Skip to main content

Regenerative Therapies for Retinopathy

  • Chapter
  • First Online:
  • 797 Accesses

Abstract

Studies conducted in animal models and human tissues have suggested that retinopathies occur through loss of cells resulting in vascular leakage, excessive immature retinal angiogenesis, and neuronal degeneration eventually leading to loss of vision. Regenerative therapy offers a great promise for such terminally differentiated organs with a stem cell-based therapy. A variety of stem cells including tissue specific endogenous stem cells, hematopoietic stem cells, embryonic stem cells, endothelial progenitor cells, induced pluripotent stem cells and adult mesenchymal stem cells have been considered. Although we made great progress in regenerative therapies in the last two decades, much of the stem cell work on retinopathies came from animal models that do not mimic human retinopathies. In addition, the key molecular and cellular signaling mechanisms in these stem cells in relation to the hostile disease environment have not been thoroughly investigated. Last but not least, the unwanted, unintended differentiated cell types from stem cells likely affect the function, efficacy, and safety of a stem cell product and therefore long-term studies relevant to human conditions must be addressed. As we attempt to translate these cell therapies from preclinical studies into the clinic, challenges remain to be solved center on reproducible manufacturing ability and testing in clinically validated end points relevant to human retinopathies. This chapter describes the current aspects of stem cell therapy in retinopathy, specifically for Diabetic Retinopathy and Retinopathy of Prematurity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdel-Aal el SM, Akhtar H, Zaheer K, Ali R (2013) Dietary sources of lutein and zeaxanthin carotenoids and their role in eye health. Nutrients 5(4):1169–1185

    Article  CAS  Google Scholar 

  • Aboody K, Capela A, Niazi N, Stern JH, Temple S (2011) Translating stem cell studies to the clinic for CNS repair: current state of the art and the need for a Rosetta stone. Neuron 70(4):597–613

    Article  CAS  PubMed  Google Scholar 

  • Agrawal A, McKibbin MA (2006) Purtscher’s and Purtscher-like retinopathies: a review. Surv Ophthalmol 51(2):129–136

    Article  PubMed  Google Scholar 

  • Ahmed Z, Kalinski H, Berry M, Almasieh M, Ashush H, Slager N, Brafman A, Spivak I, Prasad N, Mett I, Shalom E, Alpert E, Di Polo A, Feinstein E, Logan A (2011) Ocular neuroprotection by siRNA targeting caspase-2. Cell Death Dis 2:e173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aiello LP, Bursell SE, Clermont A, Duh E, Ishii H, Takagi C, Mori F, Ciulla TA, Ways K, Jirousek M, Smith LE, King GL (1997) Vascular endothelial growth factor-induced retinal permeability is mediated by protein kinase C in vivo and suppressed by an orally effective beta-isoform-selective inhibitor. Diabetes 46(9):1473–1480

    Article  CAS  PubMed  Google Scholar 

  • Alonso-Alonso ML, Srivastava GK (2015) Current focus of stem cell application in retinal repair. World J Stem Cells 7(3):641–648

    Article  PubMed  PubMed Central  Google Scholar 

  • Al-Shabrawey M, Mussell R, Kahook K, Tawfik A, Eladl M, Sarthy V, Nussbaum J, El-Marakby A, Park SY, Gurel Z, Sheibani N, Maddipati KR (2011) Increased expression and activity of 12-lipoxygenase in oxygen-induced ischemic retinopathy and proliferative diabetic retinopathy: implications in retinal neovascularization. Diabetes 60(2):614–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aoki M, Yasutake M, Murohara T (2004) Derivation of functional endothelial progenitor cells from human umbilical cord blood mononuclear cells isolated by a novel cell filtration device. Stem Cells 22(6):994–1002

    Article  CAS  PubMed  Google Scholar 

  • Armstrong D, Augustin AJ, Spengler R, Al-Jada A, Nickola T, Grus F, Koch F (1998) Detection of vascular endothelial growth factor and tumor necrosis factor alpha in epiretinal membranes of proliferative diabetic retinopathy, proliferative vitreoretinopathy and macular pucker. Ophthalmologica 212(6):410–414

    Article  CAS  PubMed  Google Scholar 

  • Ashton N (1950) Injection of the retinal vascular system in the enucleated eye in diabetic retinopathy. Br J Ophthalmol 34(1):38–41, illust

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barber AJ, Gardner TW, Abcouwer SF (2011) The significance of vascular and neural apoptosis to the pathology of diabetic retinopathy. Invest Ophthalmol Vis Sci 52(2):1156–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behl Y, Krothapalli P, Desta T, DiPiazza A, Roy S, Graves DT (2008) Diabetes-enhanced tumor necrosis factor-alpha production promotes apoptosis and the loss of retinal microvascular cells in type 1 and type 2 models of diabetic retinopathy. Am J Pathol 172(5):1411–1418

    Article  PubMed  PubMed Central  Google Scholar 

  • Birukova AA, Birukov KG, Gorshkov B, Liu F, Garcia JG, Verin AD (2005) MAP kinases in lung endothelial permeability induced by microtubule disassembly. Am J Physiol Lung Cell Mol Physiol 289(1):L75–L84

    Article  CAS  PubMed  Google Scholar 

  • Blocki A, Wang Y, Koch M, Peh P, Beyer S, Law P, Hui J, Raghunath M (2013) Not all MSCs can act as pericytes: functional in vitro assays to distinguish pericytes from other mesenchymal stem cells in angiogenesis. Stem Cells Dev 22(17):2347–2355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bone RA, Landrum JT, Friedes LM, Gomez CM, Kilburn MD, Menendez E, Vidal I, Wang W (1997) Distribution of lutein and zeaxanthin stereoisomers in the human retina. Exp Eye Res 64(2):211–218

    Article  CAS  PubMed  Google Scholar 

  • Bradley J, Ju M, Robinson GS (2007) Combination therapy for the treatment of ocular neovascularization. Angiogenesis 10(2):141–148

    Article  CAS  PubMed  Google Scholar 

  • Braithwaite T, Vugler A, Tufail A (2012) Autoimmune retinopathy. Ophthalmologica 228(3):131–142

    Article  CAS  PubMed  Google Scholar 

  • Busik JV, Mohr S, Grant MB (2008) Hyperglycemia-induced reactive oxygen species toxicity to endothelial cells is dependent on paracrine mediators. Diabetes 57(7):1952–1965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Busik JV, Esselman WJ, Reid GE (2012) Examining the role of lipid mediators in diabetic retinopathy. Clin Lipidol 7(6):661–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byfield G, Budd S, Hartnett ME (2009) The role of supplemental oxygen and JAK/STAT signaling in intravitreous neovascularization in a ROP rat model. Invest Ophthalmol Vis Sci 50(7):3360–3365

    Article  PubMed  PubMed Central  Google Scholar 

  • Caballero S, Sengupta N, Afzal A, Chang KH, Li Calzi S, Guberski DL, Kern TS, Grant MB (2007) Ischemic vascular damage can be repaired by healthy, but not diabetic, endothelial progenitor cells. Diabetes 56(4):960–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai J, Kehoe O, Smith GM, Hykin P, Boulton ME (2008) The angiopoietin/Tie-2 system regulates pericyte survival and recruitment in diabetic retinopathy. Invest Ophthalmol Vis Sci 49(5):2163–2171

    Article  PubMed  Google Scholar 

  • Campochiaro PA (2000) Retinal and choroidal neovascularization. J Cell Physiol 184(3):301–310

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Jump DB, Grant MB, Esselman WJ, Busik JV (2003) Dyslipidemia, but not hyperglycemia, induces inflammatory adhesion molecules in human retinal vascular endothelial cells. Invest Ophthalmol Vis Sci 44(11):5016–5022

    Article  PubMed  Google Scholar 

  • Cogan DG, Toussaint D, Kuwabara T (1961) Retinal vascular patterns. IV. Diabetic retinopathy. Arch Ophthalmol 66:366–378

    Article  CAS  PubMed  Google Scholar 

  • Connor KM, SanGiovanni JP, Lofqvist C, Aderman CM, Chen J, Higuchi A, Hong S, Pravda EA, Majchrzak S, Carper D, Hellstrom A, Kang JX, Chew EY, Salem N Jr, Serhan CN, Smith LE (2007) Increased dietary intake of omega-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis. Nat Med 13(7):868–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costeloe KL, Hennessy EM, Haider S, Stacey F, Marlow N, Draper ES (2012) Short term outcomes after extreme preterm birth in England: comparison of two birth cohorts in 1995 and 2006 (the EPICure studies). BMJ 345:e7976

    Article  PubMed  PubMed Central  Google Scholar 

  • Crawford TN, Alfaro DV 3rd, Kerrison JB, Jablon EP (2009) Diabetic retinopathy and angiogenesis. Curr Diabetes Rev 5(1):8–13

    Article  CAS  PubMed  Google Scholar 

  • Dammann O (2010) Inflammation and retinopathy of prematurity. Acta Paediatr (Oslo, Norway: 1992) 99(7):975–977

    Article  Google Scholar 

  • Davis MD (1992) Diabetic retinopathy. A clinical overview. Diabetes Care 15(12):1844–1874

    Article  CAS  PubMed  Google Scholar 

  • Del Debbio CB, Balasubramanian S, Parameswaran S, Chaudhuri A, Qiu F, Ahmad I (2010) Notch and Wnt signaling mediated rod photoreceptor regeneration by Muller cells in adult mammalian retina. PLoS One 5(8):e12425

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Del Debbio CB, Peng X, Xiong H, Ahmad I (2013) Adult ciliary epithelial stem cells generate functional neurons and differentiate into both early and late born retinal neurons under non-cell autonomous influences. BMC Neurosci 14:130

    Article  PubMed  PubMed Central  Google Scholar 

  • Demircan N, Safran BG, Soylu M, Ozcan AA, Sizmaz S (2006) Determination of vitreous interleukin-1 (IL-1) and tumour necrosis factor (TNF) levels in proliferative diabetic retinopathy. Eye 20(12):1366–1369

    Article  CAS  PubMed  Google Scholar 

  • Diabetes-atlas. International Diabetes Federation (6th) 2014 [cited May 21, 2015]. Available from http://www.idf.org/diabetesatlas

  • Dorrell MI, Aguilar E, Jacobson R, Trauger SA, Friedlander J, Siuzdak G, Friedlander M (2010) Maintaining retinal astrocytes normalizes revascularization and prevents vascular pathology associated with oxygen-induced retinopathy. Glia 58(1):43–54

    Article  PubMed  PubMed Central  Google Scholar 

  • Du Y, Tang J, Li G, Berti-Mattera L, Lee CA, Bartkowski D, Gale D, Monahan J, Niesman MR, Alton G, Kern TS (2010) Effects of p38 MAPK inhibition on early stages of diabetic retinopathy and sensory nerve function. Invest Ophthalmol Vis Sci 51(4):2158–2164

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Remessy AB, Rajesh M, Mukhopadhyay P, Horvath B, Patel V, Al-Gayyar MM, Pillai BA, Pacher P (2011) Cannabinoid 1 receptor activation contributes to vascular inflammation and cell death in a mouse model of diabetic retinopathy and a human retinal cell line. Diabetologia 54(6):1567–1578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferris FL 3rd, Chew EY, Hoogwerf BJ (1996) Serum lipids and diabetic retinopathy. Early Treatment Diabetic Retinopathy Study Research Group. Diabetes Care 19(11):1291–1293

    Article  PubMed  Google Scholar 

  • Friedlander M, Dorrell MI, Ritter MR, Marchetti V, Moreno SK, El-Kalay M, Bird AC, Banin E, Aguilar E (2007) Progenitor cells and retinal angiogenesis. Angiogenesis 10(2):89–101

    Article  PubMed  Google Scholar 

  • Gardiner TA, Gibson DS, de Gooyer TE, de la Cruz VF, McDonald DM, Stitt AW (2005) Inhibition of tumor necrosis factor-alpha improves physiological angiogenesis and reduces pathological neovascularization in ischemic retinopathy. Am J Pathol 166(2):637–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gertzberg N, Neumann P, Rizzo V, Johnson A (2004) NAD(P)H oxidase mediates the endothelial barrier dysfunction induced by TNF-alpha. Am J Physiol Lung Cell Mol Physiol 286(1):L37–L48

    Article  CAS  PubMed  Google Scholar 

  • Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107(9):1058–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giordano C, Roberts R, Krentz K, Bissig D, Talreja D, Kumar A, Terlecky S, Berkowitz BA (2015) Catalase therapy corrects oxidative stress-induced pathophysiology in incipient diabetic retinopathy. Invest Ophthalmol Vis Sci 56(5):3095–3102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldblum SE, Ding X, Campbell-Washington J (1993) TNF-alpha induces endothelial cell F-actin depolymerization, new actin synthesis, and barrier dysfunction. Am J Physiol 264(4 Pt 1):C894–C905

    CAS  PubMed  Google Scholar 

  • Gong X, Rubin LP (2015) Role of macular xanthophylls in prevention of common neovascular retinopathies: retinopathy of prematurity and diabetic retinopathy. Arch Biochem Biophys 572:40–48

    Article  CAS  PubMed  Google Scholar 

  • Good WV (2004) Final results of the Early Treatment for Retinopathy of Prematurity (ETROP) randomized trial. Trans Am Ophthalmol Soc 102:233–248; discussion 248–250

    PubMed  PubMed Central  Google Scholar 

  • Grunewald M, Avraham I, Dor Y, Bachar-Lustig E, Itin A, Jung S, Chimenti S, Landsman L, Abramovitch R, Keshet E (2006) VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 124(1):175–189

    Article  CAS  PubMed  Google Scholar 

  • Hartnett ME (2010a) The effects of oxygen stresses on the development of features of severe retinopathy of prematurity: knowledge from the 50/10 OIR model. Doc Ophthalmol 120(1):25–39

    Article  PubMed  Google Scholar 

  • Hartnett ME (2010b) Studies on the pathogenesis of avascular retina and neovascularization into the vitreous in peripheral severe retinopathy of prematurity (an american ophthalmological society thesis). Trans Am Ophthalmol Soc 108:96–119

    PubMed  PubMed Central  Google Scholar 

  • Hartnett ME (2015) Pathophysiology and mechanisms of severe retinopathy of prematurity. Ophthalmology 122(1):200–210

    Article  PubMed  Google Scholar 

  • Hashimoto S, Gon Y, Matsumoto K, Takeshita I, Horie T (2001) N-acetylcysteine attenuates TNF-alpha-induced p38 MAP kinase activation and p38 MAP kinase-mediated IL-8 production by human pulmonary vascular endothelial cells. Br J Pharmacol 132(1):270–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hellstrom A, Smith LE, Dammann O (2013) Retinopathy of prematurity. Lancet 382(9902):1445–1457

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hennig R, Goepferich A (2015) Nanoparticles for the treatment of ocular neovascularizations. Eur J Pharm Biopharm 95(Pt B):294–306

    Article  CAS  PubMed  Google Scholar 

  • Hill AJ, Zwart I, Tam HH, Chan J, Navarrete C, Jen LS, Navarrete R (2009) Human umbilical cord blood-derived mesenchymal stem cells do not differentiate into neural cell types or integrate into the retina after intravitreal grafting in neonatal rats. Stem Cells Dev 18(3):399–409

