Advertisement

Radiation Tolerance of Normal Brain: QUANTEC 2010 and Beyond

  • Francesca De Felice
  • Vincenzo Tombolini
  • Michela Buglione
  • Daniela Musio
  • Luca Triggiani
  • Stefano Maria MagriniEmail author
Chapter
Part of the Current Clinical Pathology book series (CCPATH)

Abstract

External beam radiation therapy (EBRT) plays a central role in the management of high-grade gliomas, both for curative and palliative intent. Advances in treatment strategies have improved patient survival; therefore neurotoxicity became a significant problem. The use of ionizing radiations results in malignant cell damage and induces deterministic or stochastic side effects on normal tissues.

Keywords

Brain Radiation therapy Cell damage Side effects Tissue Dose Volume Organ at risk Target QUANTEC Constrains Toxicity Tolerance 

References

  1. 1.
    Haberer S, Assouline A, Mazeron JJ. Normal tissue tolerance to external beam radiation therapy: brain and hypophysis. Cancer Radiother. 2010;14(4–5):263–8.CrossRefPubMedGoogle Scholar
  2. 2.
    Marks LB, Ten Haken RK, Martel MK. Guest editor’s introduction to QUANTEC: a user’s guide. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S1–2.CrossRefPubMedGoogle Scholar
  3. 3.
    Withers HR, Taylor JM, Maciejewski B. Treatment volume and tissue tolerance. Int J Radiat Oncol Biol Phys. 1988;14(4):751–9.CrossRefPubMedGoogle Scholar
  4. 4.
    De Luca P, Jones D, Gahbauer R, Whitmore G, Wambersie A. The ICRU Report 83: prescribing, recording and reporting photon-beam intensity-modulated radiation therapy (IMRT). J ICRU. 2010;10(1):41–53.CrossRefGoogle Scholar
  5. 5.
    Lyman JT. Complication probability as assessed from dose-volume histograms. Radiat Res Suppl. 1985;8:S13–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Burman C, Kutcher GJ, Emami B, Goitein M. Fitting of normal tissue tolerance data to an analytic function. Int J Radiat Oncol Biol Phys. 1991;21(1):123–35.CrossRefPubMedGoogle Scholar
  7. 7.
    Kutcher GJ, Burman C, Brewster L, Goitein M, Mohan R. Histogram reduction method for calculating complication probabilities for three-dimensional treatment planning evaluations. Int J Radiat Oncol Biol Phys. 1991;21(1):137–46.CrossRefPubMedGoogle Scholar
  8. 8.
    Emami B, Lyman J, Brown A, Coia L, Goitein M, Munzenrider JE, Shank B, Solin LJ, Wesson M. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1991;21(1):109–22.CrossRefPubMedGoogle Scholar
  9. 9.
    Niemierko A. Reporting and analyzing dose distributions: a concept of equivalent uniform dose. Med Phys. 1997;24(1):103–10.CrossRefPubMedGoogle Scholar
  10. 10.
    Laack NN, Brown PD. Cognitive sequelae of brain radiation in adults. Semin Oncol. 2004;31(5):702–13.CrossRefPubMedGoogle Scholar
  11. 11.
    Belka C, Budach W, Kortmann RD, Bamberg M. Radiation induced CNS toxicity—molecular and cellular mechanisms. Br J Cancer. 2001;85(9):1233–9.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kim JH, Brown SL, Jenrow KA, Ryu S. Mechanisms of radiation-induced brain toxicity and implications for future clinical trials. J Neurooncol. 2008;87(3):279–86.CrossRefPubMedGoogle Scholar
  13. 13.
    Galldiks N, Rapp M, Stoffels G, Dunkl V, Sabel M, Langen KJ. Earlier diagnosis of progressive disease during bevacizumab treatment using O-(2-18F-fluorethyl)-L-tyrosine positron emission tomography in comparison with magnetic resonance imaging. Mol Imaging. 2013;12(5):273–6.PubMedGoogle Scholar
