Skip to main content

miRNA Manipulation in Modifying Radiation Sensitivity in Glioblastoma Models

  • Chapter
  • First Online:
Radiobiology of Glioblastoma

Part of the book series: Current Clinical Pathology ((CCPATH))

  • 748 Accesses

Abstract

MicroRNA (miRNA) modulate the expression of virtually all genes of a cell and therefore are critical actors within the malignant transformation. miRNA are also endogenous molecular weapons of the tumor cells to respond to therapy: in human glioblastoma multiforme (GBM) cells miRNA can counteract the radiation effects interfering with signal transduction cascaded or controlling the fate of the cell by the regulation of programmed cell death processes. On the other hand, the modulation of specific GBM miRNA that contribute to the radio-resistance phenotype might represent a powerful molecular approach to favorably interfere within the altered gene network of human brain tumors.

In this review, we highlight the state of the art of the capacity of miRNA to modulate the behavior of glioblastoma cells to ionizing radiation preclinical schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114:97–109.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJB. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.

    Article  CAS  PubMed  Google Scholar 

  3. Eramo A, Ricci-Vitiani L, Zeuner A, Pallini R, Lotti F, Sette G, et al. Chemotherapy resistance of glioblastoma stem cells. Cell Death Differ. 2006;13: 1238–41.

    Article  CAS  PubMed  Google Scholar 

  4. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T. Identification of a cancer stem cell in human brain tumors. Nature. 2004;432:396–401.

    Article  CAS  PubMed  Google Scholar 

  5. Wilson TA, Karajannis MA, Harter DH. Glioblastoma multiforme: state of the art and future therapeutics. Surg Neurol Int. 2014;5:64.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Nakada M, Kita D, Watanabe T, Hayashi Y, Teng L, Pyko IV, et al. Aberrant signaling pathways in glioma. Cancers. 2011;3:3242–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Palumbo S, Miracco C, Pirtoli L, Comincini S. Emerging roles of microRNA in modulating cell-death processes in malignant glioma. J Cell Physiol. 2014;229:277–86.

    Article  CAS  PubMed  Google Scholar 

  8. Roth P, Weller M. Challenges to targeting epidermal growth factor receptor in glioblastoma: escape mechanisms and combinatorial treatment strategies. Neuro Oncol. 2014;16:4–9.

    Article  Google Scholar 

  9. Lee JK, Joo KM, Lee J, Yoon Y, Nam DH. Targeting the epithelial to mesenchymal transition in glioblastoma: the emerging role of MET signaling. Onco Targets Ther. 2014;7:1933–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen K, Huang YH, Chen JL. Understanding and targeting cancer stem cells: therapeutic implications and challenges. Acta Pharmacol Sin. 2013;34:732–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 2004;64:7011–21.

    Article  CAS  PubMed  Google Scholar 

  12. Cheng JX, Liu BL, Zhang X. How powerful is CD133 as a cancer stem cell marker in brain tumours? Cancer Treat Rev. 2009;35:403–8.

    Article  CAS  PubMed  Google Scholar 

  13. Oka N, Soeda A, Noda S, Iwama T. Brain tumor stem cells from an adenoid glioblastoma multiforme. Neurol Med Chir. 2009;49:146–51.

    Article  Google Scholar 

  14. Beier D, Wischhusen J, Dietmaier W, Hau P, Proescholdt M, Brawanski A, et al. CD133 expression and cancer stem cells predict prognosis in high-grade oligodendroglial tumors. Brain Pathol. 2008;18:370–7.

    Article  PubMed  Google Scholar 

  15. Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR, Lu L, Irvin D, Black KL, Yu JS. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer. 2006;5:67–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. He J, Shan Z, Li L, Liu F, Liu Z, Song M, et al. Expression of glioma stem cell marker CD133 and O6-methylguanine-DNA methyltransferase is associated with resistance to radiotherapy in gliomas. Oncol Rep. 2011;26:1305–13.

    CAS  PubMed  Google Scholar 

  17. Bao S, Wu Q, Sathornsumetee S, Hao Y, Li Z, Hjelmeland AB. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res. 2006;66:7843–8.

    Article  CAS  PubMed  Google Scholar 

  18. Ropolo M, Daga A, Griffero F, Foresta M, Casartelli G, Zunino A, et al. Comparative analysis of DNA repair in stem and nonstem glioma cell cultures. Mol Cancer Res. 2009;7:383–92.

    Article  CAS  PubMed  Google Scholar 

  19. McCord AM, Jamal M, Williams ES, Camphausen K, Tofilon PJ. CD133+ glioblastoma stem-like cells are radiosensitive with a defective DNA damage response compared with established cell lines. Clin Cancer Res. 2009;15:5145–53.

    Article  CAS  PubMed  Google Scholar 

  20. Koshkin PA, Chistiakov DA, Chekhonin VP. Role of microRNAs in mechanisms of glioblastoma resistance to radio- and chemotherapy. Biochemistry. 2013;78:325–34.

    CAS  PubMed  Google Scholar 

  21. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    Article  CAS  PubMed  Google Scholar 

  22. Kim VN. 2005. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol. 2005;6:376–85.

    Article  CAS  PubMed  Google Scholar 

  23. Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ. Processing of primary microRNAs by the Microprocessor complex. Nature. 2004;432:231–5.

    Article  CAS  PubMed  Google Scholar 

  24. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425:415–9.

    Article  CAS  PubMed  Google Scholar 

  25. Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell. 2005;123: 631–40.

    Article  CAS  PubMed  Google Scholar 

  26. Visone R, Croce CM. 2009. MiRNAs and cancer. Am J Pathol. 2009;174:1131–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. 2009;10: 704–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Soifer HS, Rossi JJ, Saetrom P. MicroRNAs in disease and potential therapeutic applications. Mol Ther. 2007;15:2070–9.

    Article  CAS  PubMed  Google Scholar 

  29. Iorio MV, Croce CM. MicroRNAs in cancer: small molecules with a huge impact. J Clin Oncol. 2009;27:5848–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee YS, Dutta A. MicroRNAs: small but potent oncogenes or tumor suppressors. Curr Opin Investig Drugs. 2006;7:560–4.

    CAS  PubMed  Google Scholar 

  31. Zhang B, Pan X, Cobb GP, Anderson TA. MicroRNAs as oncogenes and tumor suppressors. Dev Biol. 2007;302:1–12.

    Article  CAS  PubMed  Google Scholar 

  32. Kreth S, Thon N, Kreth FW. Epigenetics in human gliomas. Cancer Lett. 2014;342:185–92.

    Article  CAS  PubMed  Google Scholar 

  33. Calin GA, Croce CM. MicroRNAs and chromosomal abnormalities in cancer cells. Oncogene. 2006;25:6202–10.

    Article  CAS  PubMed  Google Scholar 

  34. Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet. 2007;39:673–7.

    Article  CAS  PubMed  Google Scholar 

  35. Gaur A, Jewell DA, Liang Y, Ridzon D, Moore JH, Chen C, Ambros VR, et al. Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res. 2007;67:2456–68.

    Article  CAS  PubMed  Google Scholar 

  36. Godlewski J, Nowicki MO, Bronisz A, Williams S, Otsuki A, Nuovo G, et al. Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res. 2008;68:9125–30.

    Article  CAS  PubMed  Google Scholar 

  37. Kim H, Huang W, Jiang X, Pennicooke B, Park PJ, Johnson MD. Integrative genome analysis reveals an oncomir/oncogene cluster regulating glioblastoma survivorship. Proc Natl Acad Sci U S A. 2010;107:2183–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ferretti E, De Smaele E, Po A, Di Marcotullio L, Tosi E, Espinola MS, et al. MicroRNA profiling in human medulloblastoma. Int J Cancer. 2009;124:568–77.

    Article  CAS  PubMed  Google Scholar 

  39. Pang JC, Kwok WK, Chen Z, Ng HK. Oncogenic role of microRNAs in brain tumors. Acta Neuropathol. 2009;117:599–611.

    Article  CAS  PubMed  Google Scholar 

  40. Rao SA, Santosh V, Somasundaram K. Genome-wide expression profiling identifies deregulated miRNAs in malignant astrocytoma. Mod Pathol. 2010;23:1404–17.

    Article  CAS  PubMed  Google Scholar 

  41. Turner JD, Williamson R, Almefty KK, Nakaji P, Porter R, Tse V, et al. The many roles of microRNAs in brain tumor biology. Neurosurg Focus. 2010;28, E3.

    Article  PubMed  Google Scholar 

  42. Li Y, Guessous F, Zhang Y, Dipierro C, Kefas B, Johnson E, et al. MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes. Cancer Res. 2009;69:7569–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mei J, Bachoo R, Zhang CL. MicroRNA-146a inhibits glioma development by targeting Notch1. Mol Cell Biol. 2011;31:3584–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kefas B, Godlewski J, Comeau L, Li Y, Abounader R, Hawkinson M. microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res. 2008;68:3566–72.

    Article  CAS  PubMed  Google Scholar 

  45. Papagiannakopoulos T, Friedmann-Morvinski D, Neveu P, Dugas JC, Gill RM, Huillard E, et al. Pro-neural miR-128 is a glioma tumor suppressor that targets mitogenic kinases. Oncogene. 2008;31: 1884–95.

    Article  CAS  Google Scholar 

  46. Zhang QQ, Xu H, Huang MB, Ma LM, Huang QJ, Yao Q, et al. MicroRNA-195 plays a tumor-suppressor role in human glioblastoma cells by targeting signaling pathways involved in cellular proliferation and invasion. Neuro Oncol. 2012;14: 278–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Al-Nedawi K, Meehan B, Rak J. Microvesicles: messengers and mediators of tumor progression. Cell Cycle. 2009;8:2014–8.

    Article  CAS  PubMed  Google Scholar 

  48. Antonyak MA, Li B, Boroughs LK, Johnson JL, Druso JE, Bryant KL, et al. Cancer cell-derived microvesicles induce transformation by transferring tissue transglutaminase and fibronectin to recipient cells. Proc Natl Acad Sci U S A. 2011;108:4852–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Graner MW, Alzate O, Dechkovskaia AM, Keene JD, Sampson JH, Mitchell DA, et al. Proteomic and immunologic analyses of brain tumor exosomes. FASEB J. 2009;23:1541–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Skog J, Würdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 2008;10:1470–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Godlewski J, Krichevsky AM, Johnson MD, Chiocca EA, Bronisz A. Belonging to a network-microRNAs, extracellular vesicles, and the glioblastoma microenvironment. Neuro Oncol. 2015;17(5):652–62.

    Article  PubMed  Google Scholar 

  52. Gagliano N, Costa F, Cossetti C, Pettinari L, Bassi R, Chiriva-Internati M, et al. Glioma–astrocyte interaction modifies the astrocyte phenotype in a co-culture experimental model. Oncol Rep. 2009;22:1349–56.

    Article  CAS  PubMed  Google Scholar 

  53. Katakowski M, Buller B, Wang X, Rogers T, Chopp M. Functional microRNA is transferred between glioma cells. Cancer Res. 2010;70:8259–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Valiunas V, Polosina YY, Miller H, Potapova IA, Valiuniene L, Doronin S, et al. Connexin-specific cell to-cell transfer of short interfering RNA by gap junctions. J Physiol. 2005;568:459–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chistiakov DA, Chekhonin VP. Contribution of microRNAs to radio- and chemoresistance of brain tumors and their therapeutic potential. Eur J Pharmacol. 2012;684:8–18.

    Article  CAS  PubMed  Google Scholar 

  56. Broderick JA, Zamore PD. MicroRNA therapeutics. Gene Ther. 2011;18:1104–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kurreck J, Wyszko E, Gillen C, Erdmann VA. Design of antisense oligonucleotides stabilized by locked nucleic acids. Nucleic Acids Res. 2002;30:1911–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Stenvang J, Kauppinen S. MicroRNAs as targets for antisense-based therapeutics. Expert Opin Biol Ther. 2008;8:59–81.

    Article  CAS  PubMed  Google Scholar 

  59. Lanford RE, Hildebrandt-Eriksen ES, Petri A, Persson R, Lindow M, Munk ME, Kauppinen S, Ørum H. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science. 2009;327:198–201.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2: 751–60.

    Article  CAS  PubMed  Google Scholar 

  61. Heurtault B, Saulnier P, Pech B, Proust JE, Benoit JP. A novel phase inversion-based process for the preparation of lipid nanocarriers. Pharm Res. 2002;19:875–80.

    Article  CAS  PubMed  Google Scholar 

  62. Allard E, Passirani C, Garcion E, Pigeon P, Vessières A, Jaouen G, et al. Lipid nanocapsules loaded with an organometallic tamoxifen derivative as a novel drug-carrier system for experimental malignant gliomas. J Control Release. 2008;130:146–53.

    Article  CAS  PubMed  Google Scholar 

  63. Garcion E, Lamprecht A, Heurtault B, Paillard A, Aubert-Pouessel A, Denizot B, et al. A new generation of anticancer, drug-loaded, colloidal vectors reverses multidrug resistance in glioma and reduces tumor progression in rats. Mol Cancer Ther. 2006;5:1710–22.

    Article  CAS  PubMed  Google Scholar 

  64. Lacoeuille F, Garcion E, Benoit JP, Lamprecht A. Lipid nanocapsules for intracellular drug delivery of anticancer drugs. J Nanosci Nanotechnol. 2007;7:4612–7.

    CAS  PubMed  Google Scholar 

  65. Paillard A, Hindré F, Vignes-Colombeix C, Benoit JP, Garcion E. The importance of endo-lysosomal escape with lipid nanocapsules for drug subcellular bioavailability. Biomaterials. 2010;31:7542–54.

    Article  CAS  PubMed  Google Scholar 

  66. Roger E, Lagarce F, Garcion E, Benoit JP. Lipid nanocarriers improve paclitaxel transport throughout human intestinal epithelial cells by using vesicle-mediated transcytosis. J Control Release. 2009;140:174–81.

    Article  CAS  PubMed  Google Scholar 

  67. Weyland M, Manero F, Paillard A, Grée D, Viault G, Jarnet D, et al. Mitochondrial targeting by use of lipid nanocapsules loaded with SV30, an analogue of the small-molecule Bcl-2 inhibitor HA14-1. J Control Release. 2011;151:74–82.

    Article  CAS  PubMed  Google Scholar 

  68. Ballot S, Noiret N, Hindré F, Denizot B, Garin E, Rajerison H, et al. 99mTc/188Re-labelled lipid nanocapsules as promising radiotracers for imaging and therapy: formulation and biodistribution. Eur J Nucl Med Mol Imaging. 2006;33:602–7.

    Article  CAS  PubMed  Google Scholar 

  69. Vanpouille-Box C, Lacoeuille F, Roux J, Aubé C, Garcion E, Lepareur N, et al. Lipid nanocapsules loaded with rhenium-188 reduce tumor progression in a rat hepatocellular carcinoma model. PLoS One. 2011;6, e16926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Griveau I, Bejaud J, Anthiya S, Avril S, Autret D, Garcion E. Silencing of miR-21 by locked nucleic acid-lipid nanocapsule complexes sensitize human glioblastoma cells to radiation-induced cell death. Int J Pharm. 2013;454:765–74.

    Article  CAS  PubMed  Google Scholar 

  71. Palumbo S, Comincini S. Autophagy and ionizing radiation in tumors: the “survive or not survive” dilemma. J Cell Physiol. 2013;228:1–8.

    Article  CAS  PubMed  Google Scholar 

  72. Yu KN, Han W. Ionizing radiation, DNA double strand break, and mutation. In: Urbano KV, editor. Advances in genetics research, vol. 4. New York: Nova Science; 2010.

    Google Scholar 

  73. Lee KM, Choi EJ, Kim IA. microRNA-7 increases radiosensitivity of human cancer cells with activated EGFR-associated signaling. Radiother Oncol. 2011;101:171–6.

    Article  CAS  PubMed  Google Scholar 

  74. Squatrito M, Brennan CW, Helmy K, Huse JT, Petrini JH, Holland EC. Loss of ATM/Chk2/p53 pathway components accelerates tumor development and contributes to radiation resistance in gliomas. Cancer Cell. 2010;18:619–29.

    Article  CAS  PubMed  Google Scholar 

  75. Besse A, Sana J, Fadrus P, Slaby O. MicroRNAs involved in chemo- and radioresistance of high-grade gliomas. Tumour Biol. 2013;34:1969–78.

    Article  CAS  PubMed  Google Scholar 

  76. Guillamo JS, de Boüard S, Valable S, Marteau L, Leuraud P, Marie Y. Molecular mechanisms underlying effects of epidermal growth factor receptor inhibition on invasion, proliferation, and angiogenesis in experimental glioma. Clin Cancer Res. 2009;15:3697–704.

    Article  CAS  PubMed  Google Scholar 

  77. Chen G, Zhu W, Shi D, Lv L, Zhang C, Liu P. MicroRNA-181a sensitizes human malignant glioma U87MG cells to radiation by targeting Bcl-2. Oncol Rep. 2010;23:997–1003.

    CAS  PubMed  Google Scholar 

  78. Hara T, Omura-Minamisawa M, Kang Y, Cheng C, Inoue T. Flavopiridol potentiates the cytotoxic effects of radiation in radioresistant tumor cells in which p53 is mutated or Bcl-2 is overexpressed. Int J Radiat Oncol Biol Phys. 2008;71:1485–95.

    Article  CAS  PubMed  Google Scholar 

  79. Krichevsky AM, Gabriely G. miR-21: a small multi-faceted RNA. J Cell Mol Med. 2009;13:39–53.

    Article  CAS  PubMed  Google Scholar 

  80. Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 2005;65:6029–33.

    Article  CAS  PubMed  Google Scholar 

  81. Li Y, Zhao S, Zhen Y, Li Q, Teng L, Asai A, Kawamoto K. A miR-21 inhibitor enhances apoptosis and reduces G(2)-M accumulation induced by ionizing radiation in human glioblastoma U251 cells. Brain Tumor Pathol. 2011;28:209–14.

    Article  PubMed  CAS  Google Scholar 

  82. Chao TF, Xiong HH, Liu W, Chen Y, Zhang JX. MiR-21 mediates the radiation resistance of glioblastoma cells by regulating PDCD4 and hMSH2. J Huazhong Univ Sci Technolog Med Sci. 2013;33:525–9.

    Article  CAS  PubMed  Google Scholar 

  83. Zhou X, Ren Y, Moore L, Mei M, You Y, Mei P. Downregulation of miR-21 inhibits EGFR pathway and suppresses the growth of human glioblastoma cells independent of PTEN status. Lab Invest. 2010;90:144–55.

    Article  CAS  PubMed  Google Scholar 

  84. Huse JT, Brennan C, Hambardzumyan D, Wee B, Pena J, Rouhanifard SH. The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo. Genes Dev. 2009;23:1327–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Poomsawat S, Buajeeb W, Khovidhunkit SO, Punyasingh J. Alteration in the expression of cdk4 and cdk6 proteins in oral cancer and premalignant lesions. J Oral Pathol Med. 2010;39:793–9.

    Article  PubMed  Google Scholar 

  86. Lindberg D, Hessman O, Akerstrom G, Westin G. Cyclin dependent kinase 4 (CDK4) expression in pancreatic endocrine tumors. Neuroendocrinology. 2007;86:112–8.

    Article  CAS  PubMed  Google Scholar 

  87. Dobashi Y, Goto A, Fukayama M, Abe A, Ooi A. Overexpression of cdk4/cyclin D1, a possible mediator of apoptosis and an indicator of prognosis in human primary lung carcinoma. Int J Cancer. 2004;110:532–41.

    Article  CAS  PubMed  Google Scholar 

  88. Zhang L, Yamane T, Satoh E, Amagasaki K, Kawataki T, Asahara T, et al. Establishment and partial characterization of five malignant glioma cell lines. Neuropathology. 2005;25:136–43.

    Article  PubMed  Google Scholar 

  89. Shimura T, Noma N, Oikawa T, Ochiai Y, Kakuda S. Activation of the AKT/cyclin D1/Cdk4 survival signaling pathway in radioresistant cancer stem cells. Oncogenesis. 2012;1:e12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Deng X, Ma L, Wu M, Zhang G, Jin C, Guo Y, et al. miR-124 radiosensitizes human glioma cells by targeting CDK4. J Neurooncol. 2013;114:263–74.

    Article  CAS  PubMed  Google Scholar 

  91. Ng WL, Yan D, Zhang X, Mo YY, Wang Y. Over-expression of miR-100 is responsible for the low-expression of ATM in the human glioma cell line: M059J. DNA Repair. 2010;9:1170–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chaudhry MA, Sachdeva H, Omaruddin RA. Radiation-induced micro-RNA modulation in glioblastoma cells differing in DNA-repair pathways. DNA Cell Biol. 2010;29:553–61.

    Article  CAS  PubMed  Google Scholar 

  93. Lin Y-X, Yu F, Gao N, Sheng J-P, Qiu J-Z, Hu B-C. microRNA-143 protects cells from DNA damage-induced killing by downregulating FHIT expression. Cancer Biother Radiopharm. 2011;26:365–72.

    Article  CAS  PubMed  Google Scholar 

  94. Babar IA, Czochor J, Steinmetz A, Weidhaas JB, Glazer PM, Slack FJ. Inhibition of hypoxia-induced miR-155 radiosensitizes hypoxic lung cancer cells. Cancer Biol Ther. 2011;12:908–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Poltronieri PI, D’Urso PI, Mezzolla V, D’Urso OF. Potential of anti-cancer therapy based on anti-miR-155 oligonucleotides in glioma and brain tumours. Chem Biol Drug Des. 2013;81:79–84.

    Article  CAS  PubMed  Google Scholar 

  96. Yan D, Ng WL, Zhang X, Wang P, Zhang Z, Mo Y-Y. Targeting DNA-PKcs and ATM with miR-101 sensitizes tumors to radiation. PLoS One. 2010;5, e11397.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Mueller AC, Sun D, Dutta A. The miR-99 family regulates the DNA damage response through its target SNF2H. Oncogene. 2012;32:1164–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Mirzayans R, Andrais B, Scott A, Murray D. New insights into p53 signaling and cancer cell response to DNA damage: implications for cancer therapy. J Biomed Biotechnol. 2012;2012:170325. doi:10.1155/2012/170325.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Le MTN, Teh C, Shyh-Chang N, Xie H, Zhou B, Korzh V. MicroRNA-125b is a novel negative regulator of p53. Genes Dev. 2009;23:862–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Luan S, Sun L, Huang F. MicroRNA-34a: a novel tumor suppressor in p53-mutant glioma cell line U251. Arch Med Res. 2010;41:67–74.

    Article  CAS  PubMed  Google Scholar 

  101. Sasaki A, Udaka Y, Tsunoda Y, Yamamoto G, Tsuji M, Oyamada H. Analysis of p53 and miRNA expression after irradiation of glioblastoma cell lines. Anticancer Res. 2012;32:4709–13.

    CAS  PubMed  Google Scholar 

  102. Niemoeller OM, Niyazi M, Corradini S, Zehentmayr F, Li M, Lauber K, et al. MicroRNA expression profiles in human cancer cells after ionizing radiation. Radiat Oncol. 2011;6:29–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ding J, Huang S, Wu S, Zhao Y, Liang L, Yan M, Ge C, et al. Gain of miR-151 on chromosome 8q24.3 facilitates tumor cell migration and spreading through downregulating RhoGDIA. Nat. Cell Biol. 2010;12:390–9.

    CAS  Google Scholar 

  104. Qin W, Shi Y, Zhao B, Yao C, Jin L, Ma J, et al. miR-24 regulates apoptosis by targeting the open reading frame (ORF) region of FAF1 in cancer cells. PLoS One. 2010;5:e9429.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Tian S, Huang S, Wu S, Guo W, Li J, He X. MicroRNA-1285 inhibits the expression of p53 by directly targeting its 3′ untranslated region. Biochem Biophys Res Commun. 2010;396:435–9.

    Article  CAS  PubMed  Google Scholar 

  106. Wild-Bode C, Weller M, Rimner A, Dichgans J, Wick W. Sublethal irradiation promotes migration and invasiveness of glioma cells: implications for radiotherapy of human glioblastoma. Cancer Res. 2001;61:2744–50.

    CAS  PubMed  Google Scholar 

  107. Lee ST, Chu K, Oh HJ, Im WS, Lim JY, Kim SK, et al. Let-7 microRNA inhibits the proliferation of human glioblastoma cells. DNA Cell Biol. 2010;29:553–61.

    Article  CAS  Google Scholar 

  108. Li W, Guo F, Wang P, Hong S, Zhang C. miR-221/222 confers radioresistance in glioblastoma cells through activating Akt independent of PTEN status. Curr Mol Med. 2014;14:185–95.

    Article  CAS  PubMed  Google Scholar 

  109. Shi L, Cheng Z, Zhang J, Li R, Zhao P, Fu Z, et al. hsa-mir-181a and hsa-mir-181b function as tumor suppressors in human glioma cells. Brain Res. 2008;1236:185–93.

    Article  CAS  PubMed  Google Scholar 

  110. Comincini S, Allavena G, Palumbo S, Morini M, Durando F, Angeletti F, et al. microRNA-17 regulates the expression of ATG7 and modulates the autophagy process, improving the sensitivity to temozolomide and low-dose ionizing radiation treatments in human glioblastoma cells. Cancer Biol Ther. 2013;14:574–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gwak HS, Kim TH, Jo GH, Kim YJ, Kwak HJ, Kim JH, et al. Silencing of microRNA-21 confers radio-sensitivity through inhibition of the PI3K/AKT pathway and enhancing autophagy in malignant glioma cell lines. PLoS One. 2012;7, e47449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Taganov KD, Boldin MP, Chang KJ, Baltimore D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A. 2006;103:12481–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hsieh CH, Rau CS, Jeng SF, Lin CJ, Chen YC, Wu CJ, et al. Identification of the potential target genes of microRNA-146a induced by PMA treatment in human microvascular endothelial cells. Exp Cell Res. 2010;316:1119–26.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Comincini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Palumbo, S., Belmonte, G., Tini, P., Toscano, M., Miracco, C., Comincini, S. (2016). miRNA Manipulation in Modifying Radiation Sensitivity in Glioblastoma Models. In: Pirtoli, L., Gravina, G., Giordano, A. (eds) Radiobiology of Glioblastoma. Current Clinical Pathology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-28305-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28305-0_14

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-28303-6

  • Online ISBN: 978-3-319-28305-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics