Skip to main content

NanoMaterials Technology for Research Radiobiology

  • Chapter
  • First Online:
Radiobiology of Glioblastoma

Part of the book series: Current Clinical Pathology ((CCPATH))

  • 766 Accesses

Abstract

Advances in nanoscience and nanotechnology have notably improved the field of oncology in terms of cancer diagnosis and therapy. Recently, there is a great interest in developing multifunctional systems for theranostic approaches within a single formulation, which is able to combine detection, treatment, monitoring, and image-guided interventions, allowing a real-time monitoring drug delivery, release, and efficacy. NanoMaterials (NMs), such as liposomes, dendrimers, quantum dots, iron oxide-, metallic-, and magnetic-nanoparticles (NPs), perfluorocarbon and carbon nanotubes, delivering anticancer radioisotopes, are a suitable radionanomedicine theranostic system. This chapter provides an overview on NMs exploitable in cancer radio-therapy and imaging, highlighting the emerging possibilities of theranostic nanomedicines in cancer cure. The current NMs platforms for future clinical application with regard to imaging and treatment of glioblastoma, one of the most deadly diseases characterized by high resistance to chemotherapy and radiotherapy, will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pollack LA, Rowland JH, Crammer C, Stefanek M. Introduction: charting the landscape of cancer survivors’ health-related outcomes and care. Cancer. 2009;115:4265–9. doi:10.1002/cncr.24579.

    Article  PubMed  Google Scholar 

  2. Nazir S, Hussain T, Ayub A, Rashid U, MacRobert AJ. Nanomaterials in fighting cancer: therapeutic applications and developments. Nanomedicine. 2014;10:19–34. doi:10.1016/j.nano.2013.07.001.

    CAS  PubMed  Google Scholar 

  3. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63:11–30. doi:10.3322/caac.21166.

    Article  PubMed  Google Scholar 

  4. Ai J, Biazar E, Jafarpour M, Montazeri M, Majdi A, Aminifard S, et al. Nanotoxicology and nanoparticle safety in biomedical designs. Int J Nanomedicine. 2011;6:1117–27. doi:10.2147/IJN.S16603.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Nevozhay D, Kańska U, Budzyńska R, Boratyński J. Current status of research on conjugates and related drug delivery systems in the treatment of cancer and other diseases. Postepy Hig Med Dosw. 2007;61:350–60.

    Google Scholar 

  6. Lammers T, Aime S, Hennink WE, Storm G, Kiessling F. Theranostic nanomedicine. Acc Chem Res. 2011;44:1029–38. doi:10.1021/ar200019c.

    Article  CAS  PubMed  Google Scholar 

  7. Patel CN, Goldstone AR, Chowdhury FU, Scarsbrook AF. FDG PET/CT in oncology: “raising the bar”. Clin Radiol. 2010;65:522–35. doi:10.1016/j.crad.2010.01.003.

    Article  CAS  PubMed  Google Scholar 

  8. Xing Y, Zhao J, Conti PS, Chen K. Radiolabeled nanoparticles for multimodality tumor imaging. Theranostics. 2014;4:290–306. doi:10.7150/thno.7341.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ting G, Chang CH, Wang HE, Lee TW. Nanotargeted radionuclides for cancer nuclear imaging and internal radiotherapy. J Biomed Biotechnol. 2010. doi:10.1155/2010/953537.

    PubMed  PubMed Central  Google Scholar 

  10. Kwatra D, Venugopal A, Anant S. Nanoparticles in radiation therapy: a summary of various approaches to enhance radiosensitization in cancer. Transl Cancer Res. 2013;2:330–42. doi:10.3978/j.issn.2218-676X.2013.08.06.

    CAS  Google Scholar 

  11. Lechtman E, Mashouf S, Chattopadhyay N, Keller BM, Lai P, Cai Z, et al. A Monte Carlo-based model of gold nanoparticle radiosensitization accounting for increased radiobiological effectiveness. Phys Med Biol. 2013;58:3075–87. doi: 10.1088/0031-9155/58/10/3075

    Article  CAS  PubMed  Google Scholar 

  12. Hainfeld JF, Slatkin DN, Smilowitz HM. The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol. 2004;49:N309–15. http://dx.doi.org/10.1088/0031-9155/49/18/N03

    Google Scholar 

  13. Hainfeld JF, Dilmanian FA, Zhong Z, Slatkin DN, Kalef-Ezra JA, Smilowitz HM. Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma. Phys Med Biol. 2010;55:3045–59. doi:10.1088/0031-9155/55/11/004

    Article  CAS  PubMed  Google Scholar 

  14. Joh DY, Sun L, Stangl M, Al Zaki A, Murty S, Santoiemma PP, Davis JJ, Baumann BC, Alonso-Basanta M, Bhang D, Kao GD, Tsourkas A, Dorsey JF. Selective targeting of brain tumors with gold nanoparticle-induced radiosensitization. PLoS One. 2013;8(4), e62425. doi: 10.1371/journal.pone.0062425

    Google Scholar 

  15. Polley MY, Lamborn KR, Chang SM, Butowski N, Clarke JL, Prados M. Conditional probability of survival in patients with newly diagnosed glioblastoma. J Clin Oncol. 2011;29:4175–80. doi:10.1200/JCO.2010.32.4343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Butterworth KT, McMahon SJ, Taggart LE, Prise KM. Radiosensitization by gold nanoparticles: effective at megavoltage energies and potential role of oxidative stress. Transl Cancer Res. 2013;2:269–79. doi:10.3978/j.issn.2218-676X.2013.08.03.

    CAS  Google Scholar 

  17. Levin WP, Kooy H, Loeffler JS, DeLaney TF. Proton beam therapy. Br J Cancer. 2005;93:849–54. doi: 10.1038/sj.bjc.6602754

    Google Scholar 

  18. Kim JK, Kim HT, Kim JH, Seo SJ, Chung DS, Kim JK. Investigation of tumor cells toxicity from particle induced x-ray emission from a 45-MeV proton beam irradiated ferrite nanoparticle. Int J PIXE. 2009;19:143–55. doi:10.1142/S0129083509001837.

    Article  CAS  Google Scholar 

  19. Seo SJ, Jeon JK, Jeong EJ, Chang WS, Choi GH, Kim JK. Enhancement of tumor regression by coulomb nanoradiator effect in proton treatment of iron-oxide nanoparticle-loaded orthotopic rat glioma model: implication of novel particle induced radiation therapy. J Cancer Ther. 2013;4:25–32. doi:10.4236/jct.2013.411A004.

    Article  Google Scholar 

  20. Kim JK, Seo SJ, Kim KH, Kim TJ, Chung MH, Kim KR, Yang TK. Therapeutic application of metallic nanoparticles combined with particle-induced x-ray emission effect. Nanotechnology. 2010;21:425102. doi:10.1088/0957-4484/21/42/425102.

    Article  PubMed  Google Scholar 

  21. Kim JK, Seo SJ, Kim HT, Kim KH, Chung MH, Kim KR, Ye SJ. Enhanced proton treatment in mouse tumors through proton irradiated nanoradiator effects on metallic nanoparticles. Phys Med Biol. 2012;57:8309–23. doi:10.1088/0031-9155/57/24/8309.

    Article  PubMed  Google Scholar 

  22. Polf JC, Bronk LF, Driessen WH, Arap W, Pasqualini R, Gillin M. Enhanced relative biological effectiveness of proton radiotherapy in tumor cells with internalized gold nanoparticles. Appl Phys Lett. 2011;98:193702. doi:10.1063/1.3589914

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhang L, Chen H, Wang L, Liu T, Yeh J, Lu G, et al. Delivery of therapeutic radioisotopes using nanoparticle platforms: potential benefit in systemic radiation therapy. Nanotechnol Sci Appl. 2010;3:159–70. doi:10.2147/NSA.S7462.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Mitra A, Nan A, Line BR, Ghandehari H. Nanocarriers for nuclear imaging and radiotherapy of cancer. Curr Pharm Des. 2006;12:4729–49. doi:10.2174/13816120677902631

    Article  CAS  PubMed  Google Scholar 

  25. Shokeen M, Fettig NM, Rossin R. Synthesis, in vitro and in vivo evaluation of radiolabeled nanoparticles. Q J Nucl Med Mol Imaging. 2008;52:267–77.

    CAS  PubMed  Google Scholar 

  26. Patt HM, Tyree EB, Straube RL, Smith DE. Cysteine protection against X irradiation. Science. 1949;110:213–4. doi:10.1126/science.110.2852.213

    Article  CAS  PubMed  Google Scholar 

  27. Jagetia GC. Radioprotection and radiosensitization by curcumin. Adv Exp Med Biol. 2007;595:301–20. doi:10.1007/978-0-387-46401-5_13

    Article  PubMed  Google Scholar 

  28. Capizzi RL, Oster W. Chemoprotective and radioprotective effects of amifostine: an update of clinical trials. Int J Hematol. 2000;72:425–35.

    CAS  PubMed  Google Scholar 

  29. Pamujula S, Kishore V, Rider B, Fermin CD, Graves RA, Agrawal KC, et al. Radioprotection in mice following oral delivery of amifostine nanoparticles. Int J Radiat Biol. 2005;81:251–7. doi:10.1080/09553000500103470

    Article  CAS  PubMed  Google Scholar 

  30. Theriot CA, Casey RC, Moore VC, Mitchell L, Reynolds JO, Burgoyne M, et al. Dendro[C(60)]fullerene DF-1 provides radioprotection to radiosensitive mammalian cells. Radiat Environ Biophys. 2010;49:437–45. doi:10.1007/s00411-010-0310-4.