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Liang J, Cui H, Wang X, Rong H, Shao B, Cui H (2013) Wharton’s jelly mesenchymal stem cells differentiate into retinal progenitor cells. Neural Regen Res 8(19):1783–1792

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes S, Yang H, Chan-Ling T (2000) Vascularization of the human fetal retina: roles of vasculogenesis and angiogenesis. Invest Ophthalmol Vis Sci 41(5):1217–1228

    CAS  PubMed  Google Scholar 

  • Ishii H, Jirousek MR, Koya D, Takagi C, Xia P, Clermont A, Bursell SE, Kern TS, Ballas LM, Heath WF, Stramm LE, Feener EP, King GL (1996) Amelioration of vascular dysfunctions in diabetic rats by an oral PKC beta inhibitor. Science 272(5262):728–731

    Article  CAS  PubMed  Google Scholar 

  • Jarajapu YP, Grant MB (2010) The promise of cell-based therapies for diabetic complications: challenges and solutions. Circ Res 106(5):854–869

    Article  CAS  PubMed  Google Scholar 

  • Jiang B, Zhang P, Zhou D, Zhang J, Xu X, Tang L (2013) Intravitreal transplantation of human umbilical cord blood stem cells protects rats from traumatic optic neuropathy. PLoS One 8(8), e69938. doi:10.1371/journal.pone.0069938. Print 2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson TV, Bull ND, Hunt DP, Marina N, Tomarev SI, Martin KR (2010) Neuroprotective effects of intravitreal mesenchymal stem cell transplantation in experimental glaucoma. Invest Ophthalmol Vis Sci 51(4):2051–2059

    Article  PubMed  PubMed Central  Google Scholar 

  • Joussen AM, Poulaki V, Le ML, Koizumi K, Esser C, Janicki H, Schraermeyer U, Kociok N, Fauser S, Kirchhof B, Kern TS, Adamis AP (2004) A central role for inflammation in the pathogenesis of diabetic retinopathy. FASEB J 18(12):1450–1452

    CAS  PubMed  Google Scholar 

  • Katsi V, Marketou M, Vlachopoulos C, Tousoulis D, Souretis G, Papageorgiou N, Stefanadis C, Vardas P, Kallikazaros I (2012) Impact of arterial hypertension on the eye. Curr Hypertens Rep 14(6):581–590

    Article  CAS  PubMed  Google Scholar 

  • Kempen JH, O’Colmain BJ, Leske MC, Haffner SM, Klein R, Moss SE, Taylor HR, Hamman RF (2004) The prevalence of diabetic retinopathy among adults in the United States. Arch Ophthalmol 122(4):552–563

    Article  PubMed  Google Scholar 

  • Kermorvant-Duchemin E, Sapieha P, Sirinyan M, Beauchamp M, Checchin D, Hardy P, Sennlaub F, Lachapelle P, Chemtob S (2010) Understanding ischemic retinopathies: emerging concepts from oxygen-induced retinopathy. Doc Ophthalmol 120(1):51–60

    Article  PubMed  Google Scholar 

  • Kern TS (2007) Contributions of inflammatory processes to the development of the early stages of diabetic retinopathy. Exp Diabetes Res 2007:95103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kern TS, Barber AJ (2008) Retinal ganglion cells in diabetes. J Physiol 586(Pt 18):4401–4408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kielczewski JL, Hu P, Shaw LC, Li Calzi S, Mames RN, Gardiner TA, McFarland E, Chan-Ling T, Grant MB (2011) Novel protective properties of IGFBP-3 result in enhanced pericyte ensheathment, reduced microglial activation, increased microglial apoptosis, and neuronal protection after ischemic retinal injury. Am J Pathol 178(4):1517–1528

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim R, Kim YC (2014) Posterior pole sparing laser photocoagulation combined with intravitreal bevacizumab injection in posterior retinopathy of prematurity. J Ophthalmol 2014:257286

    PubMed  PubMed Central  Google Scholar 

  • Klaassen I, Van Noorden CJ, Schlingemann RO (2013) Molecular basis of the inner blood-retinal barrier and its breakdown in diabetic macular edema and other pathological conditions. Prog Retin Eye Res 34:19–48

    Article  CAS  PubMed  Google Scholar 

  • Klufas MA, Chan RV (2015) Intravitreal anti-VEGF therapy as a treatment for retinopathy of prematurity: what we know after 7 years. J Pediatr Ophthalmol Strabismus 52(2):77–84

    Article  PubMed  Google Scholar 

  • Kociok N, Radetzky S, Krohne TU, Gavranic C, Joussen AM (2006) Pathological but not physiological retinal neovascularization is altered in TNF-Rp55-receptor-deficient mice. Invest Ophthalmol Vis Sci 47(11):5057–5065

    Article  PubMed  Google Scholar 

  • Kohner EM, Dollery CT, Paterson JW, Oakley NW (1967) Arterial fluorescein studies in diabetic retinopathy. Diabetes 16(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Kompella UB, Amrite AC, Pacha Ravi R, Durazo SA (2013) Nanomedicines for back of the eye drug delivery, gene delivery, and imaging. Prog Retin Eye Res 36:172–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kowluru RA (2005) Diabetic retinopathy: mitochondrial dysfunction and retinal capillary cell death. Antioxid Redox Signal 7(11–12):1581–1587

    Article  CAS  PubMed  Google Scholar 

  • Lamba DA, Gust J, Reh TA (2009) Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in Crx-deficient mice. Cell Stem Cell 4(1):73–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee K, Hu Y, Ding L, Chen Y, Takahashi Y, Mott R, Ma JX (2012) Therapeutic potential of a monoclonal antibody blocking the Wnt pathway in diabetic retinopathy. Diabetes 61(11):2948–2957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Calzi S, Neu MB, Shaw LC, Kielczewski JL, Moldovan NI, Grant MB (2010) EPCs and pathological angiogenesis: when good cells go bad. Microvasc Res 79(3):207–216

    Article  CAS  PubMed  Google Scholar 

  • Limb GA, Chignell AH, Green W, LeRoy F, Dumonde DC (1996) Distribution of TNF alpha and its reactive vascular adhesion molecules in fibrovascular membranes of proliferative diabetic retinopathy. Br J Ophthalmol 80(2):168–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Guan L, Huang B, Li W, Su Q, Yu M, Xu X, Luo T, Lin S, Sun X, Chen M, Chen X (2011) Adult peripheral blood mononuclear cells transdifferentiate in vitro and integrate into the retina in vivo. Cell Biol Int 35(6):631–638

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Hunter DJ, Rooker S, Chan A, Paulus YM, Leucht P, Nusse Y, Nomoto H, Helms JA (2013) Wnt signaling promotes Muller cell proliferation and survival after injury. Invest Ophthalmol Vis Sci 54(1):444–453

    Article  CAS  PubMed  Google Scholar 

  • Lyons TJ, Jenkins AJ, Zheng D, Lackland DT, McGee D, Garvey WT, Klein RL (2004) Diabetic retinopathy and serum lipoprotein subclasses in the DCCT/EDIC cohort. Invest Ophthalmol Vis Sci 45(3):910–918

    Article  PubMed  Google Scholar 

  • McGill TJ, Cottam B, Lu B, Wang S, Girman S, Tian C, Huhn SL, Lund RD, Capela A (2012) Transplantation of human central nervous system stem cells – neuroprotection in retinal degeneration. Eur J Neurosci 35(3):468–477

    Article  PubMed  Google Scholar 

  • McKenzie JA, Ridley AJ (2007) Roles of Rho/ROCK and MLCK in TNF-alpha-induced changes in endothelial morphology and permeability. J Cell Physiol 213(1):221–228

    Article  CAS  PubMed  Google Scholar 

  • McLeod DS, Hasegawa T, Prow T, Merges C, Lutty G (2006) The initial fetal human retinal vasculature develops by vasculogenesis. Dev Dyn 235(12):3336–3347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mead B, Logan A, Berry M, Leadbeater W, Scheven BA (2013) Intravitreally transplanted dental pulp stem cells promote neuroprotection and axon regeneration of retinal ganglion cells after optic nerve injury. Invest Ophthalmol Vis Sci 54(12):7544–7556

    Article  CAS  PubMed  Google Scholar 

  • Miranda S, Gonzalez-Rodriguez A, Garcia-Ramirez M, Revuelta-Cervantes J, Hernandez C, Simo R, Valverde AM (2012) Beneficial effects of fenofibrate in retinal pigment epithelium by the modulation of stress and survival signaling under diabetic conditions. J Cell Physiol 227(6):2352–2362

    Article  CAS  PubMed  Google Scholar 

  • Mohajerani SA, Roodneshin F (2014) Low dose aminophylline effectively decreases the risk of post-operative apnea in premature infants. Tanaffos 13(3):31–37

    PubMed  PubMed Central  Google Scholar 

  • Musch DC (2014) Evidence for including lutein and zeaxanthin in oral supplements for age-related macular degeneration. JAMA Ophthalmol 132(2):139–141

    Article  CAS  PubMed  Google Scholar 

  • Muto T, Tien T, Kim D, Sarthy VP, Roy S (2014) High glucose alters Cx43 expression and gap junction intercellular communication in retinal Muller cells: promotes Muller cell and pericyte apoptosis. Invest Ophthalmol Vis Sci 55(7):4327–4337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nentwich MM, Ulbig MW (2015) Diabetic retinopathy – ocular complications of diabetes mellitus. World J Diabetes 6(3):489–499

    Article  PubMed  PubMed Central  Google Scholar 

  • Nguyen QD, Brown DM, Marcus DM, Boyer DS, Patel S, Feiner L, Gibson A, Sy J, Rundle AC, Hopkins JJ, Rubio RG, Ehrlich JS (2012) Ranibizumab for diabetic macular edema: results from 2 phase III randomized trials: RISE and RIDE. Ophthalmology 119(4):789–801

    Article  PubMed  Google Scholar 

  • Niesman MR, Johnson KA, Penn JS (1997) Therapeutic effect of liposomal superoxide dismutase in an animal model of retinopathy of prematurity. Neurochem Res 22(5):597–605

    Article  CAS  PubMed  Google Scholar 

  • Ooto S, Akagi T, Kageyama R, Akita J, Mandai M, Honda Y, Takahashi M (2004) Potential for neural regeneration after neurotoxic injury in the adult mammalian retina. Proc Natl Acad Sci U S A 101(37):13654–13659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Opreanu M, Tikhonenko M, Bozack S, Lydic TA, Reid GE, McSorley KM, Sochacki A, Perez GI, Esselman WJ, Kern T, Kolesnick R, Grant MB, Busik JV (2011) The unconventional role of acid sphingomyelinase in regulation of retinal microangiopathy in diabetic human and animal models. Diabetes 60(9):2370–2378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otani A, Kinder K, Ewalt K, Otero FJ, Schimmel P, Friedlander M (2002) Bone marrow-derived stem cells target retinal astrocytes and can promote or inhibit retinal angiogenesis. Nat Med 8(9):1004–1010

    Article  CAS  PubMed  Google Scholar 

  • Pacher P, Szabo C (2005) Role of poly(ADP-ribose) polymerase-1 activation in the pathogenesis of diabetic complications: endothelial dysfunction, as a common underlying theme. Antioxid Redox Signal 7(11–12):1568–1580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park TS, Bhutto I, Zimmerlin L, Huo JS, Nagaria P, Miller D, Rufaihah AJ, Talbot C, Aguilar J, Grebe R, Merges C, Reijo-Pera R, Feldman RA, Rassool F, Cooke J, Lutty G, Zambidis ET (2014) Vascular progenitors from cord blood-derived induced pluripotent stem cells possess augmented capacity for regenerating ischemic retinal vasculature. Circulation 129(3):359–372

    Article  PubMed  Google Scholar 

  • Peng Y, Zhang Y, Huang B, Luo Y, Zhang M, Li K, Li W, Wen W, Tang S (2014) Survival and migration of pre-induced adult human peripheral blood mononuclear cells in retinal degeneration slow (rds) mice three months after subretinal transplantation. Curr Stem Cell Res Ther 9(2):124–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perrone S, Tei M, Longini M, Santacroce A, Turrisi G, Proietti F, Felici C, Picardi A, Bazzini F, Vasarri P, Buonocore G (2014) Lipid and protein oxidation in newborn infants after lutein administration. Oxid Med Cell Longev 2014:781454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters EB, Liu B, Christoforou N, West JL, Truskey GA (2015) Umbilical cord blood-derived mononuclear cells exhibit pericyte-like phenotype and support network formation of endothelial progenitor cells in vitro. Ann Biomed Eng 43(10):2552–2568

    Article  PubMed  Google Scholar 

  • Petrache I, Verin AD, Crow MT, Birukova A, Liu F, Garcia JG (2001) Differential effect of MLC kinase in TNF-alpha-induced endothelial cell apoptosis and barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 280(6):L1168–L1178

    CAS  PubMed  Google Scholar 

  • Petrache I, Birukova A, Ramirez SI, Garcia JG, Verin AD (2003a) The role of the microtubules in tumor necrosis factor-alpha-induced endothelial cell permeability. Am J Respir Cell Mol Biol 28(5):574–581

    Article  CAS  PubMed  Google Scholar 

  • Petrache I, Crow MT, Neuss M, Garcia JG (2003b) Central involvement of Rho family GTPases in TNF-alpha-mediated bovine pulmonary endothelial cell apoptosis. Biochem Biophys Res Commun 306(1):244–249

    Article  CAS  PubMed  Google Scholar 

  • Pierce EA, Foley ED, Smith LE (1996) Regulation of vascular endothelial growth factor by oxygen in a model of retinopathy of prematurity. Arch Ophthalmol 114(10):1219–1228

    Article  CAS  PubMed  Google Scholar 

  • Prasain N, Lee MR, Vemula S, Meador JL, Yoshimoto M, Ferkowicz MJ, Fett A, Gupta M, Rapp BM, Saadatzadeh MR, Ginsberg M, Elemento O, Lee Y, Voytik-Harbin SL, Chung HM, Hong KS, Reid E, O’Neill CL, Medina RJ, Stitt AW, Murphy MP, Rafii S, Broxmeyer HE, Yoder MC (2014) Differentiation of human pluripotent stem cells to cells similar to cord-blood endothelial colony-forming cells. Nat Biotech 32(11):1151–1157

    Article  CAS  Google Scholar 

  • Qanungo S, Mukherjea M (2000) Ontogenic profile of some antioxidants and lipid peroxidation in human placental and fetal tissues. Mol Cell Biochem 215(1–2):11–19

    Article  CAS  PubMed  Google Scholar 

  • Rajashekhar G (2014) Mesenchymal stem cells: new players in retinopathy therapy. Front Endocrinol (Lausanne) 5:59

    Google Scholar 

  • Rajashekhar G, Grow M, Willuweit A, Patterson CE, Clauss M (2007) Divergent and convergent effects on gene expression and function in acute versus chronic endothelial activation. Physiol Genomics 31(1):104–113

    Article  CAS  PubMed  Google Scholar 

  • Rajashekhar G, Ramadan A, Abburi C, Callaghan B, Traktuev DO, Evans-Molina C, Maturi R, Harris A, Kern TS, March KL (2014) Regenerative therapeutic potential of adipose stromal cells in early stage diabetic retinopathy. PLoS One 9(1):e84671

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, Pell CL, Johnstone BH, Considine RV, March KL (2004) Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 109(10):1292–1298

    Article  PubMed  Google Scholar 

  • Reichenbach A, Bringmann A (2013) New functions of Muller cells. Glia 61(5):651–678

    Article  PubMed  Google Scholar 

  • Reichstein D (2015) Current treatments and preventive strategies for radiation retinopathy. Curr Opin Ophthalmol 26(3):157–166

    Article  PubMed  Google Scholar 

  • Ritter MR, Banin E, Moreno SK, Aguilar E, Dorrell MI, Friedlander M (2006) Myeloid progenitors differentiate into microglia and promote vascular repair in a model of ischemic retinopathy. J Clin Invest 116(12):3266–3276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roh S, Weiter JJ (1994) Light damage to the eye. J Fla Med Assoc 81(4):248–251

    CAS  PubMed  Google Scholar 

  • Roy S, Bae E, Amin S, Kim D (2015) Extracellular matrix, gap junctions, and retinal vascular homeostasis in diabetic retinopathy. Exp Eye Res 133:58–68

    Article  CAS  PubMed  Google Scholar 

  • Sapieha P, Joyal JS, Rivera JC, Kermorvant-Duchemin E, Sennlaub F, Hardy P, Lachapelle P, Chemtob S (2010) Retinopathy of prematurity: understanding ischemic retinal vasculopathies at an extreme of life. J Clin Invest 120(9):3022–3032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott A, Fruttiger M (2009) Oxygen-induced retinopathy: a model for vascular pathology in the retina. Eye 24(3):416–421

    Article  PubMed  Google Scholar 

  • Shaw JE, Sicree RA, Zimmet PZ (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 87(1):4–14

    Article  CAS  PubMed  Google Scholar 

  • Shima C, Sakaguchi H, Gomi F, Kamei M, Ikuno Y, Oshima Y, Sawa M, Tsujikawa M, Kusaka S, Tano Y (2008) Complications in patients after intravitreal injection of bevacizumab. Acta Ophthalmol 86(4):372–376

    Article  PubMed  Google Scholar 

  • Sia PI, Luiten AN, Stace TM, Wood JP, Casson RJ (2014) Quantum biology of the retina. Clin Experiment Ophthalmol 42(6):582–589

    Article  PubMed  Google Scholar 

  • Sood BG, Madan A, Saha S, Schendel D, Thorsen P, Skogstrand K, Hougaard D, Shankaran S, Carlo W (2010) Perinatal systemic inflammatory response syndrome and retinopathy of prematurity. Pediatr Res 67(4):394–400

    Article  PubMed  PubMed Central  Google Scholar 

  • Spranger J, Meyer-Schwickerath R, Klein M, Schatz H, Pfeiffer A (1995) TNF-alpha level in the vitreous body. Increase in neovascular eye diseases and proliferative diabetic retinopathy. Med Klin (Munich) 90(3):134–137

    CAS  Google Scholar 

  • Stefansson E, Landers MB 3rd, Wolbarsht ML (1983) Oxygenation and vasodilatation in relation to diabetic and other proliferative retinopathies. Ophthalmic Surg 14(3):209–226

    CAS  PubMed  Google Scholar 

  • Stone J, Itin A, Alon T, Pe’er J, Gnessin H, Chan-Ling T, Keshet E (1995) Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J Neurosci 15(7 Pt 1):4738–4747

    CAS  PubMed  Google Scholar 

  • Tang J, Kern TS (2011) Inflammation in diabetic retinopathy. Prog Retin Eye Res 30(5):343–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang J, Du Y, Petrash JM, Sheibani N, Kern TS (2013) Deletion of aldose reductase from mice inhibits diabetes-induced retinal capillary degeneration and superoxide generation. PLoS One 8(4):e62081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thakur A, Scheinman RI, Rao VR, Kompella UB (2011) Pazopanib, a multitargeted tyrosine kinase inhibitor, reduces diabetic retinal vascular leukostasis and leakage. Microvasc Res 82(3):346–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tien T, Barrette KF, Chronopoulos A, Roy S (2013) Effects of high glucose-induced Cx43 downregulation on occludin and ZO-1 expression and tight junction barrier function in retinal endothelial cells. Invest Ophthalmol Vis Sci 54(10):6518–6525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tremblay S, Miloudi K, Chaychi S, Favret S, Binet F, Polosa A, Lachapelle P, Chemtob S, Sapieha P (2013) Systemic inflammation perturbs developmental retinal angiogenesis and neuroretinal function. Invest Ophthalmol Vis Sci 54(13):8125–8139

    Article  CAS  PubMed  Google Scholar 

  • Tropepe V, Coles BL, Chiasson BJ, Horsford DJ, Elia AJ, McInnes RR, van der Kooy D (2000) Retinal stem cells in the adult mammalian eye. Science 287(5460):2032–2036

    Article  CAS  PubMed  Google Scholar 

  • Tsuruma K, Yamauchi M, Sugitani S, Otsuka T, Ohno Y, Nagahara Y, Ikegame Y, Shimazawa M, Yoshimura S, Iwama T, Hara H (2014) Progranulin, a major secreted protein of mouse adipose-derived stem cells, inhibits light-induced retinal degeneration. Stem Cells Transl Med 3(1):42–53

    Article  CAS  PubMed  Google Scholar 

  • Valen G, Erl W, Eriksson P, Wuttge D, Paulsson G, Hansson GK (1999) Hydrogen peroxide induces mRNA for tumour necrosis factor alpha in human endothelial cells. Free Radic Res 31(6):503–512

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Yerukhimovich M, Gaarde WA, Popoff IJ, Doerschuk CM (2005) MKK3 and -6-dependent activation of p38alpha MAP kinase is required for cytoskeletal changes in pulmonary microvascular endothelial cells induced by ICAM-1 ligation. Am J Physiol Lung Cell Mol Physiol 288(2):L359–L369

    Article  CAS  PubMed  Google Scholar 

  • Wei X, Du Z, Zhao L, Feng D, Wei G, He Y, Tan J, Lee WH, Hampel H, Dodel R, Johnstone BH, March KL, Farlow MR, Du Y (2009a) IFATS collection: the conditioned media of adipose stromal cells protect against hypoxia-ischemia-induced brain damage in neonatal rats. Stem Cells 27(2):478–488

    Article  CAS  PubMed  Google Scholar 

  • Wei X, Zhao L, Zhong J, Gu H, Feng D, Johnstone BH, March KL, Farlow MR, Du Y (2009b) Adipose stromal cells-secreted neuroprotective media against neuronal apoptosis. Neurosci Lett 462(1):76–79

    Article  CAS  PubMed  Google Scholar 

  • Weidemann A, Krohne TU, Aguilar E, Kurihara T, Takeda N, Dorrell MI, Simon MC, Haase VH, Friedlander M, Johnson RS (2010) Astrocyte hypoxic response is essential for pathological but not developmental angiogenesis of the retina. Glia 58(10):1177–1185

    PubMed  PubMed Central  Google Scholar 

  • Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27(5):1047–1053

    Article  PubMed  Google Scholar 

  • Wojciak-Stothard B, Entwistle A, Garg R, Ridley AJ (1998) Regulation of TNF-alpha-induced reorganization of the actin cytoskeleton and cell-cell junctions by Rho, Rac, and Cdc42 in human endothelial cells. J Cell Physiol 176(1):150–165

    Article  CAS  PubMed  Google Scholar 

  • Wong RK, Hubschman S, Tsui I (2015) Reactivation of retinopathy of prematurity after ranibizumab treatment. Retina 35(4):675–680

    Article  CAS  PubMed  Google Scholar 

  • Writing Team for the Diabetes Control and Complications Trial. The Diabetes Control and Complications Trial Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329(14):977–986

    Article  Google Scholar 

  • Yang Y, Hayden MR, Sowers S, Bagree SV, Sowers JR (2010) Retinal redox stress and remodeling in cardiometabolic syndrome and diabetes. Oxidative Med Cell Longev 3(6):392–403

    Article  Google Scholar 

  • Yoder MC (2012) Human endothelial progenitor cells. Cold Spring Harb Perspect Med 2(7):a006692

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu H, Vu THK, Cho K-S, Guo C, Chen DF (2014) Mobilizing endogenous stem cells for retinal repair. Translat Res: J Lab Clin Med 163(4):387–398

    Article  CAS  Google Scholar 

  • Zhang Y, Luo Y, Li K, Zhang M, Huang B, Peng Y, Wang W, Li W, Liu Y (2013) Pre-induced adult human peripheral blood mononuclear cells migrate widely into the degenerative retinas of rd1 mice. Cytotherapy 15(11):1416–1425

    Article  CAS  PubMed  Google Scholar 

  • Zhao T, Li Y, Tang L, Li Y, Fan F, Jiang B (2011) Protective effects of human umbilical cord blood stem cell intravitreal transplantation against optic nerve injury in rats. Graefes Arch Clin Exp Ophthalmol 249(7):1021–1028

    Article  PubMed  Google Scholar 

  • Zwart I, Hill AJ, Al-Allaf F, Shah M, Girdlestone J, Sanusi AB, Mehmet H, Navarrete R, Navarrete C, Jen LS (2009) Umbilical cord blood mesenchymal stromal cells are neuroprotective and promote regeneration in a rat optic tract model. Exp Neurol 216(2):439–448

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported in part by grants from the National Eye Institute (EY023427) and an unrestricted grant from Research to Prevent Blindness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajashekhar Gangaraju Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Periasamy, R., Gangaraju, R. (2016). Regenerative Therapies for Retinopathy. In: Steinhoff, G. (eds) Regenerative Medicine - from Protocol to Patient. Springer, Cham. https://doi.org/10.1007/978-3-319-28293-0_9

Download citation

Publish with us

Policies and ethics