NanoMaterials Technology for Research Radiobiology

  • Elisa Panzarini
  • Luciana DiniEmail author
Part of the Current Clinical Pathology book series (CCPATH)


Advances in nanoscience and nanotechnology have notably improved the field of oncology in terms of cancer diagnosis and therapy. Recently, there is a great interest in developing multifunctional systems for theranostic approaches within a single formulation, which is able to combine detection, treatment, monitoring, and image-guided interventions, allowing a real-time monitoring drug delivery, release, and efficacy. NanoMaterials (NMs), such as liposomes, dendrimers, quantum dots, iron oxide-, metallic-, and magnetic-nanoparticles (NPs), perfluorocarbon and carbon nanotubes, delivering anticancer radioisotopes, are a suitable radionanomedicine theranostic system. This chapter provides an overview on NMs exploitable in cancer radio-therapy and imaging, highlighting the emerging possibilities of theranostic nanomedicines in cancer cure. The current NMs platforms for future clinical application with regard to imaging and treatment of glioblastoma, one of the most deadly diseases characterized by high resistance to chemotherapy and radiotherapy, will be discussed.


Radiobiology Multifunctional nanocarriers Theranostics Cancer NanoMaterials (NMs) Glioblastoma 


  1. 1.
    Pollack LA, Rowland JH, Crammer C, Stefanek M. Introduction: charting the landscape of cancer survivors’ health-related outcomes and care. Cancer. 2009;115:4265–9. doi: 10.1002/cncr.24579.CrossRefPubMedGoogle Scholar
  2. 2.
    Nazir S, Hussain T, Ayub A, Rashid U, MacRobert AJ. Nanomaterials in fighting cancer: therapeutic applications and developments. Nanomedicine. 2014;10:19–34. doi: 10.1016/j.nano.2013.07.001.PubMedGoogle Scholar
  3. 3.
    Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63:11–30. doi: 10.3322/caac.21166.CrossRefPubMedGoogle Scholar
  4. 4.
    Ai J, Biazar E, Jafarpour M, Montazeri M, Majdi A, Aminifard S, et al. Nanotoxicology and nanoparticle safety in biomedical designs. Int J Nanomedicine. 2011;6:1117–27. doi: 10.2147/IJN.S16603.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Nevozhay D, Kańska U, Budzyńska R, Boratyński J. Current status of research on conjugates and related drug delivery systems in the treatment of cancer and other diseases. Postepy Hig Med Dosw. 2007;61:350–60.Google Scholar
  6. 6.
    Lammers T, Aime S, Hennink WE, Storm G, Kiessling F. Theranostic nanomedicine. Acc Chem Res. 2011;44:1029–38. doi: 10.1021/ar200019c.CrossRefPubMedGoogle Scholar
  7. 7.
    Patel CN, Goldstone AR, Chowdhury FU, Scarsbrook AF. FDG PET/CT in oncology: “raising the bar”. Clin Radiol. 2010;65:522–35. doi: 10.1016/j.crad.2010.01.003.CrossRefPubMedGoogle Scholar
  8. 8.
    Xing Y, Zhao J, Conti PS, Chen K. Radiolabeled nanoparticles for multimodality tumor imaging. Theranostics. 2014;4:290–306. doi: 10.7150/thno.7341.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ting G, Chang CH, Wang HE, Lee TW. Nanotargeted radionuclides for cancer nuclear imaging and internal radiotherapy. J Biomed Biotechnol. 2010. doi: 10.1155/2010/953537.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Kwatra D, Venugopal A, Anant S. Nanoparticles in radiation therapy: a summary of various approaches to enhance radiosensitization in cancer. Transl Cancer Res. 2013;2:330–42. doi: 10.3978/j.issn.2218-676X.2013.08.06.Google Scholar
  11. 11.
    Lechtman E, Mashouf S, Chattopadhyay N, Keller BM, Lai P, Cai Z, et al. A Monte Carlo-based model of gold nanoparticle radiosensitization accounting for increased radiobiological effectiveness. Phys Med Biol. 2013;58:3075–87. doi:  10.1088/0031-9155/58/10/3075 CrossRefPubMedGoogle Scholar
  12. 12.
    Hainfeld JF, Slatkin DN, Smilowitz HM. The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol. 2004;49:N309–15. Google Scholar
  13. 13.
    Hainfeld JF, Dilmanian FA, Zhong Z, Slatkin DN, Kalef-Ezra JA, Smilowitz HM. Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma. Phys Med Biol. 2010;55:3045–59. doi: 10.1088/0031-9155/55/11/004 CrossRefPubMedGoogle Scholar
  14. 14.
    Joh DY, Sun L, Stangl M, Al Zaki A, Murty S, Santoiemma PP, Davis JJ, Baumann BC, Alonso-Basanta M, Bhang D, Kao GD, Tsourkas A, Dorsey JF. Selective targeting of brain tumors with gold nanoparticle-induced radiosensitization. PLoS One. 2013;8(4), e62425. doi: 10.1371/journal.pone.0062425Google Scholar
  15. 15.
    Polley MY, Lamborn KR, Chang SM, Butowski N, Clarke JL, Prados M. Conditional probability of survival in patients with newly diagnosed glioblastoma. J Clin Oncol. 2011;29:4175–80. doi: 10.1200/JCO.2010.32.4343.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Butterworth KT, McMahon SJ, Taggart LE, Prise KM. Radiosensitization by gold nanoparticles: effective at megavoltage energies and potential role of oxidative stress. Transl Cancer Res. 2013;2:269–79. doi: 10.3978/j.issn.2218-676X.2013.08.03.Google Scholar
  17. 17.
    Levin WP, Kooy H, Loeffler JS, DeLaney TF. Proton beam therapy. Br J Cancer. 2005;93:849–54. doi:  10.1038/sj.bjc.6602754 Google Scholar
  18. 18.
    Kim JK, Kim HT, Kim JH, Seo SJ, Chung DS, Kim JK. Investigation of tumor cells toxicity from particle induced x-ray emission from a 45-MeV proton beam irradiated ferrite nanoparticle. Int J PIXE. 2009;19:143–55. doi: 10.1142/S0129083509001837.CrossRefGoogle Scholar
  19. 19.
    Seo SJ, Jeon JK, Jeong EJ, Chang WS, Choi GH, Kim JK. Enhancement of tumor regression by coulomb nanoradiator effect in proton treatment of iron-oxide nanoparticle-loaded orthotopic rat glioma model: implication of novel particle induced radiation therapy. J Cancer Ther. 2013;4:25–32. doi: 10.4236/jct.2013.411A004.CrossRefGoogle Scholar
  20. 20.
    Kim JK, Seo SJ, Kim KH, Kim TJ, Chung MH, Kim KR, Yang TK. Therapeutic application of metallic nanoparticles combined with particle-induced x-ray emission effect. Nanotechnology. 2010;21:425102. doi: 10.1088/0957-4484/21/42/425102.CrossRefPubMedGoogle Scholar
  21. 21.
    Kim JK, Seo SJ, Kim HT, Kim KH, Chung MH, Kim KR, Ye SJ. Enhanced proton treatment in mouse tumors through proton irradiated nanoradiator effects on metallic nanoparticles. Phys Med Biol. 2012;57:8309–23. doi: 10.1088/0031-9155/57/24/8309.CrossRefPubMedGoogle Scholar
  22. 22.
    Polf JC, Bronk LF, Driessen WH, Arap W, Pasqualini R, Gillin M. Enhanced relative biological effectiveness of proton radiotherapy in tumor cells with internalized gold nanoparticles. Appl Phys Lett. 2011;98:193702. doi: 10.1063/1.3589914 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Zhang L, Chen H, Wang L, Liu T, Yeh J, Lu G, et al. Delivery of therapeutic radioisotopes using nanoparticle platforms: potential benefit in systemic radiation therapy. Nanotechnol Sci Appl. 2010;3:159–70. doi: 10.2147/NSA.S7462.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Mitra A, Nan A, Line BR, Ghandehari H. Nanocarriers for nuclear imaging and radiotherapy of cancer. Curr Pharm Des. 2006;12:4729–49. doi: 10.2174/13816120677902631 CrossRefPubMedGoogle Scholar
  25. 25.
    Shokeen M, Fettig NM, Rossin R. Synthesis, in vitro and in vivo evaluation of radiolabeled nanoparticles. Q J Nucl Med Mol Imaging. 2008;52:267–77.PubMedGoogle Scholar
  26. 26.
    Patt HM, Tyree EB, Straube RL, Smith DE. Cysteine protection against X irradiation. Science. 1949;110:213–4. doi: 10.1126/science.110.2852.213 CrossRefPubMedGoogle Scholar
  27. 27.
    Jagetia GC. Radioprotection and radiosensitization by curcumin. Adv Exp Med Biol. 2007;595:301–20. doi: 10.1007/978-0-387-46401-5_13 CrossRefPubMedGoogle Scholar
  28. 28.
    Capizzi RL, Oster W. Chemoprotective and radioprotective effects of amifostine: an update of clinical trials. Int J Hematol. 2000;72:425–35.PubMedGoogle Scholar
  29. 29.
    Pamujula S, Kishore V, Rider B, Fermin CD, Graves RA, Agrawal KC, et al. Radioprotection in mice following oral delivery of amifostine nanoparticles. Int J Radiat Biol. 2005;81:251–7. doi: 10.1080/09553000500103470 CrossRefPubMedGoogle Scholar
  30. 30.
    Theriot CA, Casey RC, Moore VC, Mitchell L, Reynolds JO, Burgoyne M, et al. Dendro[C(60)]fullerene DF-1 provides radioprotection to radiosensitive mammalian cells. Radiat Environ Biophys. 2010;49:437–45. doi: 10.1007/s00411-010-0310-4.CrossRefPubMedGoogle Scholar
  31. 31.
    Suresh Reddy J, Venkateswarlu V, Koning GA. Radioprotective effect of transferrin targeted citicoline liposomes. J Drug Target. 2006;14:13–9. doi: 10.1080/10611860600613241 CrossRefPubMedGoogle Scholar
  32. 32.
    Gaca S, Reichert S, Rödel C, Rödel F, Kreuter J. Survivin-miRNA-loaded nanoparticles as auxiliary tools for radiation therapy: preparation, characterisation, drug release, cytotoxicity and therapeutic effect on colorectal cancer cells. J Microencapsul. 2012;29:685–94. doi: 10.3109/02652048.2012.680511.CrossRefPubMedGoogle Scholar
  33. 33.
    Ping Y, Jian Z, Yi Z, Huoyu Z, Feng L, Yuqiong Y, et al. Inhibition of the EGFR with nanoparticles encapsulating antisense oligonucleotides of the EGFR enhances radiosensitivity in SCCVII cells. Med Oncol. 2010;27:715–21. doi: 10.1007/s12032-009-9274-0.CrossRefPubMedGoogle Scholar
  34. 34.
    Caldorera-Moore ME, Liechty WB, Peppas NA. Responsive theranostic systems: integration of diagnostic imaging agents and responsive controlled release drug delivery carriers. Acc Chem Res. 2011;44:1061–70. doi: 10.1021/ar2001777.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Wadajkar AS, Menon JU, Kadapure T, Tran RT, Yang J, Nguyen KT. Design and application of magnetic-based theranostic nanoparticle systems. Recent Pat Biomed Eng. 2013;6:47–57. doi: 10.2174/1874764711306010007 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Seymour LW, Ferry DR, Anderson D, Hesslewood S, Julyan PJ, Poyner R, et al. Hepatic drug targeting: phase I evaluation of polymer-bound doxorubicin. J Clin Oncol. 2002;20:1668–76. doi: 10.1200/JCO.20.6.1668 CrossRefPubMedGoogle Scholar
  37. 37.
    Lee WC, Hwang JJ, Tseng YL, Wang HE, Chang YF, Lu YC, et al. Therapeutic efficacy evaluation of 111in-VNB-liposome on human colorectal adenocarcinoma HT-29/luc mouse xenografts. Nucl Instr Methods Phys Res A. 2012;569:497–504. doi: 10.1016/j.nima.2006.08.135.CrossRefGoogle Scholar
  38. 38.
    Chow TH, Lin YY, Hwang JJ, Wang HE, Tseng YL, Pang VF, et al. Diagnostic and therapeutic evaluation of 111In-vinorelbine-liposomes in a human colorectal carcinoma HT-29/luc-bearing animal model. Nucl Med Biol. 2008;35:623–34. doi: 10.1016/j.nucmedbio.2008.04.001.CrossRefPubMedGoogle Scholar
  39. 39.
    Chow TH, Lin YY, Hwang JJ, Wang HE, Tseng YL, Pang VF, et al. Therapeutic efficacy evaluation of 111In-labeled PEGylated liposomal vinorelbine in murine colon carcinoma with multimodalities of molecular imaging. J Nucl Med. 2009;50:2073–81. doi: 10.2967/jnumed.109.063503.CrossRefPubMedGoogle Scholar
  40. 40.
    DeNardo SJ, DeNardo GL, Miers LA, Natarajan A, Foreman AR, Gruettner C, et al. Development of tumor targeting bioprobes (111In-chimeric L6 monoclonal antibody nanoparticles) for alternating magnetic field cancer therapy. Clin Cancer Res. 2005;11:7087s–7092s. doi: 10.1158/1078-0432.CCR-1004-0022 CrossRefPubMedGoogle Scholar
  41. 41.
    Hernández-Pedro NY, Rangel-López E, Magaña-Maldonado R, de la Cruz VP, del Angel AS, Pineda B, et al. Application of nanoparticles on diagnosis and therapy in gliomas. Biomed Res Int. 2013;14(1):415–32. doi: 10.1155/2013/351031.Google Scholar
  42. 42.
    Shao H, Chung J, Balaj L, Charest A, Bigner DD, Carter BS, et al. Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy. Nat Med. 2012;18:1835–40. doi: 10.1038/nm.2994.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    McNamara MG, Sahebjam S, Mason WP. Emerging biomarkers in glioblastoma. Cancers. 2013;5:1103–19. doi: 10.3390/cancers5031103.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Biological and Environmental Science and Technology (Di.S.Te.B.A.)University of SalentoLecceItaly

Personalised recommendations