Clinical, Pathological, and Molecular Prognostic Parameters in Glioblastoma Patients Undergoing Chemo- and Radiotherapy

  • Paolo TiniEmail author
  • Clelia Miracco
  • Marzia Toscano
  • Silvia Palumbo
  • Sergio Comincini
  • Giovanni Luca Gravina
  • Luigi Pirtoli
Part of the Current Clinical Pathology book series (CCPATH)


The uncertainty in the knowledge of tumor initiation and progression of Glioblastoma and its eventually fatal course have driven research for many years towards an analytic approach of factors conditioning life expectancy of the affected patients. Patient-, treatment-, and tumor-related factors have been investigated in order to individuate parameters relevant for a balanced treatment approach in terms of benefit/risk ratio, and characteristics of natural history possibly suitable for new and more effective therapeutic approaches. This contribution is intended to give an overlook of these parameters from a clinical point of view at the present state-of-the-art. Age, performance, and neurological status have a strong prognostic impact, according to large case-series published over more than 20 years. Present therapeutic modalities (surgery, radiotherapy, and chemotherapy) have impacted on prognosis through more and more sophisticated implementations, and evidence exists of an improvement of survival over the last decades, due also to recent imaging techniques. Outcome in clinical series presently reaches a bridgehead at a 12–15 months median survival, and 2- and 5-year overall survival rates rarely exceed 25 % and 5 %, respectively. There is no sound evidence in favor of strategies overcoming these limits. Molecular classification, genome-wide characterization, and advanced knowledge of signal pathways of Glioblastoma identify several biological molecular parameters correlated with prognosis and tumor response to current standard postoperative therapy, that is, radiotherapy and temozolomide. How these disclosures might improve clinical outcome through agents (that is, monoclonal antibodies, tyrosine-kinase inhibitors, etc.) selectively interfering with the biological machinery is beyond the scope of this chapter, and is addressed elsewhere in this book. However, inconsistent clinical results were achieved on these grounds as yet, differently from other malignancies, and this warrants further translational research on Glioblastoma.


Glioblastoma Prognosis Markers Radiotherapy Chemotherapy 


  1. 1.
    Paszat L, Laperriere N, Groome P, et al. A population-based study of glioblastoma multiforme. Int J Radiat Oncol Biol Phys. 2001;51:100–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Grossman SA, O’Neill A, Grunnet M, et al. Phase III study comparing three cycles of infusional carmustine and cisplatin followed by radiation therapy with radiation therapy and concurrent carmustine in patients with newly diagnosed supratentorial glioblastoma multiforme: Eastern Cooperative Oncology Group Trial 2394. J Clin Oncol. 2003;21:1485–91.PubMedCrossRefGoogle Scholar
  3. 3.
    Piroth MD, Gagel B, Pinkawa M, et al. Postoperative radiotherapy of glioblastoma multiforme: analysis and critical assessment of different treatment strategies and predictive factors. Strahlenther Onkol. 2007;183:695–702.PubMedCrossRefGoogle Scholar
  4. 4.
    Filippini G, Falcone C, Boiardi A, et al. Prognostic factors for survival in 676 consecutive patients with newly diagnosed primary glioblastoma. Neuro-Oncology. 2008;10:79–87.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Tramacere F, Gianicolo E, Serinelli M, et al. Multivariate analysis of prognostic factors and survival in patients with “glioblastoma multiforme”. Clin Ter. 2008;159:233–8.PubMedGoogle Scholar
  6. 6.
    Ma X, Lv Y, Liu J, Wang D, et al. Survival analysis of 205 patients with glioblastoma multiforme: clinical characteristics, treatment and prognosis in China. J Clin Neurosci. 2009;16:1595–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Scoccianti S, Magrini SM, Ricardi U, et al. Patterns of care and survival in a retrospective analysis of 1059 patients with glioblastoma multiforme treated between 2002 and 2007: a multicenter study by the Central Nervous System Study Group of Airo (Italian Association of Radiation Oncology). Neurosurgery. 2010;67:446–58.PubMedCrossRefGoogle Scholar
  8. 8.
    Stupp R, Tonn JC, Brada M, et al., on behalf of the ESMO Guidelines Working Group. High-grade malignant glioma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2010;21:v190–3.Google Scholar
  9. 9.
    Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.PubMedCrossRefGoogle Scholar
  10. 10.
    Curran Jr WJ, Scott CB, Horton J, et al. Recursive partitioning analysis of prognostic factors in three Radiation Therapy Oncology Group malignant glioma trials. J Natl Cancer Inst. 1993;85:704–10.PubMedCrossRefGoogle Scholar
  11. 11.
    Gamburg ES, Regine WF, Patchell RA, et al. The prognostic significance of midline shift at presentation on survival in patients with glioblastoma multiforme. Int J Radiat Oncol Biol Phys. 2000;48:1359–62.PubMedCrossRefGoogle Scholar
  12. 12.
    Jeremic B, Milicic B, Grujicic D, et al. Multivariate analysis of clinical prognostic factors in patients with glioblastoma multiforme treated with a combined modality approach. J Cancer Res Clin Oncol. 2003;129:477–84.PubMedCrossRefGoogle Scholar
  13. 13.
    Wasserfallen JB, Ostermann S, Pica A, et al. Can we afford to add chemotherapy to radiotherapy for glioblastoma multiforme? Cost identification analysis of concomitant and adjuvant treatment with temozolomide until patient death. Cancer. 2004;101:2098–105.PubMedCrossRefGoogle Scholar
  14. 14.
    Stark AM, Nabavi A, Mehdorn HM, Blomer U. Glioblastoma multiforme-report of 267 cases treated at a single institution. Surg Neurol. 2005;63:162–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Adamson C, Kanu OO, Mehta AI, et al. Glioblastoma multiforme: a review of where we have been and where we are going. Expert Opin Investig Drugs. 2009;18:1061–83.PubMedCrossRefGoogle Scholar
  16. 16.
    Li SW, Qiu XG, Chen BS, et al. Prognostic factors influencing clinical outcomes of glioblastoma multiforme. Chin Med J (Engl). 2009;122:1245–9.Google Scholar
  17. 17.
    Caloglu M, Yurut-Caloglu V, Karagol H, et al. Prognostic factors other than the performance status and age for glioblastoma multiforme: a single-institution experience. J BUON. 2009;14:211–8.PubMedGoogle Scholar
  18. 18.
    Chaichana K, Parker S, Olivi A, Quinones-Hinojosa A. A proposed classification system that projects outcomes based on preoperative variables for adult patients with glioblastoma multiforme. J Neurosurg. 2010;112:997–1004.PubMedCrossRefGoogle Scholar
  19. 19.
    Helseth R, Helseth E, Johannesen TB, et al. Overall survival, prognostic factors, and repeated surgery in a consecutive series of 516 patients with glioblastoma multiforme. Acta Neurol Scand. 2010;122:159–67.PubMedCrossRefGoogle Scholar
  20. 20.
    Lai R, Hershman DL, Doan T, Neugut AI. The timing of cranial radiation in elderly patients with newly diagnosed glioblastoma multiforme. Neuro Oncol. 2010;12:190–8.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Ewelt C, Goeppert M, Rapp M, et al. Glioblastoma multiforme of the elderly: the prognostic effect of resection on survival. J Neurooncol. 2011;103:611–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Gerstein J, Franz K, Steinbach JP, et al. Radiochemotherapy with temozolomide for patients with glioblastoma. Prognostic factors and long-term outcome of unselected patients from a single institution. Strahlenther Onkol. 2011;187:722–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Siker ML, Wang M, Porter K, et al. Age as an independent prognostic factor in patients with glioblastoma: a Radiation Therapy Oncology Group and American College of Surgeons National Cancer Data Base comparison. J Neurooncol. 2011;104:351–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Bozdag S, Li A, Riddick G, et al. Age-specific signatures of glioblastoma at the genomic, genetic, and epigenetic levels. PLoS One. 2013;29:8(4).Google Scholar
  25. 25.
    Ohgaki H, Kleihues P. Genetic pathways to primary and secondary glioblastoma. Am J Pathol. 2007;170:1445–53.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Ohgaki H, Kleihues P. Genetic alterations and signaling pathways in the evolution of gliomas. Cancer Sci. 2009;100:2235–41.PubMedCrossRefGoogle Scholar
  27. 27.
    Brandes AA, Tosoni A, Franceschi E, et al. Glioblastoma in adults. Crit Rev Oncol Hematol. 2008;67:139–52.PubMedCrossRefGoogle Scholar
  28. 28.
    Thumma SR, Fairbanks RK, Lamoreaux WT, et al. Effect of pretreatment clinical factors on overall survival in glioblastoma multiforme: a Surveillance Epidemiology and End Results (SEER) population analysis. World J Surg Oncol. 2012;10:176. doi: 10.1186/1477-7819-10-176.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Chandler KL, Prados MD, Malec M, Wilson CB. Long-term survival in patients with glioblastoma multiforme. Neurosurgery. 1993;32:716–20.PubMedCrossRefGoogle Scholar
  30. 30.
    Scott JN, Rewcastle NB, Brasher PM, et al. Which glioblastoma multiforme patient will become a long-term survivor? A population-based study. Ann Neurol. 1999;46:183–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Lamborn KR, Chang SM, Prados MD. Prognostic factors for survival of patients with glioblastoma: recursive partitioning analysis. Neuro Oncol. 2004;6:227–35.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Karnofsky DA, Burchenal JH. The clinical evaluation of chemotherapeutic agents in cancer. In: MacLeod CM, editor. Evaluation of chemotherapeutic agents. New York: Columbia University Press; 1949. p. 196.Google Scholar
  33. 33.
    Oken MM, Creech RH, Tormey DC, et al. Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am J Clin Oncol. 1982;5(6):649–55.PubMedCrossRefGoogle Scholar
  34. 34.
    Jeremic B, Milicic B, Grujicic D, et al. Clinical prognostic factors in patients treated with malignant glioma treated with combined modality approach. Am J Clin Oncol. 2004;27:195–204.PubMedCrossRefGoogle Scholar
  35. 35.
    Folstein MF, McHugh PR. Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98.PubMedCrossRefGoogle Scholar
  36. 36.
    Gorlia T, van den Bent MJ, Hegi ME, et al. Nomograms for predicting survival of patients with newly diagnosed glioblastoma: prognostic factor analysis of EORTC and NCIC trial 26981-22981/CE.3. Lancet Oncol. 2008;9(1):29–38.PubMedCrossRefGoogle Scholar
  37. 37.
    Brown PD, Buckner JC, O’Fallon JR, et al. Importance of baseline mini-mental state examination as a prognostic factor for patients with low-grade glioma. Int J Radiat Oncol Biol Phys. 2004;58:117–25.CrossRefGoogle Scholar
  38. 38.
    Magrini SM, Ricardi U, Santoni R, et al. Patterns of practice and survival in a retrospective analysis of 1722 adult astrocytoma patients treated between 1985 and 2001 in 12 Italian radiation oncology centers. Int J Radiat Oncol Biol Phys. 2006;65(3):788–99.PubMedCrossRefGoogle Scholar
  39. 39.
    Carlsson SK, Brothers SP, Wahlestedt C. Emerging treatment strategies for glioblastoma multiforme. EMBO Mol Med. 2014;6:1359–70.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Tynninen O, Aronen HG, Ruhala M, et al. MRI enhancement and microvasularity density in gliomas: correlation with tumor cell proliferation. Invest Radiol. 1999;34:427–34.PubMedCrossRefGoogle Scholar
  41. 41.
    Lacroix M, Abi-Said D, Fourney DR, et al. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg. 2001;95:190–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Schoenegger K, Oberndorfer S, Wuschitz B, et al. Peritumoral edema on MRI at initial diagnosis: an independent prognostic factor for glioblastoma? Eur J Neurol. 2009;16(7):874–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Kang Y, Choi H, Kim YJ, et al. Gliomas: Histogram analysis of apparent diffusion coefficient maps with standard- or high-b-value diffusion-weighted MR imaging—correlation with tumor grade. Radiology. 2005;261:882–90.CrossRefGoogle Scholar
  44. 44.
    Kao H-W, Chiang S-W, Chung H-W. Advanced MR imaging of gliomas: an update. Biomed Res Int. 2013;2013:970586. Scholar
  45. 45.
    Inoue T, Ogasawara K, Beppu T, et al. Diffusion tensor imaging for preoperative evaluation of tumor grade in gliomas. Clin Neurol Neurosurg. 2005;107:174–80.PubMedCrossRefGoogle Scholar
  46. 46.
    Birner A, Piribauer M, Fisher I, et al. Vascular patterns in glioblastoma influence clinical outcome and associate with variable expression of angiogenic proteins: evidence for distinct angiogenic subtypes. Brain Pathol. 2003;13:133–43.PubMedCrossRefGoogle Scholar
  47. 47.
    Law M, Oh S, Babb JS, et al. Low-grade gliomas: dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging-prediction of patient clinical response. Radiology. 2006;238:658–67.PubMedCrossRefGoogle Scholar
  48. 48.
    Mills SJ, Patankar TA, Haroon HA, et al. Do cerebral blood volume and contrast transfer coefficient predict prognosis in human glioma? AJNR Am J Neuroradiol. 2006;27:853–8.PubMedGoogle Scholar
  49. 49.
    Law M, Young RJ, Babb JS, et al. Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast enhanced perfusion MR imaging. Radiology. 2008;247:490–8.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Bisdas S, Kirkpatrick M, Giglio P, et al. Cerebral blood volume measurements by perfusion-weighted MR imaging in gliomas: ready for prime time in predicting short-term outcome and recurrent disease? AJNR Am J Neuroradiol. 2009;30:681–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Kim S, Chung JK, Im SH, et al. 11C-methionine PET as a prognostic marker in patients with glioma: comparison with 18F-FDG PET. Eur J Nucl Med Mol Imaging. 2005;32:52–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Galldikis N, Ullrich R, Schroeder M, et al. Volumetry of 11C-methionine PET uptake and MRI contrast enhancement in patients with recurrent glioblastoma multiforme. Eur J Nucl Med Mol Imaging. 2010;37:84–92.CrossRefGoogle Scholar
  53. 53.
    Walker MD, Alexander Jr E, Hunt WE, et al. Evaluation of BCNU and/or radiotherapy in the treatment of anaplastic gliomas: a cooperative clinical trial. J Neurosurg. 1978;49:333–43.PubMedCrossRefGoogle Scholar
  54. 54.
    Sawaya R, Hammoud M, Schoppa D, et al. Neurosurgical outcomes in a modern series of 400 craniotomies for treatment of parenchymal tumors. Neurosurgery. 1998;42:1044–56.PubMedCrossRefGoogle Scholar
  55. 55.
    Simpson JR, Horton J, Scott C, et al. Influence of location and extent of surgical resection on survival of patients with glioblastoma multiforme: results of three consecutive Radiation Therapy Oncology Group (RTOG) clinical trials. Int J Radiat Oncol Biol Phys. 1993;26:239–44.PubMedCrossRefGoogle Scholar
  56. 56.
    Jeremic B, Grujicic D, Antunovic V, et al. Influence of extent of surgery and tumor location on treatment outcome of patients with glioblastoma multiforme treated with combined modality approach. J Neurooncol. 1994;21:177–85.PubMedCrossRefGoogle Scholar
  57. 57.
    Levine SA, McKeever PE, Greenberg HS. Primary cerebellar glioblastoma multiforme. J Neurooncol. 1987;5:231–6.PubMedCrossRefGoogle Scholar
  58. 58.
    Djalilian HR, Hall WA. Malignant gliomas of the cerebellum: an analytic review. J Neurooncol. 1998;36:247–57.PubMedCrossRefGoogle Scholar
  59. 59.
    Weber DC, Miller RC, Villa S, et al. Outcome and prognostic factors in cerebellar glioblastoma multiforme in adults: a retrospective study from the Rare Cancer Network. Int J Radiat Oncol Biol Phys. 2006;66:179–86.PubMedCrossRefGoogle Scholar
  60. 60.
    Adams H, Chaichana KL, Avendano J, et al. Adult cerebellar glioblastoma: understanding survival and prognostic factors using a population-based database from 1973–2009. World Neurosurg. 2013;80(6):e237–43.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Jeswani S, Nuno M, Folkerts V, et al. Comparison of survival between cerebellar and supratentorial glioblastoma patients: surveillance, epidemiology, and end results (SEER) analysis. Neurosurgery. 2013;73:240–6.PubMedCrossRefGoogle Scholar
  62. 62.
    Babu R, Sharma R, Karikari IO, et al. Outcome and prognostic factors in adult cerebellar glioblastoma. J Clin Neurosci. 2013;20:1117–21.PubMedCrossRefGoogle Scholar
  63. 63.
    Stummer W, Novotny A, Stepp H, et al. Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients. J Neurosurg. 2000;93:1003–13.PubMedCrossRefGoogle Scholar
  64. 64.
    Stummer W, Pichlmeier U, Meinel T, et al. AL-GS Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol. 2006;7:392–401.PubMedCrossRefGoogle Scholar
  65. 65.
    Schebesch KM, Proescholdt M, Hoemberger C, et al. Sodium fluorescein-guided resection under the YELLOW 560 nm surgical microscope filter in malignant brain tumor surgery. Acta Neurochir (Wien). 2013;155:693–9.CrossRefGoogle Scholar
  66. 66.
    Claes A, Idema AJ, Wesseling P. Diffuse glioma growth: a guerrilla war. Acta Neuropathol. 2007;114:443–58.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Kuhnt D, Becker A, Ganslandt O, et al. Correlation of the extent of tumor volume resection and patient survival in surgery of glioblastoma multiforme with high-field intraoperative MRI guidance. Neuro Oncol. 2011;13:1339–48.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Sanai N, Polley MY, McDermott MW, et al. An extent of resection threshold for newly diagnosed glioblastoma. J Neurosurg. 2011;115:3–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Orringer D, Lau D, Khatri S, et al. Extent of resection in patients with glioblastoma: limiting factors, perception of resectability, and effect on survival. J Neurosurg. 2012;117:851–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Chaichana KL, Jusue-Torres J, Navarro-Ramirez R, et al. Establishing percent resection and residual volume thresholds affecting survival and recurrence for patients with newly diagnosed intracranial glioblastoma. Neuro Oncol. 2014;16:113–22.PubMedCrossRefGoogle Scholar
  71. 71.
    Oszvald A, Guresir E, Setzer M, et al. Glioblastoma therapy in the elderly and the importance of the extent of resection regardless of age. J Neurosurg. 2012;116:357–64.PubMedCrossRefGoogle Scholar
  72. 72.
    Marko NF, Weil RJ, Schroeder JL, et al. Extent of resection of glioblastoma revisited: personalized survival modeling facilitates more accurate survival prediction and supports a maximum-safe-resection approach to surgery. J Clin Oncol. 2014;32:774–82.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Nelson DF, Diener WM, Horton J, et al. Combined modality approach to malignant gliomas-reevaluation of RTOG7401/ECOG 1374 with long-term follow-up. NCI Monogr. 1988;6:279–84.PubMedGoogle Scholar
  74. 74.
    Tsien CI, Moughan J, Michalski JM, et al. Radiation Therapy Oncology Group trial 98-03. Phase I three-dimensional conformal radiation dose escalation study in newly diagnosed glioblastoma. Int J Radiat Oncol Biol Phys. 2009;73:699–708.PubMedCrossRefGoogle Scholar
  75. 75.
    Tsien CI, Brown D, Normolle D, et al. Concurrent temozolomide and dose-escalated intensity-modulated radiation therapy in newly diagnosed glioblastoma. Clin Cancer Res. 2012;18:273–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Badiyan SN, Markovina S, Simpson JR, et al. Radiation therapy dose escalation for glioblastoma multiforme in the era of temozolomide. Int J Radiat Oncol Biol Phys. 2014;90:877–85.PubMedCrossRefGoogle Scholar
  77. 77.
    Selker RG, Shapiro WR, Burger P, et al. The Brain Tumor Cooperative Group NIH Trial 87-01: a randomized comparison of surgery, external radiotherapy, and carmustine versus surgery, interstitial radiotherapy boost, external radiation therapy, and carmustine. Neurosurgery. 2002;51:343–55.PubMedGoogle Scholar
  78. 78.
    Tsao MN, Mehta MP, Whelan TJ, et al. The American Society for Therapeutic Radiology and Oncology (ASTRO) evidence based review of the role of radiosurgery for malignant glioma. Int J Radiat Oncol Biol Phys. 2005;63:47–55.PubMedCrossRefGoogle Scholar
  79. 79.
    Souhami L, Seiferheld W, Brachman D, et al. Randomized comparison of stereotactic radiosurgery followed by conventional radiotherapy with carmustine to conventional radiotherapy with carmustine for patients with glioblastoma multiforme: report of Radiation Therapy Oncology Group 93-05 protocol. Int J Radiat Oncol Biol Phys. 2004;60:853–60.PubMedCrossRefGoogle Scholar
  80. 80.
    Tanaka M, Ino Y, Nakagava K, et al. High dose conformal radiotherapy for supratentorial malignant glioma: a historical comparison. Lancet Oncol. 2005;6:953–60.PubMedCrossRefGoogle Scholar
  81. 81.
    Walker MD, Green SB, Byar D, et al. Randomized comparison of radiotherapy and nitrosoureas for the treatment of malignant gliomas after surgery. N Engl J Med. 1980;303:1323–9.PubMedCrossRefGoogle Scholar
  82. 82.
    Fine HA, Dear KB, Loeffler JS, et al. Meta-analysis of radiation therapy with and without adjuvant chemotherapy for malignant gliomas in adults. Cancer. 1993;71:2585–97.PubMedCrossRefGoogle Scholar
  83. 83.
    Stewart LA. Chemotherapy in adult high-grade glioma: a systematic review and meta-analysis of individual patient data from 12 randomised trials. Lancet. 2002;359:1011–8.PubMedCrossRefGoogle Scholar
  84. 84.
    Yung WK, Albright RE, Olson J, et al. A phase II study of temozolomide vs. procarbazine in patients with glioblastoma multiforme at first relapse. Br J Cancer. 2000;83:588–93.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Hegi ME, Diserens AC, Gorlia T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352:997–1003.PubMedCrossRefGoogle Scholar
  86. 86.
    Ohka F, Natsume A, Wakabeyashi T. Current trends in targeted therapies for glioblastoma multiforme. Neurol Res Int. 2012;2012:878425. doi: 10.1155/2012/878425. Epub 2012 Mar 5.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Mrugala MM. Advances and challenges in the treatment of glioblastoma: a clinician’s perspective. Discov Med. 2013;15:221–30. Scholar
  88. 88.
    Cloughsey TF, Cavanee WK, Mischel PS. Glioblastoma: from molecular pathology to targeted treatment. Annu Rev Pathol. 2014;9:1–25. doi: 10.1146/annurev-pathol-011110-130324. Epub 2013 Aug 5.CrossRefGoogle Scholar
  89. 89.
    Kleihues P, Louis DN, Scheithauer BW, et al. The WHO classification of the tumors of the central nervous system. J Neuropathol Exp Neurol. 2002;61:215–25.PubMedCrossRefGoogle Scholar
  90. 90.
    Song Tao Q, Lei Y, Si G, et al. IDH mutations predict longer survival and response to temozolomide in secondary glioblastoma. Cancer Sci. 2012;103:269–73.CrossRefGoogle Scholar
  91. 91.
    Louis DN, Ohgaki H, Wiestler OD, et al. WHO classification of tumors of the central nervous system. 4th ed. Lyon: IARC; 2007.Google Scholar
  92. 92.
    Olar A, Aldape KD. Using the molecular classification of glioblastoma to inform personalized treatment. J Pathol. 2014;232:165–77.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Verhaak RGW, Hoadley KA, Purdom E, et al. An integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR and NF1. Cancer Cell. 2010;17:98–110.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Olson R, Brastianos PK, Palma DA. Prognostic and predictive value of epigenetic silencing of MGMT in patients with high grade gliomas: a systematic review and meta-analysis. J Neurooncol. 2011;105:325–35.PubMedCrossRefGoogle Scholar
  95. 95.
    Wick W, Platten M, Meisner C, et al. Temozolomide chemotherapy alone versus radiotherapy alone for malignant astrocytoma in the elderly. The NOA-08 randomised, phase 3 trial. Lancet Oncol. 2012;13:707–15.PubMedCrossRefGoogle Scholar
  96. 96.
    Eoli M, Menghi F, Bruzzone MG, et al. Methylation of the O6-methylguanine-DNA methyltransferase and loss of heterozygosity on 19q and/or 17p are overlapping features of secondary glioblastoma with prolonged survival. Clin Cancer Res. 2007;13:2606–13.PubMedCrossRefGoogle Scholar
  97. 97.
    Scoccianti S, Magrini SM, Ricardi U, et al. Radiotherapy and temozolomide in anaplastic astrocytoma: a retrospective multicenter study by the Central Nervous System Study Group of AIRO (Italian Association of Radiation Oncology). Neuro Oncol. 2012;14:798–807.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Brell M, Tortosa A, Verger E, et al. Prognostic significance of O6-methylguanine-DNA methyltransferase determined by promoter hypermethylation and immunohistochemical expression in anaplastic glioma. Clin Cancer Res. 2005;11:5167–74.PubMedCrossRefGoogle Scholar
  99. 99.
    Siker ML, ChakravartiA MMP. Should concomitant and adjuvant treatment with temozolomide be used as standard therapy in patients with anaplastic glioma? Crit Rev Oncol Hematol. 2006;60:99–111.PubMedCrossRefGoogle Scholar
  100. 100.
    Capper D, Mittelbronn M, Meyermann R, Schittelhelm J. Pitfalls in the assessment of MGMT expression and in its correlation with survival in diffuse astrocytomas: proposal of a feasible immunohistochemical approach. Acta Neuropathol. 2008;115:249–59.PubMedCrossRefGoogle Scholar
  101. 101.
    Van Vlodrop IJ, Niessen HE, Derks S, et al. Analysis of promoter CpG island hypermethylation in cancer: location, location, location! Clin Cancer Res. 2011;17:4225–31.PubMedCrossRefGoogle Scholar
  102. 102.
    Conçalves CS, Lourenço T, Xavier-Magalhāes A, et al. Mechanisms of aggressiveness in glioblastoma : prognostic and potential therapeutic insights. In: Lichter T, editor. Evolution of the molecular biology of brain tumors and the therapeutic implication. Intech Open Science; 2013. p. 388–431. ISBN: 978-953-51-0989-1, doi:1010.5772/52361.Google Scholar
  103. 103.
    Hartmann C, Hentschel B, Simon M, et al. Long term survival in primary glioblastoma with versus without isocitrate dehydrogenase mutations. Clin Cancer Res. 2013;19:5146–57.PubMedCrossRefGoogle Scholar
  104. 104.
    Yan W, Zhang W, You G, et al. Correlation of IDH mutation with clinicopathologic factors and prognosis in primary glioblastoma: a report of 118 patients from China. PLoS One. 2012;7(1-6), e30339. doi: 10.1371/journal.pone.0030339.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Phillips JJ, Aranda D, Ellison DW, et al. PDGFRA amplification is common in pediatric and adult high-grade astrocytomas and identifies a poor prognostic group in IDH1 mutant glioblastoma. Brain Pathol. 2013;23:565–73.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Smith JS, Tachibana I, Passe SM, et al. PTEN mutation, EGFR amplification, and outcome in patients with anaplastic astrocytoma and glioblastoma multiforme. J Natl Cancer Inst. 2001;93:1246–56.PubMedCrossRefGoogle Scholar
  107. 107.
    Aldape KD, Ballman K, Furth A, et al. Immunohistochemical detection of EGFRvIII in high malignancy grade astrocytomas and evaluation of prognostic significance. J Neuropathol Exp Neurol. 2004;63:700–7.PubMedCrossRefGoogle Scholar
  108. 108.
    Nagane M, Coufal F, Lin H, et al. A common mutant epidermal growth factor receptor confers enhanced tumorigenicity on human glioblastoma cells by increasing proliferation and reducing apoptosis. Cancer Res. 1996;56:5079–86.PubMedGoogle Scholar
  109. 109.
    Barker 2nd FG, Simmons ML, Chang SM, et al. EGFR overexpression and radiation response in glioblastoma multiforme. Int J Radiat Oncol Biol Phys. 2001;51:410–8.PubMedCrossRefGoogle Scholar
  110. 110.
    Hatampaa KJ, Burma S, Zhao D, Habib AA. Epidermal growth factor receptor in glioma: signal transduction, neuropathology, imaging, and radioresistance. Neoplasia. 2010;12:675–84.CrossRefGoogle Scholar
  111. 111.
    Hobbs J, Nikiforova MN, Fardo DW, et al. Paradoxical relationship between the degree of EGFR amplification and outcome in glioblastomas. Am J Surg Pathol. 2012;36:1186–93.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Simmons ML, Lamborn KR, Takahashi M, et al. Analysis of complex relationships between age, p53, epidermal growth factor receptor, and survival in glioblastoma patients. Cancer Res. 2001;61:1122–8.PubMedGoogle Scholar
  113. 113.
    Batchelor TT, Betensky RA, Esposito JM, et al. Age-dependent prognostic effects of genetic alterations in glioblastoma. Clin Cancer Res. 2004;10:228–33.PubMedCrossRefGoogle Scholar
  114. 114.
    Ang C, Guiot MC, Ramanakumar AV, et al. Clinical significance of molecular biomarkers in glioblastoma. Can J Neurol Sci. 2010;37:625–30.PubMedCrossRefGoogle Scholar
  115. 115.
    Quan AL, Barnett GH, Shih-Yuan L, et al. Epidermal growth factor receptor amplification does not have prognostic significance in patients with glioblastoma multiforme. Int J Radiat Oncol Biol Phys. 2005;63:695–703.PubMedCrossRefGoogle Scholar
  116. 116.
    Kang R, Zeh HJ, Lotze MT, Tang D. The beclin1 network regulates autophagy and apoptosis. Cell Death Differ. 2011;18:571–80.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Wei Y, Zou Z, Becker N, et al. EGFR-mediated beclin1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance. Cell. 2013;154:1269–84.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Tini P, Belmonte G, Toscano M, et al. Combined epidermal growth factor receptor and beclin1 autophagic protein expression analysis identifies different clinical presentations, responses to chemo- and radiotherapy, and prognosis in glioblastoma. Bio Med Res Int. 2015;2015, 208076. Scholar
  119. 119.
    Palumbo S, Tini P, Toscano M, et al. Combined EGFR and autophagy modulation impairs cell migration and enhances radiosensitivity in human glioblastoma cells. J Cell Physiol. 2014;229:1863–73.PubMedCrossRefGoogle Scholar
  120. 120.
    Nagane M, A. Levitzki, A. Gazit, et al. Drug resistance of human glioblastoma cells conferred by a tumor-specific mutant epidermal growth factor receptor through modulation of Bcl-XL and caspase-3-like proteases. Proc Natl Acad Sci U S A. 1998;95:5724–9.Google Scholar
  121. 121.
    Jutten B, Rouschop KMA. EGFR signaling and autophagy dependance for growth, survival, and therapy resistance. Cell Cycle. 2014;13:42–51.PubMedCrossRefGoogle Scholar
  122. 122.
    TGCA – Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008;455:1061-8.Google Scholar
  123. 123.
    Fisher I, Aldape K. Molecular tools: biology, prognosis, and therapeutic triage. Neuroimaging Clin N Am. 2010;20:273–82.CrossRefGoogle Scholar
  124. 124.
    Simpson L, Parsons R. PTEN: life as a tumor suppressor. Exp Cell Res. 2001;264:29–41.PubMedCrossRefGoogle Scholar
  125. 125.
    Carico C, Nuño M, Mukherjee D, et al. Loss of PTEN is not associated with poor survival in newly diagnosed glioblastoma patients of the temozolomide era. PLoS One. 2012;7(3), e33684.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Oehring RD, Miletic M, Valter MM, et al. Vascular endothelial growth factor (VEGF) in astrocytic gliomas—a prognostic factor? J Neuro-Oncol. 1999;45:117–25.CrossRefGoogle Scholar
  127. 127.
    McNamara MG, Sahebjan S, Mason WP. Emerging biomarkers in glioblastoma. Cancers (Basel). 2013;5:1103–19. doi: 10.3390/cancers5031103.CrossRefGoogle Scholar
  128. 128.
    Ohgaki H, Dessen B, Jourde B, et al. Genetic pathways to glioblastoma : a population-based study. Cancer Res. 2004;64:6892–9.PubMedCrossRefGoogle Scholar
  129. 129.
    Schmidt MC, Antweiler S, Urban N, et al. Impact of genotype and morphology on the prognosis of glioblastoma. J Neuropathol Exp Neurol. 2002;61:321–8.PubMedCrossRefGoogle Scholar
  130. 130.
    Kakkar A, Suri V, Jha P, et al. Loss of heterozygosity on chromosome 10q in glioblastomas, and its association with other genetic alterations and survival in Indian patients. Neurol India. 2011;59:254–61.PubMedCrossRefGoogle Scholar
  131. 131.
    Boldrini L, Pistolesi S, Gisfredi S, et al. Telomerase activity and hTERT mRNA expression in glial tumors. Int J Oncol. 2006;28:1555–60.PubMedGoogle Scholar
  132. 132.
    Lötsch D, Ghanim B, Laaber M, et al. Prognostic significance of telomerase-associated parameters in glioblastoma: effect of patient age. Neuro Oncol. 2013;15:423–32.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Beck S, Jin X, Sohn Y-W, et al. Telomerase activity-independent function of TERT allows glioma cells to attain cancer stem cells characteristics by inducing EGFR expression. Mol Cells. 2011;31:9–15.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Miracco C, De Santi MM, Luzi P, et al. In situ detection of telomeres by fluorescence in situ hybridization and telomerase activity in glioblastoma multiforme: correlation with p53 status, EGFR, c-myc, MIB1, and Topoisomerase IIα protein expression. Int J Oncol. 2003;23:1529–35.PubMedGoogle Scholar
  135. 135.
    Kannan K, Inagaki A, Silber J, et al. Whole-exome sequencing identifies ATRX mutation as a key molecular determinant in lower-grade glioma. Oncotarget. 2012;3:1194–203.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Wiestler B, Capper D, Holland-Letz T, et al. ATRX loss refines the classification of anaplastic gliomas and identifies a subgroup of IDH mutant astrocytic tumors with better prognosis. Acta Neuropathol. 2013;126:443–51.PubMedCrossRefGoogle Scholar
  137. 137.
    Pelloski CE, Lin E, Zhang L, et al. Prognostic associations of activated mitogen-activated protein kinase and Akt pathways in glioblastoma. Clin Cancer Res. 2006;12:3935–41.PubMedCrossRefGoogle Scholar
  138. 138.
    Network CGAR. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455:1061–8.CrossRefGoogle Scholar
  139. 139.
    Recklies AD, White C, Ling H. The chitinase 3-like protein human cartilage glycoprotein 39 (HC-gp39) stimulates proliferation of human connective-tissue cells and activates both extracellular signal-regulated kinase- and protein kinase B-mediated signaling pathways. Biochem J. 2002;365:119–26.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Griguer CE, Cantor AB, Fathallah-Shaykh HM, et al. Prognostic relevance of cytochrome c oxidase in primary glioblastoma multiforme. PLoS One. 2013;8:e61035. doi: 10.1371/journal.pone.0061035.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Costa BM, Smith JS, Chen Y, et al. Reversing HOXA9 oncogene activation by PI3K inhibition: epigenetic mechanism and prognostic significance in human glioblastoma. Cancer Res. 2010;70:453–63.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Qiu S, Lin S, Hu D, et al. Interaction of miR-323/miR-326/miR-329 and miR-130a/miR-155/mir-210 as prognostic indicators for clinical outcome of glioblastoma patients. J Transl Med. 2013;11:10. doi: 10.1186/1479-5876-11-10.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Dahlrot RH, Hermansen SK, Hansen S, Kristensen BW. What is the clinical value of cancer stem cell markers in gliomas? Int J Clin Exp Pathol. 2013;6:334–48.PubMedPubMedCentralGoogle Scholar
  144. 144.
    Jackson M, Hassiotou F, Nowak A. Glioblastoma stem-like cells: at the root of tumor recurrence and a therapeutic target. Carcinogenesis. 2014;36:177–85.PubMedCrossRefGoogle Scholar
  145. 145.
    Metellus P, Nanni-Metellus I, Delfino C, et al. Prognostic impact of CD133 mRNA expression in 48 glioblastoma patients treated with concomitant radiochemotherapy: a prospective patient cohort at a single institution. Ann Surg Oncol. 2011;18:2937–45.PubMedCrossRefGoogle Scholar
  146. 146.
    Melguizo C, Prados J, Gonzalez B, et al. MGMT promoter methylation status and MGMT and CD133 immunohistochemical expression as prognostic markers in glioblastoma patients treated with temozolomide plus radiotherapy. J Transl Med. 2012;10:250. doi: 10.1186/1479-5876-10-250.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Kim Y-W, Kim SH, Kwon CH, et al. Identification of cancer stem-like cell signatures of glioblastoma based on the cancer genome atlas analysis. Neuro Oncol. 2011;13(Suppl 3):iii145–53 (Abst 16th annual meeting of the Society for Neuro-Oncology). doi: 10.1093/neuronc/nor163.
  148. 148.
    Sandberg CJ, Altschuler G, Jeong J, et al. Comparison of glioma stem cells to neural stem cells from the adult human brain identifies dysregulated Wnt-signaling and a fingerprint associated with clinical outcome. Exp Cell Res. 2013;319:2230–43.PubMedCrossRefGoogle Scholar
  149. 149.
    Rossi M, Magnoni L, Miracco C, et al. β-Catenin and Gli1 are prognostic markers in glioblastoma. Cancer Biol Ther. 2011;11:1–9.CrossRefGoogle Scholar
  150. 150.
    Brennan C, Verhaak RGW, McKenna A, et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155:462–77.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Druker BJ, Guilhot F, O’Brien SG, et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med. 2006;355:2408–17.PubMedCrossRefGoogle Scholar
  152. 152.
    Blanke CD, Rankin C, Demetri GD, et al. Phase III randomized, intergroup trial assessing imatinib mesylate at two dose levels in patients with unresectable or metastatic gastrointestinal stromal tumors expressing the kit receptor tyrosinekinase. J Clin Oncol. 2008;26:626–32.PubMedCrossRefGoogle Scholar
  153. 153.
    Bastien JIL, McNeill K, Fine HA. Molecular characterizations of glioblastoma, targeted therapy, and clinical results to date. Cancer. 2014;121:502–16.PubMedCrossRefGoogle Scholar
  154. 154.
    Veliz I, Loo Y, Castillo O, et al. Advances and challenges in the molecular biology and treatment of glioblastoma—is there any hope for the future? Ann Transl Med. 2015;3(1):7. doi: 10.3978/j.issn.2305-5839-2014.10.06.
  155. 155.
    NCI. NCI Dictionary of terms: personalized medicine (Internet).

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Paolo Tini
    • 1
    • 2
    Email author
  • Clelia Miracco
    • 1
    • 3
  • Marzia Toscano
    • 1
    • 4
  • Silvia Palumbo
    • 4
  • Sergio Comincini
    • 5
  • Giovanni Luca Gravina
    • 6
  • Luigi Pirtoli
    • 1
    • 4
  1. 1.Tuscany Tumor InstituteFlorenceItaly
  2. 2.Unit of Radiation OncologyUniversity Hospital of Siena (Azienda Ospedaliera-Universitaria Senese)SienaItaly
  3. 3.Unit of Pathological Anatomy, Department of Medicine, Surgery and NeurosciencesUniversity of SienaSienaItaly
  4. 4.Unit of Radiation Oncology, Department of Medicine, Surgery and NeurosciencesUniversity of SienaSienaItaly
  5. 5.Department of Technology and BiotechnologyUniversity of PaviaItalyItaly
  6. 6.Department of Radiological Sciences-Oncology and Pathological AnatomyState University of Rome (“La Sapienza”)RomeItaly

Personalised recommendations