Skip to main content

Preclinical Models of Glioblastoma in Radiobiology: Evolving Protocols and Research Methods

  • Chapter
  • First Online:
Radiobiology of Glioblastoma

Part of the book series: Current Clinical Pathology ((CCPATH))

  • 788 Accesses

Abstract

Gliomas are the most common form of primary brain tumors with glioblastoma (GBM) being the most malignant. The standard therapy for newly diagnosed malignant gliomas involves maximal surgical resection, radiotherapy, and chemotherapy with a median survival of 9–14 months. The combination of RT with chemotherapeutic agents that sensitize tumor cells to the cytotoxic effects of RT has been studied in an attempt to enhance tumor control and minimize the radiation toxicity. Although such combination chemoradiation protocols have improved treatment outcomes in several human malignancies, they are still less than optimal, as the existing agents can cause undesirable toxicity. Therefore, a continuing endeavor in experimental and translational oncology research has been to identify more effective agents to augment the radiosensitivity of tumor cells. Recent efforts toward this goal have focused on molecularly targeted agents directed against certain components of intracellular signaling pathways involved in tumor growth and radioresistance.

The current chapter discusses the preclinical models in GBM radiobiology. This chapter reviews the developments that allowed basic scientists and radiation oncologists to maximize therapeutic benefits of radiation in treating GBM. The chapter also discusses past, present, and future preclinical methods in optimizing treatment for GBM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berens ME, Giese A. “…those left behind.” Biology and oncology of invasive glioma cells. Neoplasia. 1999;1(3):208–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Connell PP, Hellman S. Advances in radiotherapy and implications for the next century: a historical perspective. Cancer Res. 2009;69(2):383–92.

    Article  CAS  PubMed  Google Scholar 

  3. Jeggo P, Lavin MF. Cellular radiosensitivity: how much better do we understand it? Int J Radiat Biol. 2009;85(12):1061–81.

    Article  CAS  PubMed  Google Scholar 

  4. Bhide SA, Nutting CM. Recent advances in radiotherapy. BMC Med. 2010;8:25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bischoff P, Altmeyer A, Dumont F. Radiosensitising agents for the radiotherapy of cancer: advances in traditional and hypoxia targeted radiosensitisers. Expert Opin Ther Pat. 2009;19(5):643–62.

    Article  CAS  PubMed  Google Scholar 

  6. Verheij M, Vens C, van Triest B. Novel therapeutics in combination with radiotherapy to improve cancer treatment: rationale, mechanisms of action and clinical perspective. Drug Resist Updat. 2010;13(1-2):29–43.

    Article  CAS  PubMed  Google Scholar 

  7. Begg AC, Stewart FA, Vens C. Strategies to improve radiotherapy with targeted drugs. Nat Rev Cancer. 2011;11(4):239–53.

    Article  CAS  PubMed  Google Scholar 

  8. Withers HR. The four R’s of radiotherapy. In: Lett JT, Adler H, editors. Advances in radiation biology. New York: Academic Press; 1975. p. 5.

    Google Scholar 

  9. Steel GG, McMillan TJ, Peacock JH. The 5Rs of radiobiology. Int J Radiat Biol. 1989;56(6):1045–8.

    Article  CAS  PubMed  Google Scholar 

  10. Deacon J, Peckham MJ, Steel GG. The radioresponsiveness of human tumours and the initial slope of the cell survival curve. Radiother Oncol. 1984;2(4):317–23.

    Article  CAS  PubMed  Google Scholar 

  11. Bernier J, Hall EJ, Giaccia A. Radiation oncology: a century of achievements. Nat Rev Cancer. 2004;4(9):737–47.

    Article  CAS  PubMed  Google Scholar 

  12. Blazek ER, Foutch JL, Maki G. Daoy medulloblastoma cells that express CD133 are radioresistant relative to CD133- cells, and the CD133+ sector is enlarged by hypoxia. Int J Radiat Oncol Biol Phys. 2007;67(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  13. Holmquist-Mengelbier L, et al. Recruitment of HIF-1alpha and HIF-2alpha to common target genes is differentially regulated in neuroblastoma: HIF-2alpha promotes an aggressive phenotype. Cancer Cell. 2006;10(5):413–23.

    Article  CAS  PubMed  Google Scholar 

  14. Bertout JA, et al. HIF2alpha inhibition promotes p53 pathway activity, tumor cell death, and radiation responses. Proc Natl Acad Sci U S A. 2009;106(34):14391–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Holmquist L, Lofstedt T, Pahlman S. Effect of hypoxia on the tumor phenotype: the neuroblastoma and breast cancer models. Adv Exp Med Biol. 2006;587:179–93.

    Article  CAS  PubMed  Google Scholar 

  16. Beaman GM, et al. Reliability of HSP70 (HSPA) expression as a prognostic marker in glioma. Mol Cell Biochem. 2014;393(1-2):301–7.

    Article  CAS  PubMed  Google Scholar 

  17. Kinner A, et al. Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Res. 2008;36(17):5678–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rogakou EP, et al. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem. 1998;273(10):5858–68.

    Article  CAS  PubMed  Google Scholar 

  19. Rogakou EP, et al. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol. 1999;146(5):905–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sedelnikova OA, et al. Quantitative detection of (125)IdU-induced DNA double-strand breaks with gamma-H2AX antibody. Radiat Res. 2002;158(4):486–92.

    Article  CAS  PubMed  Google Scholar 

  21. Klokov D, et al. Phosphorylated histone H2AX in relation to cell survival in tumor cells and xenografts exposed to single and fractionated doses of X-rays. Radiother Oncol. 2006;80(2):223–9.

    Article  CAS  PubMed  Google Scholar 

  22. Iwabuchi K, et al. Two cellular proteins that bind to wild-type but not mutant p53. Proc Natl Acad Sci U S A. 1994;91(13):6098–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schultz LB, et al. p53 binding protein 1 (53BP1) is an early participant in the cellular response to DNA double-strand breaks. J Cell Biol. 2000;151(7):1381–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Anderson L, Henderson C, Adachi Y. Phosphorylation and rapid relocalization of 53BP1 to nuclear foci upon DNA damage. Mol Cell Biol. 2001;21(5):1719–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Iwabuchi K, et al. 53BP1 contributes to survival of cells irradiated with X-ray during G1 without Ku70 or Artemis. Genes Cells. 2006;11(8):935–48.

    Article  CAS  PubMed  Google Scholar 

  26. Ostling O, Johanson KJ. Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem Biophys Res Commun. 1984;123(1):291–8.

    Article  CAS  PubMed  Google Scholar 

  27. Singh NP, et al. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988;175(1):184–91.

    Article  CAS  PubMed  Google Scholar 

  28. Azqueta A, Collins AR. The essential comet assay: a comprehensive guide to measuring DNA damage and repair. Arch Toxicol. 2013;87(6):949–68.

    Article  CAS  PubMed  Google Scholar 

  29. Shaposhnikov S, et al. Detection of Alu sequences and mtDNA in comets using padlock probes. Mutagenesis. 2006;21(4):243–7.

    Article  CAS  PubMed  Google Scholar 

  30. Dudas A, Chovanec M. DNA double-strand break repair by homologous recombination. Mutat Res. 2004;566(2):131–67.

    Article  CAS  PubMed  Google Scholar 

  31. Vasileva A, Linden RM, Jessberger R. Homologous recombination is required for AAV-mediated gene targeting. Nucleic Acids Res. 2006;34(11):3345–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yun S, Lie ACC, Porter AC. Discriminatory suppression of homologous recombination by p53. Nucleic Acids Res. 2004;32(22):6479–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lieber MR. The mechanism of human nonhomologous DNA end joining. J Biol Chem. 2008;283(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  34. Labhart P. Nonhomologous DNA end joining in cell-free systems. Eur J Biochem. 1999;265(3):849–61.

    Article  CAS  PubMed  Google Scholar 

  35. North P, Ganesh A, Thacker J. The rejoining of double-strand breaks in DNA by human cell extracts. Nucleic Acids Res. 1990;18(21):6205–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Falck J, Coates J, Jackson SP. Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature. 2005;434(7033):605–11.

    Article  CAS  PubMed  Google Scholar 

  37. Matsuoka S, et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science. 2007;316(5828):1160–6.

    Article  CAS  PubMed  Google Scholar 

  38. Yang J, et al. ATM, ATR and DNA-PK: initiators of the cellular genotoxic stress responses. Carcinogenesis. 2003;24(10):1571–80.

    Article  CAS  PubMed  Google Scholar 

  39. Kastan MB, Bartek J. Cell-cycle checkpoints and cancer. Nature. 2004;432(7015):316–23.

    Article  CAS  PubMed  Google Scholar 

  40. Brown JM, Wouters BG. Apoptosis, p53, and tumor cell sensitivity to anticancer agents. Cancer Res. 1999;59(7):1391–9.

    CAS  PubMed  Google Scholar 

  41. Broker LE, Kruyt FA, Giaccone G. Cell death independent of caspases: a review. Clin Cancer Res. 2005;11(9):3155–62.

    Article  PubMed  Google Scholar 

  42. Vakifahmetoglu H, Olsson M, Zhivotovsky B. Death through a tragedy: mitotic catastrophe. Cell Death Differ. 2008;15(7):1153–62.

    Article  CAS  PubMed  Google Scholar 

  43. Surova O, Zhivotovsky B. Various modes of cell death induced by DNA damage. Oncogene. 2013;32(33):3789–97.

    Article  CAS  PubMed  Google Scholar 

  44. Rello-Varona S, et al. An automated fluorescence videomicroscopy assay for the detection of mitotic catastrophe. Cell Death Dis. 2010;1, e25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Biederbick A, Kern HF, Elsasser HP. Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles. Eur J Cell Biol. 1995;66(1):3–14.

    CAS  PubMed  Google Scholar 

  46. Mizushima N. Methods for monitoring autophagy. Int J Biochem Cell Biol. 2004;36(12):2491–502.

    Article  CAS  PubMed  Google Scholar 

  47. Roninson IB. Tumor cell senescence in cancer treatment. Cancer Res. 2003;63(11):2705–15.

    CAS  PubMed  Google Scholar 

  48. Guo L, Xie B, Mao Z. Autophagy in premature senescent cells is activated via AMPK pathway. Int J Mol Sci. 2012;13(3):3563–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Puck TT, Marcus PI, Cieciura SJ. Clonal growth of mammalian cells in vitro; growth characteristics of colonies from single HeLa cells with and without a feeder layer. J Exp Med. 1956;103(2):273–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Weisenthal LM, Lippman ME. Clonogenic and nonclonogenic in vitro chemosensitivity assays. Cancer Treat Rep. 1985;69(6):615–32.

    CAS  PubMed  Google Scholar 

  51. Hoffman RM. In vitro sensitivity assays in cancer: a review, analysis, and prognosis. J Clin Lab Anal. 1991;5(2):133–43.

    Article  CAS  PubMed  Google Scholar 

  52. Boucher Y, et al. Interstitial hypertension in superficial metastatic melanomas in humans. Cancer Res. 1991;51(24):6691–4.

    CAS  PubMed  Google Scholar 

  53. Olive PL. Radiation-induced reoxygenation in the SCCVII murine tumour: evidence for a decrease in oxygen consumption and an increase in tumour perfusion. Radiother Oncol. 1994;32(1):37–46.

    Article  CAS  PubMed  Google Scholar 

  54. Crokart N, et al. Early reoxygenation in tumors after irradiation: determining factors and consequences for radiotherapy regimens using daily multiple fractions. Int J Radiat Oncol Biol Phys. 2005;63(3):901–10.

    Article  CAS  PubMed  Google Scholar 

  55. Diepart C, et al. Comparison of methods for measuring oxygen consumption in tumor cells in vitro. Anal Biochem. 2010;396(2):250–6.

    Article  CAS  PubMed  Google Scholar 

  56. James PE, et al. The effects of endotoxin on oxygen consumption of various cell types in vitro: an EPR oximetry study. Free Radic Biol Med. 1995;18(4):641–7.

    Article  CAS  PubMed  Google Scholar 

  57. von Heimburg D, et al. Oxygen consumption in undifferentiated versus differentiated adipogenic mesenchymal precursor cells. Respir Physiol Neurobiol. 2005;146(2-3):107–16.

    Article  CAS  Google Scholar 

  58. de Jong M, Essers J, van Weerden WM. Imaging preclinical tumour models: improving translational power. Nat Rev Cancer. 2014;14(7):481–93.

    Article  PubMed  CAS  Google Scholar 

  59. Camphausen K, et al. Influence of in vivo growth on human glioma cell line gene expression: convergent profiles under orthotopic conditions. Proc Natl Acad Sci U S A. 2005;102(23):8287–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jacobs VL, et al. Current review of in vivo GBM rodent models: emphasis on the CNS-1 tumour model. ASN Neuro. 2011;3(3), e00063.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Wilding JL, Bodmer WF. Cancer cell lines for drug discovery and development. Cancer Res. 2014;74(9):2377–84.

    Article  CAS  PubMed  Google Scholar 

  62. Shankavaram UT, et al. Molecular profiling indicates orthotopic xenograft of glioma cell lines simulate a subclass of human glioblastoma. J Cell Mol Med. 2012;16(3):545–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Galli R, et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 2004;64(19):7011–21.

    Article  CAS  PubMed  Google Scholar 

  64. Singh SK, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63(18):5821–8.

    CAS  PubMed  Google Scholar 

  65. Bao S, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444(7120):756–60.

    Article  CAS  PubMed  Google Scholar 

  66. Bao S, et al. Targeting cancer stem cells through L1CAM suppresses glioma growth. Cancer Res. 2008;68(15):6043–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bao S, et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res. 2006;66(16):7843–8.

    Article  CAS  PubMed  Google Scholar 

  68. Huang Z, et al. Cancer stem cells in glioblastoma—molecular signaling and therapeutic targeting. Protein Cell. 2010;1(7):638–55.

    Article  CAS  PubMed  Google Scholar 

  69. Jamal M, et al. The brain microenvironment preferentially enhances the radioresistance of CD133(+) glioblastoma stem-like cells. Neoplasia. 2012;14(2):150–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Stratton MR, Campbell PJ, Futreal PA. The cancer genome. Nature. 2009;458(7239):719–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med. 2004;10(8):789–99.

    Article  CAS  PubMed  Google Scholar 

  72. Weir B, Zhao X, Meyerson M. Somatic alterations in the human cancer genome. Cancer Cell. 2004;6(5):433–8.

    Article  CAS  PubMed  Google Scholar 

  73. Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455(7216):1061–8.

    Article  CAS  Google Scholar 

  74. Verhaak RG, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17(1):98–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bredel M, et al. NFKBIA deletion in glioblastomas. N Engl J Med. 2011;364(7):627–37.

    Article  CAS  PubMed  Google Scholar 

  76. Parsons DW, et al. An integrated genomic analysis of human glioblastoma multiforme. Science. 2008;321(5897):1807–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nicholas MK, et al. Molecular heterogeneity in glioblastoma: therapeutic opportunities and challenges. Semin Oncol. 2011;38(2):243–53.

    Article  CAS  PubMed  Google Scholar 

  78. Noushmehr H, et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell. 2010;17(5):510–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tran AN, et al. Increased sensitivity to radiochemotherapy in IDH1 mutant glioblastoma as demonstrated by serial quantitative MR volumetry. Neuro Oncol. 2014;16(3):414–20.

    Article  CAS  PubMed  Google Scholar 

  80. Griffin JL, Shockcor JP. Metabolic profiles of cancer cells. Nat Rev Cancer. 2004;4(7):551–61.

    Article  CAS  PubMed  Google Scholar 

  81. Spratlin JL, Serkova NJ, Eckhardt SG. Clinical applications of metabolomics in oncology: a review. Clin Cancer Res. 2009;15(2):431–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Houillier C, et al. IDH1 or IDH2 mutations predict longer survival and response to temozolomide in low-grade gliomas. Neurology. 2010;75(17):1560–6.

    Article  CAS  PubMed  Google Scholar 

  83. Baldewpersad Tewarie NM, et al. NADP+-dependent IDH1 R132 mutation and its relevance for glioma patient survival. Med Hypotheses. 2013;80(6):728–31.

    Article  CAS  PubMed  Google Scholar 

  84. Lyons SK. Advances in imaging mouse tumour models in vivo. J Pathol. 2005;205(2):194–205.

    Article  CAS  PubMed  Google Scholar 

  85. Puaux AL, et al. A comparison of imaging techniques to monitor tumor growth and cancer progression in living animals. Int J Mol Imag. 2011;2011:321538.

    Google Scholar 

  86. Patterson AP, Booth SA, Saba R. The emerging use of in vivo optical imaging in the study of neurodegenerative diseases. Biomed Res Int. 2014;2014:401306.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Monici M. Cell and tissue autofluorescence research and diagnostic applications. Biotechnol Annu Rev. 2005;11:227–56.

    Article  CAS  PubMed  Google Scholar 

  88. McNally JB, et al. Task-based imaging of colon cancer in the Apc(Min/+) mouse model. Appl Opt. 2006;45(13):3049–62.

    Article  PubMed  Google Scholar 

  89. Aswendt M, et al. Boosting bioluminescence neuroimaging: an optimized protocol for brain studies. PLoS One. 2013;8(2), e55662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Jarzabek MA, et al. In vivo bioluminescence imaging validation of a human biopsy-derived orthotopic mouse model of glioblastoma multiforme. Mol Imaging. 2013;12(3):161–72.

    CAS  PubMed  Google Scholar 

  91. Hingtgen S, et al. Real-time multi-modality imaging of glioblastoma tumor resection and recurrence. J Neurooncol. 2013;111(2):153–61.

    Article  PubMed  Google Scholar 

  92. Sonabend AM, et al. Murine cell line model of proneural glioma for evaluation of anti-tumor therapies. J Neurooncol. 2013;112(3):375–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chakravarti A, et al. RTOG 0211: a phase 1/2 study of radiation therapy with concurrent gefitinib for newly diagnosed glioblastoma patients. Int J Radiat Oncol Biol Phys. 2013;85(5):1206–11.

    Article  CAS  PubMed  Google Scholar 

  94. Kreisl TN, et al. A phase I/II trial of vandetanib for patients with recurrent malignant glioma. Neuro Oncol. 2012;14(12):1519–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Raizer JJ, et al. A phase II trial of erlotinib in patients with recurrent malignant gliomas and nonprogressive glioblastoma multiforme postradiation therapy. Neuro Oncol. 2010;12(1):95–103.

    Article  CAS  PubMed  Google Scholar 

  96. Guha A, et al. Proliferation of human malignant astrocytomas is dependent on Ras activation. Oncogene. 1997;15(23):2755–65.

    Article  CAS  PubMed  Google Scholar 

  97. Glass TL, Liu TJ, Yung WK. Inhibition of cell growth in human glioblastoma cell lines by farnesyltransferase inhibitor SCH66336. Neuro Oncol. 2000;2(3):151–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Feldkamp MM, et al. Normoxic and hypoxic regulation of vascular endothelial growth factor (VEGF) by astrocytoma cells is mediated by Ras. Int J Cancer. 1999;81(1):118–24.

    Article  CAS  PubMed  Google Scholar 

  99. Kang KB, et al. Gefitinib radiosensitizes stem-like glioma cells: inhibition of epidermal growth factor receptor-Akt-DNA-PK signaling, accompanied by inhibition of DNA double-strand break repair. Int J Radiat Oncol Biol Phys. 2012;83(1):e43–52.

    Article  CAS  PubMed  Google Scholar 

  100. Stupp R, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96.

    Article  CAS  PubMed  Google Scholar 

  101. Mellinghoff IK, et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med. 2005;353(19):2012–24.

    Article  CAS  PubMed  Google Scholar 

  102. Galanis E, et al. Phase II trial of temsirolimus (CCI-779) in recurrent glioblastoma multiforme: a North Central Cancer Treatment Group Study. J Clin Oncol. 2005;23(23):5294–304.

    Article  CAS  PubMed  Google Scholar 

  103. Chang SM. Does temsirolimus have a role in recurrent glioblastoma multiforme? Nat Clin Pract Oncol. 2006;3(2):70–1.

    Article  PubMed  Google Scholar 

  104. Clarke JL, et al. A single-institution phase II trial of radiation, temozolomide, erlotinib, and bevacizumab for initial treatment of glioblastoma. Neuro Oncol. 2014;16(7):984–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bonavia R, et al. Heterogeneity maintenance in glioblastoma: a social network. Cancer Res. 2011;71(12):4055–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Singh S, Dirks PB. Brain tumor stem cells: identification and concepts. Neurosurg Clin N Am. 2007;18(1):31–8. viii.

    Article  PubMed  Google Scholar 

  107. Brescia P, et al. CD133 is essential for glioblastoma stem cell maintenance. Stem Cells. 2013;31(5):857–69.

    Article  CAS  PubMed  Google Scholar 

  108. Rockne R, et al. Predicting the efficacy of radiotherapy in individual glioblastoma patients in vivo: a mathematical modeling approach. Phys Med Biol. 2010;55(12):3271–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Jansen M, Yip S, Louis DN. Molecular pathology in adult gliomas: diagnostic, prognostic, and predictive markers. Lancet Neurol. 2010;9(7):717–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Horbinski C, et al. Diagnostic use of IDH1/2 mutation analysis in routine clinical testing of formalin-fixed, paraffin-embedded glioma tissues. J Neuropathol Exp Neurol. 2009;68(12):1319–25.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Tandle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tandle, A., Shankavaram, U., Schlaff, C., Camphausen, K., Krauze, A. (2016). Preclinical Models of Glioblastoma in Radiobiology: Evolving Protocols and Research Methods. In: Pirtoli, L., Gravina, G., Giordano, A. (eds) Radiobiology of Glioblastoma. Current Clinical Pathology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-28305-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28305-0_16

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-28303-6

  • Online ISBN: 978-3-319-28305-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics