Neurosci. 2003;23(8):3234–42.

    CAS  PubMed  Google Scholar 

  28. Kutcher ME, Xu J, Vilardi RF, Ho C, Esmon CT, Cohen MJ. Extracellular histone release in response to traumatic injury: implications for a compensatory role of activated protein C. J Trauma Acute Care Surg. 2012;73(6):1389–94.

    Article  PubMed  Google Scholar 

  29. Beutler B. Toll-like receptors: how they work and what they do. Curr Opin Hematol. 2002;9:2–10.

    Article  PubMed  Google Scholar 

  30. Kim HS, Han MS, Chung KW, Kim S, Kim E, Kim MJ, et al. Toll-like receptor 2 senses b-cell death and contributes to the initiation of autoimmune diabetes. Immunity. 2007;27:321–33.

    Article  CAS  PubMed  Google Scholar 

  31. Levi M, Van Der PT, Buller HR. Bidirectional relation between inflammation and coagulation. Circulation. 2004;109(22):2698–704.

    Article  PubMed  Google Scholar 

  32. Opal SM, Esmon CT. Bench-to-bedside review: functional relationships between coagulation and the innate immune response and their respective roles in the pathogenesis of sepsis. Crit Care. 2003;7:23–38.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ruf W, Dorfleutner A, Riewald M. Specificity of coagulation factor signaling. J Thromb Haemost. 2003;1(7):1495–503.

    Article  CAS  PubMed  Google Scholar 

  34. Welty-Wolf KE, Carraway MS, Ortel TL, Piantadosi CA. Coagulation and inflammation in acute lung injury. Thromb Haemost. 2002;88:17–25.

    CAS  PubMed  Google Scholar 

  35. Abeyama K, Stern DM, Ito Y, Kawahara K, Yoshimoto Y, Tanaka M, et al. The N-terminal domain of thrombomodulin sequesters high mobility group-B1 protein, A novel anti-inflammatory mechanism. J Clin Invest. 2005;115:1267–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ito T, Maruyama I. Thrombomodulin: protectorate God of the vasculature in thrombosis and inflammation. J Thromb Haemost. 2011;9 Suppl 1:168–73.

    Article  CAS  PubMed  Google Scholar 

  37. Abrams ST, Zhang N, Manson J, Liu T, Dart C, Baluwa F, et al. Circulating histones are mediators of trauma-associated lung injury. Am J Respir Crit Care Med. 2013;187(2):160–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Esmon CT. The protein C anticoagulant pathway and its role in controlling microvascular thrombosis and inflammation. Crit Care Med. 2001;29:S48–52.

    Article  CAS  PubMed  Google Scholar 

  39. Levi M, ten Cate H. Disseminated intravascular coagulation. N Engl J Med. 1999;341(8):586–92.

    Article  CAS  PubMed  Google Scholar 

  40. Smith SA, Choi SH, Davis-Harrison R, Huyck J, Boettcher J, Rienstra CM, et al. Polyphosphate exerts differential effects on blood clotting, depending on polymer size. Blood. 2010;116:4353–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers Jr DD, et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A. 2010;107(36):15880–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Voelkel NF. Calcium-induced pulmonary vasodilation: modification by meclofenamate and ouabain. Prostaglandins. 1984;15(3):359–73.

    Article  CAS  Google Scholar 

  43. Takasugi N. Calcium-induced vasodilation due to increase in nitric oxide formation in the vascular bed of rabbit ear preparation. Jpn J Pharmacol. 1993;61(3):177–82.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles T. Esmon Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Esmon, C.T. (2016). DAMPs: Damage-Associated Molecular Pattern Molecules in Hemostasis. In: Gonzalez, E., Moore, H., Moore, E. (eds) Trauma Induced Coagulopathy. Springer, Cham. https://doi.org/10.1007/978-3-319-28308-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28308-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28306-7

  • Online ISBN: 978-3-319-28308-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics