Perspective of the Large Databases and Ontologic Models of Creation of Preclinical and Clinical Results

  • Elisa MeldolesiEmail author
  • Mario Balducci
  • Silvia Chiesa
  • Andrea Damiani
  • Nicola Dinapoli
  • Roberto Gatta
  • Vincenzo Valentini
Part of the Current Clinical Pathology book series (CCPATH)


In the last decade, remarkable advances in cancer care have created new challenges leading the clinical practice towards a personalized medicine, with an essential role of decision support systems (DSS). Numerous information routinely collected in clinical practice are standardized through the creation of ontologies and included into large databases. Using innovative “rapid-learning” research techniques, it is possible to analyze data and “extract” the factors that can mostly influence the pre-defined outcomes. The availability of reliable and consistent prediction tools makes possible to stratify population in specific risk groups, identifying patients who can better benefit from a specific treatment procedure.

Population-based observational studies resulting from the linkage of different datasets will be conducted in order to develop predictive models that allow physicians to share decision with patients into a wider concept of tailored treatment. Nomograms, interactive websites, and specific applications for new generation’s devices are some of the numerous ways in which predictive models can be represented. Finally, although prediction tools can be very useful in the daily clinical practice, it is mandatory to remember that they will always remain DSS and never decision-makers.


High technology Individualized medicine Large database Ontology Data mining Predictive model Semantic web Nomogram Decision Support System Radiomics 


  1. 1.
    Lambin P, van Stiphout RGPM, Starmans MHW, Rios-Velazquez E, Nalbantov G, Aerts HJWL, et al. Predicting outcomes in radiation oncology—multifactorial decision support systems. Nat Rev Clin Oncol. 2013;10(1):27–40. Scholar
  2. 2.
    McNamara MG, Sahebjam S, Mason WP. Emerging biomarkers in glioblastoma. Cancers (Basel). 2013;5(3):1103–19.
  3. 3.
    Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RGPM, Granton P, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48(4):441–6. Scholar
  4. 4.
    Kumar V, Gu Y, Basu S, Berglund A, Eschrich SA, Schabath MB, et al. Radiomics: the process and the challenges. Magn Reson Imaging. 2012;30(9):1234–48.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Mason WP, Del Maestro R, Eisenstat D, Forsyth P, Fulton D, Laperrière N, et al. Canadian recommendations for the treatment of glioblastoma multiforme. Curr Oncol. 2007;14(3):110–7.
  6. 6.
    Friedland PL, Bozic B, Dewar J, Kuan R, Meyer C, Phillips M. Impact of multidisciplinary team management in head and neck cancer patients. Br J Cancer. 2011;104(8):1246–8.
  7. 7.
    NCI. NCI Dictionary of terms: personalized medicine.
  8. 8.
    Tyldesley S, Zhang-Salomons J, Groome PA, Zhou S, Schulze K, Paszat LF, et al. Association between age and the utilization of radiotherapy in Ontario. Int J Radiat Oncol Biol Phys. 2000;47(2):469–80. Scholar
  9. 9.
    Faivre J, Lemmens VEPP, Quipourt V. Bouvier a M. Management and survival of colorectal cancer in the elderly in population-based studies. Eur J Cancer. 2007;43(15):2279–84. Scholar
  10. 10.
    Bach PB, Cramer LD, Warren JLBC. Racial differences in the treatment of early-stage lung cancer. N Engl J Med. 1999;341(16):1198. Scholar
  11. 11.
    Boyd C, Zhang-Salomons JY, Groome PA, Mackillop WJ. Associations between community income and cancer survival in Ontario, Canada, and the United States. J Clin Oncol. 1999;17(7):2244–55. Scholar
  12. 12.
    Hershman D, McBride R, Jacobson JS, Lamerato L, Roberts K, Grann VR, et al. Racial disparities in treatment and survival among women with early-stage breast cancer. J Clin Oncol. 2005;23(27):6639–46. Scholar
  13. 13.
    Booth CM, Tannock IF. Randomised controlled trials and population-based observational research: partners in the evolution of medical evidence. Br J Cancer Nature Publishing Group. 2014;110(3):551–5.
  14. 14.
    Booth CM. Evaluating patient-centered outcomes in the randomized controlled trial and beyond: informing the future with lessons from the past. Clin Cancer Res. 2010;16(24):5963–71. Scholar
  15. 15.
    Fuentes-Raspall R, Puig-Vives M, Guerra-Prio S, Perez-Bueno F, Marcos-Gragera R. Population-based survival analyses of central nervous system tumors from 1994 to 2008. An up-dated study in the temozolomide-era. Cancer Epidemiol. 2014;38(3):244–7. Scholar
  16. 16.
    Lambin P, Roelofs E, Reymen B, Velazquez ER, Buijsen J, Zegers CML, et al. ‘Rapid Learning health care in oncology’—an approach towards decision support systems enabling customised radiotherapy. Radiother Oncol. 2013;109(1):159–64. Scholar
  17. 17.
    Vickers AJ. Prediction models: revolutionary in principle, but do they do more good than harm? J Clin Oncol. 2011;29(22):2951–2. from: Scholar
  18. 18.
    Meldolesi E, van Soest J, Dinapoli N, Dekker A, Damiani A, Gambacorta MA, et al. An umbrella protocol for standardized data collection (SDC) in rectal cancer: a prospective uniform naming and procedure convention to support personalized medicine. Radiother Oncol. 2014;112(1):59–62. Scholar
  19. 19.
    Tim B-L, Hendler James LO. “The Semantic Web” A new form of Web content that is meaningful to computers will unleash a revolution of new possibilities. Sci Am Mag. 2001;284:35–43.
  20. 20.
    Graham Klyne JJC. Resource Description Framework (RDF): concepts and abstract syntax. 2004.
  21. 21.
    Assélé Kama A, Choquet R, Mels G, Daniel C, Charlet J, Jaulent M-C. An ontological approach for the exploitation of clinical data. Stud Health Technol Inform. 2013;192:142–6.
  22. 22.
    Boyd S. Distributed Optimization and Statistical Learning via the alternating direction method of multipliers. Found Trends® Mach Learn. 2010;3(1):1–122.
  23. 23.
    Meldolesi E, van Soest J, Alitto AR, Autorino R, Dinapoli N, Dekker A, et al. VATE: VAlidation of high TEchnology based on large database analysis by learning machine. Color Cancer. 2014;3(5):435–50. Scholar
  24. 24.
    Luta G, Ford MB, Bondy M, Shields PG, Stamey JD. Bayesian sensitivity analysis methods to evaluate bias due to misclassification and missing data using informative priors and external validation data. Cancer Epidemiol. 2013;37(2):121–6.
  25. 25.
    Valentini V, van Stiphout RGPM, Lammering G, Gambacorta MA, Barba MC, Bebenek M, et al. Nomograms for predicting local recurrence, distant metastases, and overall survival for patients with locally advanced rectal cancer on the basis of European randomized clinical trials. J Clin Oncol. 2011;29(23):3163–72. Scholar
  26. 26.
    Bagley SC, White H, Golomb BA. Logistic regression in the medical literature. J Clin Epidemiol. 2001;54(10):979–85. Scholar
  27. 27.
    Jayasurya K, Fung G, Yu S, Dehing-Oberije C, De Ruysscher D, Hope A, et al. Comparison of Bayesian network and support vector machine models for two-year survival prediction in lung cancer patients treated with radiotherapy. Med Phys. 2010;37(4):1401–7. Scholar
  28. 28.
    Oh JH, Craft J, Al Lozi R, Vaidya M, Meng Y, Deasy JO, et al. A Bayesian network approach for modeling local failure in lung cancer. Phys Med Biol. 2011;56(6):1635–51. Scholar
  29. 29.
    Hu R. Medical Data Mining Based on Decision Tree Algorithm. Comput Inf Sci. 2011;4(5):14–9.
  30. 30.
    Van Stiphout RGPM, Lammering G, Buijsen J, Janssen MHM, Gambacorta MA, Slagmolen P, et al. Development and external validation of a predictive model for pathological complete response of rectal cancer patients including sequential PET-CT imaging. Radiother Oncol. 2011;98(1):126–33.
  31. 31.
    Patel JL, Goyal RK. Applications of artificial neural networks in medical science. Curr Clin Pharmacol. 2007;2(3):217–26.
  32. 32.
    Wiggins M, Saad A, Litt B, Vachtsevanos G. Genetic Algorithm-Evolved Bayesian Network Classifier for Medical Applications.Google Scholar
  33. 33.
    Gorlia T, van den Bent MJ, Hegi ME, Mirimanoff RO, Weller M, Cairncross JG, et al. Nomograms for predicting survival of patients with newly diagnosed glioblastoma: prognostic factor analysis of EORTC and NCIC trial 26981-22981/CE.3. Lancet Oncol. 2008;9(1):29–38. Scholar
  34. 34.
    Bastien JIL, McNeill KA, Fine HA. Molecular characterizations of glioblastoma, targeted therapy, and clinical results to date. Cancer. 2015;121(4):502–16.CrossRefPubMedGoogle Scholar
  35. 35.
    Zinn PO, Mahajan B, Majadan B, Sathyan P, Singh SK, Majumder S, et al. Radiogenomic mapping of edema/cellular invasion MRI-phenotypes in glioblastoma multiforme. PLoS One. 2011;6(10), e25451.
  36. 36.
    Zinn PO, Sathyan P, Mahajan B, Bruyere J, Hegi M, Majumder S, et al. A novel volume-age-KPS (VAK) glioblastoma classification identifies a prognostic cognate microRNA-gene signature. PLoS One. 2012;7(8), e41522.
  37. 37.
    Abernethy AP, Etheredge LM, Ganz PA, Wallace P, German RR, Neti C, et al. Rapid-learning system for cancer care. J Clin Oncol. 2010;28(27):4268–74.

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Elisa Meldolesi
    • 1
    Email author
  • Mario Balducci
    • 1
  • Silvia Chiesa
    • 1
  • Andrea Damiani
  • Nicola Dinapoli
    • 1
  • Roberto Gatta
    • 1
  • Vincenzo Valentini
    • 1
  1. 1.Radiation Oncology DepartmentGemelli-ART, Università Cattolica S. CuoreRomeItaly

Personalised recommendations