    Article  CAS  PubMed  Google Scholar 

  31. Suresh Reddy J, Venkateswarlu V, Koning GA. Radioprotective effect of transferrin targeted citicoline liposomes. J Drug Target. 2006;14:13–9. doi:10.1080/10611860600613241

    Article  PubMed  Google Scholar 

  32. Gaca S, Reichert S, Rödel C, Rödel F, Kreuter J. Survivin-miRNA-loaded nanoparticles as auxiliary tools for radiation therapy: preparation, characterisation, drug release, cytotoxicity and therapeutic effect on colorectal cancer cells. J Microencapsul. 2012;29:685–94. doi:10.3109/02652048.2012.680511.

    Article  CAS  PubMed  Google Scholar 

  33. Ping Y, Jian Z, Yi Z, Huoyu Z, Feng L, Yuqiong Y, et al. Inhibition of the EGFR with nanoparticles encapsulating antisense oligonucleotides of the EGFR enhances radiosensitivity in SCCVII cells. Med Oncol. 2010;27:715–21. doi:10.1007/s12032-009-9274-0.

    Article  CAS  PubMed  Google Scholar 

  34. Caldorera-Moore ME, Liechty WB, Peppas NA. Responsive theranostic systems: integration of diagnostic imaging agents and responsive controlled release drug delivery carriers. Acc Chem Res. 2011;44:1061–70. doi:10.1021/ar2001777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wadajkar AS, Menon JU, Kadapure T, Tran RT, Yang J, Nguyen KT. Design and application of magnetic-based theranostic nanoparticle systems. Recent Pat Biomed Eng. 2013;6:47–57. doi:10.2174/1874764711306010007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Seymour LW, Ferry DR, Anderson D, Hesslewood S, Julyan PJ, Poyner R, et al. Hepatic drug targeting: phase I evaluation of polymer-bound doxorubicin. J Clin Oncol. 2002;20:1668–76. doi:10.1200/JCO.20.6.1668

    Article  CAS  PubMed  Google Scholar 

  37. Lee WC, Hwang JJ, Tseng YL, Wang HE, Chang YF, Lu YC, et al. Therapeutic efficacy evaluation of 111in-VNB-liposome on human colorectal adenocarcinoma HT-29/luc mouse xenografts. Nucl Instr Methods Phys Res A. 2012;569:497–504. doi:10.1016/j.nima.2006.08.135.

    Article  Google Scholar 

  38. Chow TH, Lin YY, Hwang JJ, Wang HE, Tseng YL, Pang VF, et al. Diagnostic and therapeutic evaluation of 111In-vinorelbine-liposomes in a human colorectal carcinoma HT-29/luc-bearing animal model. Nucl Med Biol. 2008;35:623–34. doi:10.1016/j.nucmedbio.2008.04.001.

    Article  CAS  PubMed  Google Scholar 

  39. Chow TH, Lin YY, Hwang JJ, Wang HE, Tseng YL, Pang VF, et al. Therapeutic efficacy evaluation of 111In-labeled PEGylated liposomal vinorelbine in murine colon carcinoma with multimodalities of molecular imaging. J Nucl Med. 2009;50:2073–81. doi:10.2967/jnumed.109.063503.

    Article  CAS  PubMed  Google Scholar 

  40. DeNardo SJ, DeNardo GL, Miers LA, Natarajan A, Foreman AR, Gruettner C, et al. Development of tumor targeting bioprobes (111In-chimeric L6 monoclonal antibody nanoparticles) for alternating magnetic field cancer therapy. Clin Cancer Res. 2005;11:7087s–7092s. doi:10.1158/1078-0432.CCR-1004-0022

    Article  CAS  PubMed  Google Scholar 

  41. Hernández-Pedro NY, Rangel-López E, Magaña-Maldonado R, de la Cruz VP, del Angel AS, Pineda B, et al. Application of nanoparticles on diagnosis and therapy in gliomas. Biomed Res Int. 2013;14(1):415–32. doi:10.1155/2013/351031.

    Google Scholar 

  42. Shao H, Chung J, Balaj L, Charest A, Bigner DD, Carter BS, et al. Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy. Nat Med. 2012;18:1835–40. doi:10.1038/nm.2994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. McNamara MG, Sahebjam S, Mason WP. Emerging biomarkers in glioblastoma. Cancers. 2013;5:1103–19. doi:10.3390/cancers5031103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciana Dini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Panzarini, E., Dini, L. (2016). NanoMaterials Technology for Research Radiobiology. In: Pirtoli, L., Gravina, G., Giordano, A. (eds) Radiobiology of Glioblastoma. Current Clinical Pathology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-28305-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28305-0_15

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-28303-6

  • Online ISBN: 978-3-319-28305-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics