Skip to main content

Using Soil Depth Functions to Distinguish Dystric from Xanthic Ferralsols in the Landscape

  • Chapter
  • First Online:
Digital Soil Morphometrics

Abstract

The soil texture is a key parameter and is widely used as input in predictive models to estimate other soil properties. The general goal was creating numerical parameters to describe the variability of soil particle size (sand, silt, and clay) components using continuous depth functions to characterize Ferralsols from Guapi-Macacu watershed in Rio de Janeiro State (Brazil). The profile collection comprises fifteen profiles, seven classified as Haplic Ferralsols (Dystric) and eight as Haplic Ferralsols (Xanthic). The analysis was performed in the R software through “aqp” package (Algorithms for Quantitative Pedology) and using equal-area quadratic spline function. A numerical aggregation of soil texture components was used to build a mean, a median, and spline depth functions, fitting the dataset to six predefined depths (GlobalSoilMap project) and to most-likely horizon depths. The analysis revealed sand and silt content with decreasing values with soil depth and the opposite trend for clay. The topsoil layer (0–30 cm) had dominantly a clay loam texture (32–40 % clay; 49–53 % sand; and 15–20 % silt). The most-likely diagnostic B-horizon (45–150 cm depth) presented clayey texture (43–47 % of clay and 40–55 % of sand). Ferralsols usually have low silt contents; and the silt range was from 10 to 20 % in the soil profile collection. The organized data can be useful to many purposes, including profile database harmonization and soil classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arrouays D, Vion I, Kicin JL (1995) Spatial analysis and modeling of topsoil carbon storage in temperate forest humic loamy soils of France. Soil Sci 159:191–198

    Article  CAS  Google Scholar 

  • Arrouays D, McKenzie N, Hempel J, de Forges AR, McBratney AB (eds) (2014) GlobalSoilMap: basis of the global spatial soil information system. CRC Press

    Google Scholar 

  • Beaudette DE, Roudier P, O’Geen AT (2013) Algorithms for quantitative pedology: a toolkit for soil scientists. Comput Giosci 52:258–268

    Google Scholar 

  • Bishop TFA, McBratney AB, Laslett GM (1999) Modelling soil attribute depth functions with equal-area quadratic smoothing splines. Geoderma 91:27–45

    Article  Google Scholar 

  • Dantas JRC, Almeida JR, Lins GA (2008) Environmental impacts in the watershed of Guapi-Macacu and its consequences for the water supply in the municipalities of eastern Guanabara Bay. (In Portuguese). Série Gestão e Planejamento Ambiental. (Coleção Artigos Técnicos nº7). CETEM/MCT. Rio de Janeiro, RJ. 26 p

    Google Scholar 

  • Dick DP, Gonçalves CN, Dalmolin RSD, Knicker H, Klamt E, Kögel-Knabnerc I, Simões ML, Martin-Neto L (2005) Characteristics of soil organic matter of different Brazilian Ferralsols under native vegetation as a function of soil depth. Geoderma 124(3–4):319–333. doi:10.1016/j.geoderma.2004.05.008

    Article  CAS  Google Scholar 

  • Empresa Brasileira de Pesquisa Agropecuária. EMBRAPA. Centro Nacional de Pesquisa de Solos (1997) Manual de métodos de análise de solo. Rio de Janeiro: Centro Nacional de Pesquisa de Solos—CNPS. 212p. (Embrapa-CNPS. Documentos. 1)

    Google Scholar 

  • Fernandez-Illescas CP, Porporato A, Laio F, Rodriguez-Iturbe I (2001) The ecohydroogical role of soil texture in a water-limited ecosystem. Water Resour Res 37(12):2863–2872

    Article  Google Scholar 

  • Ferrari AL (2001) Evolução Tectônica do Gráben da Guanabara. Tese de Doutoramento. Instituto de Geociências, USP, São Paulo

    Google Scholar 

  • Hartemink AE, Hempel J, Lagacherie P, McBratney A, McKenzie N, MacMillan RA, Zhang GL (2010) GlobalSoilMap.net–a new digital soil map of the world. In: Digital soil mapping. Springer, Netherlands, pp. 423–428

    Google Scholar 

  • IUSS Working Group WRB (2014) World reference base for soil resources 2014. World Soil Resources Reports No. 106. FAO, Rome. World Reference Base for Soil Resources. WRB. World Reference Base for Soil Resources (2014) FAO, Rome. 191 p. (World Soil Resources Reports, No. 106)

    Google Scholar 

  • Jenny H (1980) The soil resource, origin and behaviour. Springer, New York. 377 p

    Google Scholar 

  • Kaufman L, Rousseeuw PJ (2005) Finding groups in data an introduction to cluster analysis. Wiley-Interscience

    Google Scholar 

  • Klingebiel AA (1963) Land classification for use in planning. Agriculture Yearbook. U.S. Department of Agriculture, Washington, DC, pp 399–407

    Google Scholar 

  • Köppen W (1948) Climatologia: com un estudio de los climas de la tierra. (In Espanish). Fondo Cultura Econômica. Panuco, México. 479 p

    Google Scholar 

  • Malone BP, Minasny B, McBratney AB (2009) Mapping continuous soil depth functions in the Edgeroi District, NSW, Australia, using terrain attributes and other environmental factors, proceedings of geomorphometry. Malone

    Google Scholar 

  • McBratney AB, Odeh I, Bishop T, Dunbar MS, Shatar TM (2000) An overview of pedometric techniques for use in soil survey. Geoderma 97:293–327

    Article  Google Scholar 

  • Moore ID, Gessler PE, Nielsen GA, Peterson GA (1993) Soil attribute prediction using terrain analysis. Soil Sci Soc Am J 57:443–452

    Article  Google Scholar 

  • Odgers NP, Libohova Z, Thompson JA (2012) Equal-area spline functions applied to a legacy soil database to create weighted-means maps of soil organic carbon at a continental scale. Geoderma 189–190:153–163p

    Article  Google Scholar 

  • Pedreira, BCCG, Fidalgo ECC, Abreu MB (2009) Mapeamento do uso e cobertura da terra da bacia hidrográfica do rio Guapi-Macacu, RJ. Anais XIV Simpósio Brasileiro de Sensoriamento Remoto, pp 2111–2118, Natal, Brasil, INPE, 25–30 Apr 2009

    Google Scholar 

  • Pereira W, Tanaka OK (1984) Elementos de estatística. McGraw-Hill do Brasil, São Paulo, p 309p

    Google Scholar 

  • Pinheiro HSK, Anjos LHC, Chagas CS (2013) Mapeamento Digital de Solos por Redes Neurais Artificiais -Estudo de Caso: Bacia Hidrográfica do Rio Guapi-Macacu, RJ. NovasEdiçõesAcadêmicas—NEA. OmniScriptumGmbH & Co. Saarbrücken, Germany

    Google Scholar 

  • Ponce-Hernandez R, Marriott FHC, Beckett PHT (1986) An improved method for reconstructing a soil profile from analyses of a small number of samples. J Soil Sci 37:455–467

    Article  Google Scholar 

  • Projeto Macacu (2010) Strategic plan to the hydrographic region of Guapi-Macacu and Caceribu-Macacu rivers. (In Portuguese). UFF/FEC. Niterói, RJ. 544 p

    Google Scholar 

  • R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available at: http://www.r-project.org/isbn3-900051-07-0. Accessed 8 May 2013

  • Santos HG, Jacomine PKT, Anjos LHC, Oliveira VA, Lumbreras JF, Coelho MR, Almeida JA, Cunha TJF, Oliveira JB (2013) Sistema Brasileiro de Classificação de Solos -SiBCS (Brazilian System of SoilClassification) 3rd edn. Rio de Janeiro. Embrapa Solos, Rio de Janeiro, Brazil

    Google Scholar 

  • Silver WL, Neff J, McGroddy M, Veldkamp E, Keller M, Cosme R (2000) Effects of soil texture on belowground carbon and nutrient storage in a lowland Amazonian forest ecosystem. Ecosystems 3:193–209. doi:10.1007/s100210000019

    Article  CAS  Google Scholar 

  • Sposito G (1989) The chemistry of soils. Oxford Univ. Press, New York, 215 p

    Google Scholar 

  • Thompson JA, Roecker S, Grunwald S, Owens PR (2012) Digital soil mapping: interactions with and applications. In: Hydropedology. 1st edn. pp 665–709

    Google Scholar 

  • Webster R, Oliver M (1990) Statistical methods in soil and land resource survey. Oxford University Press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Saraiva Koenow Pinheiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pinheiro, H.S.K., de Carvalho Jr., W., da Silva Chagas, C., dos Anjos, L.H.C., Owens, P.R. (2016). Using Soil Depth Functions to Distinguish Dystric from Xanthic Ferralsols in the Landscape. In: Hartemink, A., Minasny, B. (eds) Digital Soil Morphometrics. Progress in Soil Science. Springer, Cham. https://doi.org/10.1007/978-3-319-28295-4_19

Download citation

Publish with us

Policies and ethics