  14. 14.
    Monje ML, Palmer T. Radiation injury and neurogenesis. Curr Opin Neurol. 2003;16(2):129–34.CrossRefPubMedGoogle Scholar
  15. 15.
    Wu Q, Mohan R, Niemierko A, Schmidt-Ullrich R. Optimization of intensity-modulated radiotherapy plans based on the equivalent uniform dose. Int J Radiat Oncol Biol Phys. 2002;52(1):224–35.CrossRefPubMedGoogle Scholar
  16. 16.
    Deasy JO, Moiseenko V, Marks L, Chao KS, Nam J, Eisbruch A. Radiotherapy dose-volume effects on salivary gland function. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S58–63.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Bentzen SM, Constine LS, Deasy JO, Eisbruch A, Jackson A, Marks LB, Ten Haken RK, Yorke ED. Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC): an introduction to the scientific issues. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S3–9.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Marks LB, Yorke ED, Jackson A, Ten Haken RK, Constine LS, Eisbruch A, Bentzen SM, Nam J, Deasy JO. Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S10–9.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Lee AW, Kwong DL, Leung SF, Tung SY, Sze WM, Sham JS, Teo PM, Leung TW, Wu PM, Chappell R, Peters LJ, Fowler JF. Factors affecting risk of symptomatic temporal lobe necrosis: significance of fractional dose and treatment time. Int J Radiat Oncol Biol Phys. 2002;53(1):75–85.CrossRefPubMedGoogle Scholar
  20. 20.
    Voges J, Treuer H, Sturm V, Büchner C, Lehrke R, Kocher M, Staar S, Kuchta J, Müller RP. Risk analysis of linear accelerator radiosurgery. Int J Radiat Oncol Biol Phys. 1996;36(5):1055–63.CrossRefPubMedGoogle Scholar
  21. 21.
    Lawrence YR, Li XA, el Naqa I, Hahn CA, Marks LB, Merchant TE, Dicker AP. Radiation dose-volume effects in the brain. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S20–7.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Mayo C, Yorke E, Merchant TE. Radiation associated brainstem injury. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S36–41.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kased N, Huang K, Nakamura JL, Sahgal A, Larson DA, McDermott MW, Sneed PK. Gamma knife radiosurgery for brainstem metastases: the UCSF experience. J Neurooncol. 2008;86(2):195–205.CrossRefPubMedGoogle Scholar
  24. 24.
    Hsiao KY, Yeh SA, Chang CC, Tsai PC, Wu JM, Gau JS. Cognitive function before and after intensity-modulated radiation therapy in patients with nasopharyngeal carcinoma: a prospective study. Int J Radiat Oncol Biol Phys. 2010;77(3):722–6.CrossRefPubMedGoogle Scholar
  25. 25.
    Karlsson B, Lax I, Söderman M. Factors influencing the risk for complications following Gamma Knife radiosurgery of cerebral arteriovenous malformations. Radiother Oncol. 1997;43(3):275–80.CrossRefPubMedGoogle Scholar
  26. 26.
    Roman DD, Sperduto PW. Neuropsychological effects of cranial radiation: current knowledge and future directions. Int J Radiat Oncol Biol Phys. 1995;31(4):983–98.CrossRefPubMedGoogle Scholar
  27. 27.
    Merchant TE, Kiehna EN, Li C, Shukla H, Sengupta S, Xiong X, Gajjar A, Mulhern RK. Modeling radiation dosimetry to predict cognitive outcomes in pediatric patients with CNS embryonal tumors including medulloblastoma. Int J Radiat Oncol Biol Phys. 2006;65(1):210–21.CrossRefPubMedGoogle Scholar
  28. 28.
    Willard VW, Conklin HM, Wu S, Merchant TE. Prospective longitudinal evaluation of emotional and behavioral functioning in pediatric patients with low-grade glioma treated with conformal radiation therapy. J Neurooncol. 2015;122(1):161–8.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    DeAngelis LM, Delattre JY, Posner JB. Radiation-induced dementia in patients cured of brain metastases. Neurology. 1989;39(6):789–96.CrossRefPubMedGoogle Scholar
  30. 30.
    Steinvorth S, Wenz F, Wildermuth S, Essig M, Fuss M, Lohr F, Debus J, Wannenmacher M, Hacke W. Cognitive function in patients with cerebral arteriovenous malformations after radiosurgery: prospective long-term follow-up. Int J Radiat Oncol Biol Phys. 2002;54(5):1430–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Li J, Bentzen SM, Renschler M, Mehta MP. Regression after whole-brain radiation therapy for brain metastases correlates with survival and improved neurocognitive function. J Clin Oncol. 2007;25(10):1260–6.CrossRefPubMedGoogle Scholar
  32. 32.
    Khuntia D, Brown P, Li J, Mehta MP. Whole-brain radiotherapy in the management of brain metastasis. J Clin Oncol. 2006;24(8):1295–304.CrossRefPubMedGoogle Scholar
  33. 33.
    Klein M, Heimans JJ, Aaronson NK, van der Ploeg HM, Grit J, Muller M, Postma TJ, Mooij JJ, Boerman RH, Beute GN, Ossenkoppele GJ, van Imhoff GW, Dekker AW, Jolles J, Slotman BJ, Struikmans H, Taphoorn MJ. Effect of radiotherapy and other treatment-related factors on mid-term to long-term cognitive sequelae in low-grade gliomas: a comparative study. Lancet. 2002;360(9343):1361–8.CrossRefPubMedGoogle Scholar
  34. 34.
    Kleinberg L, Wallner K, Malkin MG. Good performance status of long-term disease-free survivors of intracranial gliomas. Int J Radiat Oncol Biol Phys. 1993;26(1):129–33.CrossRefPubMedGoogle Scholar
  35. 35.
    Gregor A, Cull A, Traynor E, Stewart M, Lander F, Love S. Neuropsychometric evaluation of long-term survivors of adult brain tumours: relationship with tumour and treatment parameters. Radiother Oncol. 1996;41(1):55–9.CrossRefPubMedGoogle Scholar
  36. 36.
    Aoyama H, Shirato H, Tago M, Nakagawa K, Toyoda T, Hatano K, Kenjyo M, Oya N, Hirota S, Shioura H, Kunieda E, Inomata T, Hayakawa K, Katoh N, Kobashi G. Stereotactic radiosurgery plus whole-brain radiation therapy vs stereotactic radiosurgery alone for treatment of brain metastases: a randomized controlled trial. JAMA. 2006;295(21):2483–91.CrossRefPubMedGoogle Scholar
  37. 37.
    Henriksson R, Asklund T, Poulsen HS. Impact of therapy on quality of life, neurocognitive function and their correlates in glioblastoma multiforme: a review. J Neurooncol. 2011;104(3):639–46.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Corn BW, Wang M, Fox S, Michalski J, Purdy J, Simpson J, Kresl J, Curran Jr WJ, Diaz A, Mehta M, Movsas B. Health related quality of life and cognitive status in patients with glioblastoma multiforme receiving escalating doses of conformal three dimensional radiation on RTOG 98-03. J Neurooncol. 2009;95(2):247–57.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Veilleux N, Goffaux P, Boudrias M, Mathieu D, Daigle K, Fortin D. Quality of life in neurooncology—age matters. J Neurosurg. 2010;113(2):325–32.CrossRefPubMedGoogle Scholar
  40. 40.
    Klein M, Taphoorn MJ, Heimans JJ, van der Ploeg HM, Vandertop WP, Smit EF, Leenstra S, Tulleken CA, Boogerd W, Belderbos JS, Cleijne W, Aaronson NK. Neurobehavioral status and health-related quality of life in newly diagnosed high-grade glioma patients. J Clin Oncol. 2001;19(20):4037–47.PubMedGoogle Scholar
  41. 41.
    Yung WK, Albright RE, Olson J, Fredericks R, Fink K, Prados MD, Brada M, Spence A, Hohl RJ, Shapiro W, Glantz M, Greenberg H, Selker RG, Vick NA, Rampling R, Friedman H, Phillips P, Bruner J, Yue N, Osoba D, Zaknoen S, Levin VA. A phase II study of temozolomide vs. procarbazine in patients with glioblastoma multiforme at first relapse. Br J Cancer. 2000;83(5):588–93.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Talacchi A, Santini B, Savazzi S, Gerosa M. Cognitive effects of tumour and surgical treatment in glioma patients. J Neurooncol. 2011;103(3):541–9.CrossRefPubMedGoogle Scholar
  43. 43.
    Keime-Guibert F, Chinot O, Taillandier L, Cartalat-Carel S, Frenay M, Kantor G, Guillamo JS, Jadaud E, Colin P, Bondiau PY, Meneï P, Loiseau H, Bernier V, Honnorat J, Barrié M, Mokhtari K, Mazeron JJ, Bissery A, Delattre JY, Association of French-Speaking Neuro-Oncologists. Radiotherapy for glioblastoma in the elderly. N Engl J Med. 2007;356(15):1527–35.CrossRefPubMedGoogle Scholar
  44. 44.
    Aherne NJ, Benjamin LC, Horsley PJ, Silva T, Wilcox S, Amalaseelan J, Dwyer P, Tahir AM, Hill J, Last A, Hansen C, McLachlan CS, Lee YL, McKay MJ, Shakespeare TP. Improved outcomes with intensity modulated radiation therapy combined with temozolomide for newly diagnosed glioblastoma multiforme. Neurol Res Int. 2014;2014:945620.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Tishler RB, Loeffler JS, Lunsford LD, Duma C, Alexander 3rd E, Kooy HM, Flickinger JC. Tolerance of cranial nerves of the cavernous sinus to radiosurgery. Int J Radiat Oncol Biol Phys. 1993;27(2):215–21.CrossRefPubMedGoogle Scholar
  46. 46.
    Darzy KH, Shalet SM. Hypopituitarism following radiotherapy. Pituitary. 2009;12(1):40–50.CrossRefPubMedGoogle Scholar
  47. 47.
    Brada M, Ajithkumar TV, Minniti G. Radiosurgery for pituitary adenomas. Clin Endocrinol (Oxf). 2004;61(5):531–43.CrossRefGoogle Scholar
  48. 48.
    Loeffler JS, Shih HA. Radiation therapy in the management of pituitary adenomas. J Clin Endocrinol Metab. 2011;96(7):1992–2003.CrossRefPubMedGoogle Scholar
  49. 49.
    Kirkpatrick JP, van der Kogel AJ, Schultheiss TE. Radiation dose-volume effects in the spinal cord. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S42–9.CrossRefPubMedGoogle Scholar
  50. 50.
    Mayo C, Martel MK, Marks LB, Flickinger J, Nam J, Kirkpatrick J. Radiation dose-volume effects of optic nerves and chiasm. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S28–35.CrossRefPubMedGoogle Scholar
  51. 51.
    Monroe AT, Bhandare N, Morris CG, Mendenhall WM. Preventing radiation retinopathy with hyperfractionation. Int J Radiat Oncol Biol Phys. 2005;61(3):856–64.CrossRefPubMedGoogle Scholar
  52. 52.
    Gordon KB, Char DH, Sagerman RH. Late effects of radiation on the eye and ocular adnexa. Int J Radiat Oncol Biol Phys. 1995;31(5):1123–39.CrossRefPubMedGoogle Scholar
  53. 53.
    Chen WC, Jackson A, Budnick AS, Pfister DG, Kraus DH, Hunt MA, Stambuk H, Levegrun S, Wolden SL. Sensorineural hearing loss in combined modality treatment of nasopharyngeal carcinoma. Cancer. 2006;106(4):820–9.CrossRefPubMedGoogle Scholar
  54. 54.
    Jereczek-Fossa BA, Zarowski A, Milani F, Orecchia R. Radiotherapy-induced ear toxicity. Cancer Treat Rev. 2003;29(5):417–30.CrossRefPubMedGoogle Scholar
  55. 55.
    Mayer R, Sminia P. Reirradiation tolerance of the human brain. Int J Radiat Oncol Biol Phys. 2008;70(5):1350–60.CrossRefPubMedGoogle Scholar
  56. 56.
    National Cancer Institute. Common terminology criteria for adverse events v4.0. http://evs.nci.nih.gov/ftp1/CTCAE/CTCAE_4.03_2010-06-14_QuickReference_5x7.pdf. Accessed 14 June 2010.
  57. 57.
    Pavy JJ, Denekamp J, Letschert J, Littbrand B, Mornex F, Bernier J, Gonzales-Gonzales D, Horiot JC, Bolla M, Bartelink H, EORTC Late Effects Working Group. Late effects toxicity scoring: the SOMA scale. Int J Radiat Oncol Biol Phys. 1995;31(5):1043–7.CrossRefPubMedGoogle Scholar
  58. 58.
    Jackson A, Marks LB, Bentzen SM, Eisbruch A, Yorke ED, Ten Haken RK, Constine LS, Deasy JO. The lessons of QUANTEC: recommendations for reporting and gathering data on dose-volume dependencies of treatment outcome. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S155–60.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Barani IJ, Benedict SH, Lin PS. Neural stem cells: implications for the conventional radiotherapy of central nervous system malignancies. Int J Radiat Oncol Biol Phys. 2007;68(2):324–33.CrossRefPubMedGoogle Scholar
  60. 60.
    Llaguno SA, Chen J, Kwon CH, Parada LF. Neural and cancer stem cells in tumor suppressor mouse models of malignant astrocytoma. Cold Spring Harb Symp Quant Biol. 2008;73:421–6.CrossRefPubMedGoogle Scholar
  61. 61.
    Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444(7120):756–60.CrossRefPubMedGoogle Scholar
  62. 62.
    Evers P, Lee PP, DeMarco J, Agazaryan N, Sayre JW, Selch M, Pajonk F. Irradiation of the potential cancer stem cell niches in the adult brain improves progression-free survival of patients with malignant glioma. BMC Cancer. 2010;10:384.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Kazda T, Jancalek R, Pospisil P, Sevela O, Prochazka T, Vrzal M, Burkon P, Slavik M, Hynkova L, Slampa P, Laack NN. Why and how to spare the hippocampus during brain radiotherapy: the developing role of hippocampal avoidance in cranial radiotherapy. Radiat Oncol. 2014;9:139.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Suh JH. Hippocampal avoidance whole-brain radiation therapy: a new standard for patients with brain metastases? J Clin Oncol. 2014;34:3789.CrossRefGoogle Scholar
  65. 65.
    Deasy JO, Bentzen S, Jackson A, Ten Haken RD, Yorke ED, Constine LS, Sharma A, Marks LB. Improving normal tissue complication probability models: the need to adopt a “data-pooling” culture. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S151–4.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Francesca De Felice
    • 1
  • Vincenzo Tombolini
    • 1
    • 2
  • Michela Buglione
    • 3
  • Daniela Musio
    • 1
  • Luca Triggiani
    • 3
  • Stefano Maria Magrini
    • 3
    Email author
  1. 1.Department of Radiological, Oncological and Anatomo-Pathological SciencesUniversity “Sapienza” of RomeRomeItaly
  2. 2.Fondazione Eleonora Lorillard Spencer CenciRomeItaly
  3. 3.Radiation Oncology DepartmentUniversity and Spedali Civili - BresciaBresciaItaly

Personalised recommendations