Advertisement

Cell Death Pathways, with Special Regard to Ionizing Radiation and Temozolomide

  • Marzia ToscanoEmail author
  • Silvia Palumbo
  • Paolo Tini
  • Clelia Miracco
  • Giovanni Luca Gravina
  • Sergio Comincini
Chapter
  • 630 Downloads
Part of the Current Clinical Pathology book series (CCPATH)

Abstract

Tumor cell death is the final goal of both radio- and chemotherapy. For several decades, apoptosis has been considered as the principal type of programmed cell death (PCD) in mammalian tissues. Resistance to apoptosis was closely linked to tumorigenesis, and has taken a central position in cell death research. However, in the last years it has become evident that radiotherapy as well as other therapeutic agents, including temozolomide (TMZ) are able to elicit non-apoptotic pathways of PCD, which are not always mutually exclusive, as thought in the past.In this chapter we will address this topic, focusing on apoptosis and autophagy-related cell death in cancer, their induction by IR and TMZ, and implication in glioblastoma (GB) treatment.We will review currently known mechanisms of both IR and TMZ in inducing cell death, the possibility to modulate PCD as well as other approaches which will open new perspectives for improving the efficacy of therapy in GB.

Keywords

Programme Cell Death Ionize Radiation Arsenic Trioxide Tumor Cell Death Autophagic Cell Death 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ma H, Rao L, Wang HL, Mao ZW, Lei RH, Yang ZY, Qing H, Deng YL. Transcriptome analysis of glioma cells for the dynamic response to γ-irradiation and dual regulation of apoptosis genes: a new insight into radiotherapy for glioblastoma. Cell Death Dis. 2013;4, e895. doi: 10.1038/cddis.2013.412.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Mirzayans R, Andrais B, Scott A, Wang YW, Murray D. Ionizing radiation-induced responses in human cells with differing TP53 status. Int J Mol Sci. 2013;14:22409–35. doi: 10.3390/ijms141122409.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Wong RS. Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res. 2011;30:87. doi: 10.1186/1756-9966-30-87.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Balcer-Kubiczek EK. Apoptosis in radiation therapy: a double-edged sword. Exp Oncol. 2012;34:277–85.PubMedGoogle Scholar
  5. 5.
    Kanzawa T, Germano IM, Komata T, Ito H, Kondo Y, Kondo S. Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ. 2004;11:448–57.CrossRefPubMedGoogle Scholar
  6. 6.
    Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. 2012;19:107–20. doi: 10.1038/cdd.2011.96.CrossRefPubMedGoogle Scholar
  7. 7.
    Chaabane W, User SD, El-Gazzah M, Jaksik R, Sajjadi E, Rzeszowska-Wolny J, Los MJ. Autophagy, apoptosis, mitoptosis and necrosis: interdependence between those pathways and effects on cancer. Arch Immunol Ther Exp. 2013;61:43–58. doi: 10.1007/s00005-012-0205-y.Google Scholar
  8. 8.
    Ouyang L, Shi Z, Zhao S, Wang F-T, Zhou T-T, Liu B, Bao JK. Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif. 2012;45:487–98. doi: 10.1111/j.1365-2184.2012.00845.x.CrossRefPubMedGoogle Scholar
  9. 9.
    Patel MA, Kim JE, Ruzevick J, Li G, Lim M. The future of glioblastomatherapy: synergism of standard of care and immunotherapy. Cancers. 2014;6:1953–85. doi: 10.3390/cancers6041953.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.CrossRefPubMedGoogle Scholar
  11. 11.
    Zhang J, Stevens MF, Bradshaw TD. Temozolomide: mechanisms of action, repair and resistance. Curr Mol Pharmacol. 2012;5:102–14.CrossRefPubMedGoogle Scholar
  12. 12.
    Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17:98–110. doi: 10.1016/j.ccr.2009.12.020.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Brennan CW, Verhaak RG. McKenna A, et al., TCGA Research Network. The somatic genomic landscape of glioblastoma. Cell. 2013;155:462–77.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Shields LB, Kadner R, Vitaz TW, Spalding AC. Concurrent bevacizumab and temozolomide alter the patterns of failure in radiation treatment of glioblastoma multiforme. Radiat Oncol. 2013;8:101. doi: 10.1186/1748-717X-8-101.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Sang D, Li R, Lan Q. Quercetin sensitizes human glioblastoma cells to temozolomide in vitro via inhibition of Hsp27. Acta Pharmacol Sin. 2014;35:832–8.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Noack J, Choi J, Richter K, Kopp-Schneider A, Régnier-Vigouroux A. A sphingosine kinase inhibitor combined with temozolomide induces glioblastoma cell death through accumulation of dihydrosphingosine and dihydroceramide, endoplasmic reticulum stress and autophagy. Cell Death Dis. 2014;5:e1425. doi: 10.1038/cddis.2014.384.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Sharma K, Le N, Alotaibi M, Gewirtz DA. Cytotoxic autophagy in cancer therapy. Int J Mol Sci. 2014;15:10034–51. doi: 10.3390/ijms150610034.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Jiang YG, Peng Y, Koussougbo KS. Necroptosis: A novel therapeutic target for glioblastoma. Med Hypotheses. 2011;76:350–2.CrossRefPubMedGoogle Scholar
  19. 19.
    Roninson IB, Broude EV, Chang BD. If not apoptosis, then what? Treatment-induced senescence and mitotic catastrophe in tumor cells. Drug Resist Updat. 2001;4:303–13.CrossRefPubMedGoogle Scholar
  20. 20.
    Vakifahmetoglu H, Olsson M, Zhivotovsky B. Death through a tragedy: mitotic catastrophe. Cell Death Differ. 2008;15:1153–62.CrossRefPubMedGoogle Scholar
  21. 21.
    Firat E, Gaedicke S, Tsurumi C, Esser N, Weyerbrock A, Niedermann G. Delayed cell death associated with mitotic catastrophe in γ-irradiated stem-like glioma cells. Radiat Oncol. 2011;6:71. doi: 10.1186/1748-717X-6-71.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lindgren T, Stigbrand T, Johansson L, Riklund K, Eriksson D. Alteration in gene expression during radiation-induced mitotic catasrophe in HeLa Hep2 cells. Anticancer Res. 2014;34:3875–80.PubMedGoogle Scholar
  23. 23.
    Buchanan IM, Scott T, Tandle AT, Burgan WE, Burgess TL, Tofilon PJ, Camphausen K. Radiosensitazion of glioma cells by modulation of Met signaling with the hepatocyte growth factor neutralizing antibody, AMG102. J Cell Mol Med. 2011;15:1999–2006.CrossRefPubMedGoogle Scholar
  24. 24.
    Lanvin O, Monferran S, Delmas C, Couderc B, Toulas C, Cohen-Jonathan-Moyal E. Radiation-induced mitotic cell death and glioblastoma radioresistance: a new regulating pathway controlled by integrin-linked kinase, hypoxia-inducible factor 1 alpha and survivin in U87 cells. Eur J Cancer. 2013;49:2884–91. doi: 10.1016/j.ejca.2013.05.003.CrossRefPubMedGoogle Scholar
  25. 25.
    Tandle AT, Kramp T, Kil WJ, Halthore A, Gehlhaus K, Shankavaram U, Tofilon PJ, Calpen NJ, Camphausen K. Inhibition of polo-like kinase 1 in glioblastoma multiforme induces mitotic catastrophe and enhances radiosensitation. Eur J Cancer. 2013;49:3020–8. doi: 10.10106/j.ejca.2013.05.013.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kaltschmidt B, Kaltschmidt C, Hofmann TG, Hehner SP, Dröge W, Schmitz ML. The pro- or anti-apoptotic function of NF-kappaB is determined by the nature of the apoptotic stimulus. Eur J Biochem. 2000;267:3828–35.CrossRefPubMedGoogle Scholar
  27. 27.
    Wada T, Penninger JM. Mitogen-activated protein kinases in apoptosis regulation. Oncogene. 2004;23:2838–49.CrossRefPubMedGoogle Scholar
  28. 28.
    Kouri FM, Jensen SA, Stegh AH. The role of Bcl-2 family proteins in therapy responses of malignant astrocytic gliomas: Bcl2L12 and beyond. ScientificWorldJournal. 2012;2012:838916. doi: 10.1100/2012/838916.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Milinkovic VP, Skender Gazibara MK, Manojlovic Gacic EM, Gazibara TM, Tanic NT. The impact of TP53 and RAS mutations on cerebellar glioblastomas. Exp Mol Pathol. 2014;97:202–7. doi: 10.1016/j.yexmp.2014.07.009.CrossRefPubMedGoogle Scholar
  30. 30.
    Zhu H, Cao X, Ali-Osman F, Keir S, Lo HW. EGFR and EGFRvIII interact with PUMA to inhibit mitochondrial translocalization of PUMA and PUMA-mediated apoptosis independent of EGFR kinase activity. Cancer Lett. 2010;294:101–10.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Nagane M, Levitzki A, Gazit A, Cavenee WK, Huang HJ. Drug resistance of human glioblastoma cells conferred by a tumor-specific mutant epidermal growth factor receptor through modulation of Bcl-XL and caspase-3-like proteases. Proc Natl Acad Sci U S A. 1998;95:5724–9.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Karin M. Nuclear factor-kB in cancer development and progression. Nature. 2006;441:431–6.CrossRefPubMedGoogle Scholar
  33. 33.
    Thariat J, Hannoun-Levi JM, Sun Myint A, Vuong T, Gérard JP. Past, present, and future of radiotherapy for the benefit of patients. Nat Rev Clin Oncol. 2013;10:52-60. doi: 10.1038/nrclinonc.2012.203.Google Scholar
  34. 34.
    Buch K, Peters T, Nawroth T, Sänger M, Schmidberger H, Langguth P. Determination of cell survival after irradiation via clonogenic assay versus multiple MTT assay—a comparative study. Radiat Oncol. 2012;7:1. doi: 10.1186/1748-717X-7-1.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Vacchelli E, Vitale I, Tartour E, Eggermont A, Sautes-Fridman C, Galon J, et al. Trial Watch: anticancer radioimmunotherapy. Oncoimmunology. 2013;2, e24238. http://dx.doi.org/10.4161/onci.24238.Google Scholar
  36. 36.
    Kroemer G, Zitvogel L. Abscopal but desirable: the contribution of immune responses to the efficacy of radiotherapy. Oncoimmunology. 2012;1:407–8; PMID:22754758; doi:http://dx.doi.org/10.4161/onci.2007.
  37. 37.
    Verheij M, Bartelink H. Radiation-induced apoptosis. Cell Tissue Res. 2000;301:133–42.CrossRefPubMedGoogle Scholar
  38. 38.
    Embree-Ku M, Venturini D, Boekelheide K. Fas is involved in the p53-dependent apoptotic response to ionizing radiation in mouse testis. Biol Reprod. 2002;66:1456–61.CrossRefPubMedGoogle Scholar
  39. 39.
    Guida M, Cramarossa A, Fistola E, et al. High activity of sequential low dose chemo-modulating Temozolomide in combination with Fotemustine in metastatic melanoma. A feasibility study. J Transl Med. 2010;8:115. doi: 10.1186/1479-5876-8-115. PMC 2992498.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Su Y, Amiri KI, Horton LW, et al. A phase I trial of bortezomib with temozolomide in patients with advanced melanoma: toxicities, antitumor effects, and modulation of therapeutic targets in Clin. Cancer Res. 2010;16:348–57. doi: 10.1158/1078-0432.CCR-09-2087.Google Scholar
  41. 41.
    Hegi ME, Diserens AC, Gorlia T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352:997–1003.CrossRefPubMedGoogle Scholar
  42. 42.
    Haemmig S, Baumgartner U, Gluck A, Zbinden S, Tschan MP, Kappeler A, Mariani L, Vajtai I, Vassella E. miR-125b controls apoptosis and temozolomide resistance by targeting TNFAIP3 and NKIRAS2 in glioblastomas. Cell Death Dis. 2014;5:e1279. doi: 10.1038/cddis.2014.245.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Roos WP, Batista LF, Naumann SC, Wick W, Weller M, Menck CF, Kaina B. Apoptosis in malignant glioma cells triggered by the temozolomide-induced DNA lesion O6-methylguanine. Oncogene. 2007;26:186–97.CrossRefPubMedGoogle Scholar
  44. 44.
    Jakubowicz-Gil J, Langner E, Bądziul D, Wertel I, Rzeski W. Apoptosis induction in human glioblastoma multiforme T98G cells upon temozolomide and quercetin treatment. Tumour Biol. 2013;34:2367–78. doi: 10.1007/s13277-013-0785-0.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Gratas C, Séry Q, Rabé M, Oliver L, Vallette FM. Bak and Mcl-1 are essential for temozolomide induced cell death in human glioma. Oncotarget. 2014;5:2428–35.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy. 2012;8:445–544.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Mizushima N. Autophagy: process and function. Genes Dev. 2015;21:2861–3.CrossRefGoogle Scholar
  48. 48.
    Janji B, Viry E, Baginska J, Van Moer K, Berchem G. Role of autophagy in cancer and tumor progression (Chapter 9). In: Bailly Y, editor. Autophagy—a double-edged sword—cell survival or death? Croatia: InTech; 2013. p. 189–215. doi: 10.5772/55388.Google Scholar
  49. 49.
    Shen S, Kepp O, Kroemer G. The end of autophagic death? Autophagy. 2012;8:1–3.CrossRefPubMedGoogle Scholar
  50. 50.
    Kroemer G, Levine B. Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol. 2008;9:1004–10.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Yu SW, Baek SH, Brennan RT, Bradley CJ, Park SK, Lee YS, et al. Autophagic death of adult hippocampal neural stem cells following insulin withdrawal. Stem Cells. 2008;26:2602–10.CrossRefPubMedGoogle Scholar
  52. 52.
    Ronan B, Flamand O, Vescovi L, Dureuil C, Durand L, Fassy F, et al. A highly potent and selective Vps34 inhibitor alters vesicle trafficking and autophagy. Nat Chem Biol. 2014;10:1013–9. doi: 10.1038/nchembio.1681.CrossRefPubMedGoogle Scholar
  53. 53.
    Noda NN, Fujioka Y, Hanada T, Ohsumi Y, Inagaki F. Structure of the Atg12-Atg5 conjugate reveals a platform for stimulating Atg8-PE conjugation. EMBO Rep. 2013;14:206–11. doi: 10.1038/embor.2012.208.CrossRefPubMedGoogle Scholar
  54. 54.
    Hyttinen JM, Niittykoski M, Salminen A, Kaarniranta K. Maturation of autophagosomes and endosomes: a key role for Rab7. Biochim Biophys Acta. 1833;2013:503–10. doi: 10.1016/j.bbamcr.2012.11.018.Google Scholar
  55. 55.
    Manil-Segalén M, Lefebvre C, Culetto E, Legouis R. Need an ESCRT for autophagosomal maturation? Commun Integr Biol. 2012;5:566–71. doi: 10.4161/cib.21522.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Mehrpour M, Esclatine A, Beau I, Codogno P. Overview of macroautophagy regulation in mammalian cells. Cell Res. 2010;20:748–62. doi: 10.1038/cr.2010.82.CrossRefPubMedGoogle Scholar
  57. 57.
    Lefranc F. Glioblastomas are resistant to apoptosis but less resistant to the autophagic process. Bull Mem Acad R Med Belg. 2007;162:331–8.PubMedGoogle Scholar
  58. 58.
    Iwamaru A, Kondo Y, Iwado E, Aoki H, Fujiwara K, Yokoyama T, Mills GB, Kondo S. Silencing mammalian target of rapamycin signaling by small interfering RNA enhances rapamycin-induced autophagy in malignant glioma cells. Oncogene. 2007;26:1840–51.CrossRefPubMedGoogle Scholar
  59. 59.
    Martinet W, Agostinis P, Vanhoecke B, Dewaele M, De Meyer GR. Autophagy in disease: a double-edged sword with therapeutic potential. Clin Sci (Lond). 2009;116:697–712. doi: 10.1042/CS20080508.CrossRefGoogle Scholar
  60. 60.
    Arico S, Petiot A, Bauvy C, Dubbelhuis PF, Meijer AJ, Codogno P, Ogier-Denis E. The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem. 2001;276:35243–6.CrossRefPubMedGoogle Scholar
  61. 61.
    Feng Z, Zhang H. Levine AJ, and Jin S The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci U S A. 2005;102:8204–9. doi: 10.1073/pnas.0502857102.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Gewirtz DA. The four faces of autophagy: implications for cancer therapy. Cancer Res. 2014;74:647–51.CrossRefPubMedGoogle Scholar
  63. 63.
    Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature. 1999;402:672–6.CrossRefPubMedGoogle Scholar
  64. 64.
    Yue Z, Jin S, Yang C, Levine AJ, Heintz N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci U S A. 2003;100:15077–82.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, Rosen J, Eskelinen E-L, Mizushima N, Ohsumi Y, Cattoretti G, Levine B. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest. 2003;112:1809–20. doi: 10.1172/JCI200320039.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Fu LL, Cheng Y, Liu B. Beclin-1: autophagic regulator and therapeutic target in cancer. Int J Biochem Cell Biol. 2013;45:921–4. doi: 10.1016/j.biocel.2013.02.007.CrossRefPubMedGoogle Scholar
  67. 67.
    Miracco C, Cosci E. OliveriG, Luzi P, Pacenti L, Monciatti I, Mannucci S, De Nisi MC, Toscano M, Malagnino V, Falzarano SM, Pirtoli L, Tosi P. Protein and mRNA expression of autophagy gene Beclin 1 in human brain tumours. Int J Oncol. 2007;30:429–36.PubMedGoogle Scholar
  68. 68.
    Huang X, Bai HM, Chen L, Li B, Lu YC. Reduced expression of LC3B-II and Beclin 1 in glioblastoma multiforme indicates a down-regulated autophagic capacity that relates to the progression of astrocytic tumors. J Clin Neurosci. 2010;17:1515–9. doi: 10.1016/j.jocn.2010.03.051.CrossRefPubMedGoogle Scholar
  69. 69.
    Pirtoli L, Cevenini G, Tini P, Vannini M, Oliveri G, Marsili S, et al. The prognostic role of Beclin 1 protein expression in high-grade gliomas. Autophagy. 2009;5:930–6.CrossRefPubMedGoogle Scholar
  70. 70.
    Kondo Y, Kanzawa T, Sawaya R, Kondo S. The role of autophagy in cancer development and response to therapy. Nat Rev Cancer. 2005;5:726–34.CrossRefPubMedGoogle Scholar
  71. 71.
    Lomonaco SL, Finniss S, Xiang C, Decarvalho A, Umansky F, Kalkanis SN, et al. The induction of autophagy by gamma-radiation contributes to the radioresistance of glioma stem cells. Int J Cancer. 2009;125:717–22.CrossRefPubMedGoogle Scholar
  72. 72.
    Zhuang W, Qin Z, Liang Z. The role of autophagy in sensitizing malignant glioma cells to radiation therapy. Acta Biochim Biophys Sin (Shanghai). 2009;41:341–51.CrossRefGoogle Scholar
  73. 73.
    Pajonk F, Vlashi E, McBride WH. Radiation resistance of cancer stem cells: the 4 R’s of radiobiology revisited. Stem Cells. 2010;28:639–48.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Apel A, Herr I, Schwarz H, Rodemann HP, Mayer A. Blocked autophagy sensitizes resistant carcinoma cells to radiation therapy. Cancer Res. 2008;68:1485–94. doi: 10.1158/0008-5472.CAN-07-0562.CrossRefPubMedGoogle Scholar
  75. 75.
    Ito H, Daido S, Kanzawa T, Kondo S, Kondo Y. Radiation-induced autophagy is associated with LC3 and its inhibition sensitizes malignant glioma cells. Int J Oncol. 2005;26:1401–10.PubMedGoogle Scholar
  76. 76.
    Fujiwara K, Iwado E, Mills GB, Sawaya R, Kondo S, Kondo Y. Akt inhibitor shows anticancer and radiosensitizing effects in malignant glioma cells by inducing autophagy. Int J Oncol. 2007;31:753–60.PubMedGoogle Scholar
  77. 77.
    Kim KW, Hwang M, Moretti L, Jaboin JJ, Cha YI, Lu B. Autophagy up-regulation by inhibitors of caspase-3 and mTOR enhances radiotherapy in a mouse model of lung cancer. Autophagy. 2008;4:659–68.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Bristol ML, Di X, Beckman MJ, Wilson EN, Henderson SC, Maiti A, Fan Z, Gewirtz DA. Dual functions of autophagy in the response of breast tumor cells to radiation. Cytoprotective autophagy with radiation alone and cytotoxic autophagy in radiosensitization by vitamin D3. Autophagy. 2012;8(5):739–53. doi: 10.4161/auto.19313.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Palumbo S, Pirtoli L, Tini P, Cevenini G, Calderaro F, Toscano M, Miracco C, Comincini S. Different involvement of autophagy in human malignant glioma cell lines undergoing irradiation and temozolomide combined treatments. J Cell Biochem. 2012;113:2308–18.CrossRefPubMedGoogle Scholar
  80. 80.
    Moretti L, Kim KW, Jung DK, Willey CD, Lu B. Radiosensitization of solid tumors by Z-VAD, a pan-caspase inhibitor. Mol Cancer Ther. 2009;8:1270–9.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Gupta AK, Bakanauskas VJ, Cerniglia GJ, Cheng Y, Bernhard EJ, Muschel RJ, McKenna WG. The Ras radiation resistance pathway. Cancer Res. 2001;61:4278–82.PubMedGoogle Scholar
  82. 82.
    Wu YT, Tan HL, Huang Q, Ong CN, Shen HM. Activation of the PI3K-Akt-mTOR signaling pathway promotes necrotic cell death via suppression of autophagy. Autophagy. 2009;5:824–34.CrossRefPubMedGoogle Scholar
  83. 83.
    Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov. 2005;4:988–1004.CrossRefPubMedGoogle Scholar
  84. 84.
    Newton HB. Molecular neuro-oncology and development of targeted therapeutic strategies for brain tumors. Part 2: Pi3k/Akt/pten, mtor, shh/ptch and angiogenesis. Expert Rev Anticancer Ther. 2004;4:105–28.CrossRefPubMedGoogle Scholar
  85. 85.
    Kim KW, Mutter RW, Cao C, Albert JM, Freeman M, Hallahan DE, Lu B. Autophagy for cancer therapy through inhibition of pro-apoptotic proteins and mammalian target of rapamycin signaling. J Biol Chem. 2006;281:36883–90.CrossRefPubMedGoogle Scholar
  86. 86.
    Berger Z, Ravikumar B, Menzies FM, Oroz LG, Underwood BR, Pangalos MN, Schmitt I, Wullner U, Evert BO, O’Kane CJ, Rubinsztein DC. Rapamycin alleviates toxicity of different aggregate- prone proteins. Hum Mol Genet. 2006;15:433–42.CrossRefPubMedGoogle Scholar
  87. 87.
    Daido S, Yamamoto A, Fujiwara K, Sawaya R, Kondo S, Kondo Y. Inhibition of the DNA-dependent protein kinase catalytic subunit radiosensitizes malignant glioma cells by inducing autophagy. Cancer Res. 2005;65(10):4368–75.CrossRefPubMedGoogle Scholar
  88. 88.
    Eisenberg-Lerner A, Bialik S, Simon HU, Kimchi A. Life and death partners: apoptosis, autophagy and the cross-talk between them. Cell Death Differ. 2009;16:966–75. doi: 10.1038/cdd.2009.33.CrossRefPubMedGoogle Scholar
  89. 89.
    Cao C, Subhawong T, Albert JM, Kim KW, Geng L, Sekhar KR, Gi YJ, Lu B. Inhibition of mammalian target of rapamycin or apoptotic pathway induces autophagy and radiosensitizes PTEN null prostate cancer cells. Cancer Res. 2006;66:10040–7.CrossRefPubMedGoogle Scholar
  90. 90.
    Choi EJ, Cho BJ, Lee DJ, Hwang YH, Chun SH, Kim HH, Kim IA. Enhanced cytotoxic effect of radiation and temozolomide in malignant glioma cells: targeting PI3K-AKT-mTOR signalling, HSP90 and histone deacetylases. BMC Cancer. 2014;14:17. doi: 10.1186/1471-2407-14-17.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Kanzawa T, Bedwell J, Kondo Y, Kondo S, Germano IM. Inhibition of DNA repair for sensitizing resistant glioma cells to temozolomide. J Neurosurg. 2003;99:1047–52.CrossRefPubMedGoogle Scholar
  92. 92.
    Knizhnik AV, Roos WP, Nikolova T, Quiros S, Tomaszowski KH, Christmann M, Kaina B. Survival and death strategies in glioma cells: autophagy, senescence and apoptosis triggered by a single type of temozolomide-induced DNA damage. PLoS One. 2013;8, e55665. doi: 10.1371/journal.pone.0055665.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Omuro A, DeAngelis LM. Glioblastoma and other malignant gliomas: a clinical review. JAMA. 2013;310:1842–50. doi: 10.1001/jama.2013.280319.CrossRefPubMedGoogle Scholar
  94. 94.
    Gilbert MR, Wang M, Aldape KD, Stupp R, Hegi ME, Jaeckle KA, Armstrong TS, et al. Dose-dense temozolomide for newly diagnosed glioblastoma: a randomized phase III clinical trial. J Clin Oncol. 2013;31:4085–91. doi: 10.1200/JCO.2013.49.6968.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Zhan M, Han ZC. Phosphatidylinositide 3-kinase/AKT in radiation responses. Histol Histopathol. 2004;19:915–23.PubMedGoogle Scholar
  96. 96.
    Frederick L, Wang XY, Eley G, James CD. Diversity and frequency of epidermal growth factor receptor mutations in human glioblastoma. Cancer Res. 2000;60:1383–7.PubMedGoogle Scholar
  97. 97.
    Nakada M, Kita D, Watanabe T, Hayashi Y, Teng L, Pyko VI, Hamada J-I. Aberrant signaling pathways in glioma. Cancers. 2011;3:3242–78. doi: 10.3390/cancers3033242.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Marzia Toscano
    • 1
    • 2
    Email author
  • Silvia Palumbo
    • 2
  • Paolo Tini
    • 1
    • 3
  • Clelia Miracco
    • 4
  • Giovanni Luca Gravina
    • 5
  • Sergio Comincini
    • 6
  1. 1.Tuscany Tumor InstituteFlorenceItaly
  2. 2.Unit of Radiation Oncology, Department of MedicineSurgery and Neurosciences University of SienaSienaItaly
  3. 3.Unit of Radiation OncologyUniversity Hospital of Siena (Azienda Ospedaliera-Universitaria Senese)SienaItaly
  4. 4.Unit of Pathological Anatomy, Department of Medicine, Surgery and NeurosciencesUniversity of SienaSienaItaly
  5. 5.Department of Radiological, Oncological and Anatomo-Pathological SciencesUniversity of Rome “La Sapienza”RomeItaly
  6. 6.Department of Biology and BiotechnologyUniversity of PaviaPaviaItaly

Personalised recommendations