Skip to main content

Regenerative Therapy for Central Nervous System Trauma

  • Chapter
  • First Online:

Abstract

Functional regeneration and not merely structural restoration is important in the central nervous system (CNS) following loss of tissue due to trauma. Spontaneous regeneration in the CNS is poor due to a number of reasons, mainly the presence of inhibitory factors. This chapter reviews the mechanism of this inhibition on which some of the strategies to promote regeneration in the CNS are based. These strategies are considered for application in traumatic brain injury (TBI) and spinal cord injury (SCI) separately. Degradation of inhibitors such as chondroitin sulfate proteoglycans in the glial scar at the site of SCI by application of chondroitinase ABC promotes regeneration of corticospinal tract axons in experimental animals. Inhibitors of axonal regeneration in myelin include Nogo, myelin-associated glycoprotein, and oligodendrocyte myelin glycoprotein. These can be blocked with antibodies or peptides to facilitate regeneration after SCI. Apart from acute TBI, chronic traumatic encephalopathy is being increasingly recognized as a cause of cognitive impairment and strategies for regeneration are similar to those for neurodegenerative disorders. Cell and gene therapies are under investigation for CNS regeneration. Developments in nanobiotechnology also show potential for CNS repair. However, experimental work in CNS regeneration has not yet been translated into clinical use. Combination of approaches, including stem cell transplantation with nanoscaffolds, supplemented with pharmacological enhancement of regeneration, hyperbaric oxygen, electrical fields, and physical therapies are promising for functional regeneration of the CNS following trauma.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aleynik A, Gernavage KM, Mourad YS et al (2014) Stem cell delivery of therapies for brain disorders. Clin Transl Med 3:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Amariglio N, Hirshberg A, Scheithauer BW et al (2009) Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med 6:e1000029

    Article  PubMed  PubMed Central  Google Scholar 

  • Ang BT, Xu G, Xiao ZC (2006) Therapeutic vaccination for central nervous system repair. Clin Exp Pharmacol Physiol 33:541–545

    Article  CAS  PubMed  Google Scholar 

  • Atalay B, Bavbek M, Ozen O et al (2008) Nogo-A inhibitory peptide (NEP1-40) increases pan-cadherin expression following mild cortical contusion injury in rats. Turk Neurosurg 18:356–365

    PubMed  Google Scholar 

  • Bani-Yaghoub M, Tremblay RG, Ajji A et al (2008) Neuroregenerative strategies in the brain: emerging significance of bone morphogenetic protein 7 (BMP7). Biochem Cell Biol 86:361–369

    Article  CAS  PubMed  Google Scholar 

  • Baptiste DC, Austin JW, Zhao W, Nahirny A, Sugita S, Fehlings MG (2009) Systemic polyethylene glycol promotes neurological recovery and tissue sparing in rats after cervical spinal cord injury. J Neuropathol Exp Neurol 68:661–676

    Article  CAS  PubMed  Google Scholar 

  • Bonnici B, Kapfhammer JP (2009) Modulators of signal transduction pathways can promote axonal regeneration in entorhino-hippocampal slice cultures. Eur J Pharmacol 612:35–40

    Article  CAS  PubMed  Google Scholar 

  • Buchli AD, Rouiller E, Mueller R, Dietz V, Schwab ME (2007) Repair of the injured spinal cord. A joint approach of basic and clinical research. Neurodegener Dis 4:51–56

    Article  PubMed  Google Scholar 

  • Buss A, Pech K, Kakulas BA et al (2009) NG2 and phosphacan are present in the astroglial scar after human traumatic spinal cord injury. BMC Neurol 9:32

    Article  PubMed  PubMed Central  Google Scholar 

  • Cardenas DD, Ditunno JF, Graziani V et al (2014) Two phase 3, multicenter, randomized, placebo-controlled clinical trials of fampridine-SR for treatment of spasticity in chronic spinal cord injury. Spinal Cord 52:70–76

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Yang Y, Yao J et al (2011) Bone marrow stromal cells-loaded chitosan conduits promote repair of complete transection injury in rat spinal cord. J Mater Sci Mater Med 22:2347–2356

    Article  CAS  PubMed  Google Scholar 

  • Cotman CW, Scheff SW (1979) Compensatory synapse growth in aged animals after neuronal death. Mech Ageing Dev 9:103–117

    Article  CAS  PubMed  Google Scholar 

  • Courtine G, Gerasimenko Y, van den Brand R et al (2009) Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nat Neurosci 12:1333–1342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies SJA, Shih C-H, Noble M et al (2011) Transplantation of specific human astrocytes promotes functional recovery after spinal cord injury. PLoS ONE 6:e17328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deda H, Inci M, Kurekci A et al (2008) Treatment of chronic spinal cord injured patients with autologous bone marrow-derived hematopoietic stem cell transplantation: 1-year follow-up. Cytotherapy 10:565–574

    Article  CAS  PubMed  Google Scholar 

  • del Rio-Hortega P (1932) Microglia. In: Penfield W (ed) Cytology and cellular pathology of the nervous system, vol 2. Paul Hoeber, New York, pp 481–534

    Google Scholar 

  • Di Giovanni S, De Biase A, Yakovlev A et al (2005) In vivo and in vitro characterization of novel neuronal plasticity factors identified following spinal cord injury. J Biol Chem 280:2084–2091

    Article  PubMed  Google Scholar 

  • Feng JF, Liu J, Zhang XZ et al (2012) Guided migration of neural stem cells derived from human embryonic stem cells by an electric field. Stem Cells 30:349–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filbin MT (2008) PirB, a second receptor for the myelin inhibitors of axonal regeneration Nogo66, MAG, and OMgp: implications for regeneration in vivo. Neuron 60:740–742

    Article  CAS  PubMed  Google Scholar 

  • Goldshmit Y, Spanevello MD, Tajouri S et al (2011) EphA4 blockers promote axonal regeneration and functional recovery following spinal cord injury in mice. PLoS ONE 6(9):e24636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldstein K (1931) Uber die plastitat des organismus auf grund von erfahrungen am nervenkranken menschen. In: Bethe A (ed) Handbuch der normalen und pathologischen physiologie. Springer, Berlin, pp 1131–1174

    Chapter  Google Scholar 

  • Grimpe B (2011) Deoxyribozymes: new therapeutics to treat central nervous system disorders. Front Mol Neurosci 4:25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo J, Leung KK, Su H et al (2009) Self-assembling peptide nanofiber scaffold promotes the reconstruction of acutely injured brain. Nanomedicine 5:345–351

    CAS  PubMed  Google Scholar 

  • Guzman R, Uchida N, Bliss TM et al (2007) Long-term monitoring of transplanted human neural stem cells in developmental and pathological contexts with MRI. Proc Natl Acad Sci U S A 104:10211–10216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haan N, Song B (2014)Therapeutic application of electric fields in the injured nervous system. Adv Wound Care (New Rochelle) 3:156–165

    Google Scholar 

  • Hamid S, Hayek R (2008) Role of electrical stimulation for rehabilitation and regeneration after spinal cord injury: an overview. Eur Spine J 17:1256–1269

    Article  PubMed  PubMed Central  Google Scholar 

  • Harch PG, Fogarty EF, Staab PK, Van Meter K (2009) Low pressure hyperbaric oxygen therapy and SPECT brain imaging in the treatment of blast-induced chronic traumatic brain injury (post-concussion syndrome) and post traumatic stress disorder: a case report. Cases J 2:6538

    Article  PubMed  PubMed Central  Google Scholar 

  • Harting MT, Baumgartner JE, Worth LL et al (2008) Cell therapies for traumatic brain injury. Neurosurg Focus 24:E18

    Article  PubMed  PubMed Central  Google Scholar 

  • Heinrich C, Blum R, Gascon S, et al (2010) Directing Astroglia from the cerebral cortex into subtype specific functional neurons. PLoS Biol 5:e1000373

    Google Scholar 

  • Hollis ER 2nd, Tuszynski MH (2011) Neurotrophins: potential therapeutic tools for the treatment of spinal cord injury. Neurotherapeutics 8:694–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang WC, Kuo HS, Tsai MJ et al (2011) Adeno-associated virus-mediated human acidic fibroblast growth factor expression promotes functional recovery of spinal cord-contused rats. J Gene Med 13:283–289

    Article  PubMed  Google Scholar 

  • Ibarra A, Martiñón S (2009) Pharmacological approaches to induce neuroregeneration in spinal cord injury: an overview. Curr Drug Discov Technol 6:82–90

    Article  CAS  PubMed  Google Scholar 

  • Inoue H, Takenaga M, Ohta Y et al (2011) Improvement of hind-limb paralysis following traumatic spinal cord injury in rats by grafting normal human keratinocytes: new cell-therapy strategy for nerve regeneration. J Artif Organs 14(4)375–380

    Google Scholar 

  • Jain KK (2009) Cell therapy for CNS trauma. Mol Biotechnol 42:367–376

    Article  CAS  PubMed  Google Scholar 

  • Jain KK (ed) (2010) Drug delivery to the central nervous system. Humana/Springer, New York

    Google Scholar 

  • Jain KK (2011) Handbook of neuroprotection. Springer-Humana, New York

    Book  Google Scholar 

  • Jain KK (2012) The handbook of nanomedicine, 2nd edn. Springer-Humana, New York

    Book  Google Scholar 

  • Jain KK (2015a) Cell therapy. Jain PharmaBiotech Publications, Basel

    Google Scholar 

  • Jain KK (2015b) Drug delivery in central nervous system disorders. Jain PharmaBiotech Publications, Basel

    Google Scholar 

  • Jain KK. (2016) Textbook of hyperbaric medicine, 6th edn. Springer, New York

    Google Scholar 

  • Kaneko S, Iwanami A, Nakamura M et al (2006) A selective Sema3A inhibitor enhances regenerative responses and functional recovery of the injured spinal cord. Nat Med 2:380–389

    Google Scholar 

  • King-Robson J (2011) Encouraging regeneration in the central nervous system: is there a role for olfactory ensheathing cells? Neurosci Res 69:263–275

    Article  PubMed  Google Scholar 

  • Klapka N, Muller HW (2006) Collagen matrix in spinal cord injury. J Neurotrauma 23:422–435

    Article  PubMed  Google Scholar 

  • Kozorovitskiy Y, Gross CG, Kopil C et al (2005) Experience induces structural and biochemical changes in the adult primate brain. Proc Natl Acad Sci U S A 102:17478–17482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kruse F, Bosse F, Vogelaar CF et al (2011) Cortical gene expression in spinal cord injury and repair: insight into the functional complexity of the neural regeneration program. Front Mol Neurosci 4:26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubo T, Yamaguchi A, Iwata N, Yamashita T (2008) The therapeutic effects of Rho-ROCK inhibitors on CNS disorders. Ther Clin Risk Manag 4:605–615

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lang BT, Cregg JM, DePaul MA et al (2015) Modulation of the proteoglycan receptor PTPσ promotes recovery after spinal cord injury. Nature 518:404–408

    Article  CAS  PubMed  Google Scholar 

  • Laverty PH, Leskovar A, Breur GT et al (2004) A preliminary study of intravenous surfactants in paraplegic dogs: polymer therapy in canine clinical SCI. J Neurotrauma 21:1767–1777

    Article  PubMed  Google Scholar 

  • Lee H, McKeon RJ, Bellamkonda RV (2010) Sustained delivery of thermostabilized chABC enhances axonal sprouting and functional recovery after spinal cord injury. Proc Natl Acad Sci U S A 107:3340–3345

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Lu Y, Lee JK et al (2010) PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat Neurosci 13:1075–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loers G, Cui YF, Neumaier I et al (2014) A Fab fragment directed against the neural cell adhesion molecule L1 enhances functional recovery after injury of the adult mouse spinal cord. Biochem J 460:437–446

    Article  CAS  PubMed  Google Scholar 

  • Luo J, Shi R (2007) Polyethylene glycol inhibits apoptotic cell death following traumatic spinal cord injury. Brain Res 1155:10–16

    Article  CAS  PubMed  Google Scholar 

  • Ma H, Yu B, Kong L et al (2011) Transplantation of neural stem cells enhances expression of synaptic protein and promotes functional recovery in a rat model of traumatic brain injury. Mol Med Report 4:849–856

    CAS  Google Scholar 

  • Ma H, Yu B, Kong L et al (2012) Neural stem cells over-expressing Brain-Derived Neurotrophic Factor (BDNF) stimulate synaptic protein expression and promote functional recovery following transplantation in Rat model of traumatic brain injury. Neurochem Res 37:69–83

    Article  CAS  PubMed  Google Scholar 

  • Maden M (2007) Retinoic acid in the development, regeneration and maintenance of the nervous system. Nat Rev Neurosci 8:755–765

    Article  CAS  PubMed  Google Scholar 

  • Maegele M, Schaefer U (2008) Stem cell-based cellular replacement strategies following traumatic brain injury (TBI). Minim Invasive Ther Allied Technol 17:119–131

    Article  PubMed  Google Scholar 

  • Mandrekar-Colucci S, Sauerbeck A, Popovich PG, McTigue DM (2013) PPAR agonists as therapeutics for CNS trauma and neurological diseases. ASN Neuro 5(5), e00129

    Article  PubMed  PubMed Central  Google Scholar 

  • Mehta T, Feroz A, Thakkar U et al (2008) Subarachnoid placement of stem cells in neurological disorders. Transplant Proc 40:1145–1147

    Article  CAS  PubMed  Google Scholar 

  • Mitchell SW (1872) Injuries of nerves. JB Lippincott & Co, Philadelphia

    Google Scholar 

  • Neumann S, Woolf CJ (2000) Regeneration of dorsal column fibers into and beyond the lesion site following spinal cord injury. Neuron 23:83–91

    Article  Google Scholar 

  • Nilsson M, Pekny M (2007) Enriched environment and astrocytes in central nervous system regeneration. J Rehabil Med 39:345–352

    Article  PubMed  Google Scholar 

  • Norman LL, Stroka K, Aranda-Espinoza H (2009) Guiding axons in the central nervous system: a tissue engineering approach. Tissue Eng B Rev 15:291–305

    Article  CAS  Google Scholar 

  • Orive G, Anitua E, Pedraz JL, Emerich DF (2009) Biomaterials for promoting brain protection, repair and regeneration. Nat Rev Neurosci 10:682–692

    Article  CAS  PubMed  Google Scholar 

  • Pal R, Venkataraman NK, Jan M et al (2009) Ex vivo-expanded autologous bone marrow-derived mesenchymal stromal cells in human spinal cord injury/paraplegia: a pilot clinical study. Cytotherapy 11:897–911

    Article  CAS  PubMed  Google Scholar 

  • Park HC, Shim YS, Ha Y et al (2005) Treatment of complete spinal cord injury patients by autologous bone marrow cell transplantation and administration of granulocyte-macrophage colony stimulating factor. Tissue Eng 11:913–922

    Article  CAS  PubMed  Google Scholar 

  • Ramon y Cajal S (1959) Degeneration and regeneration in the nervous system. May RM, translator. Haffner, New York

    Google Scholar 

  • Rodger J, Sherrard RM (2015) Optimising repetitive transcranial magnetic stimulation for neural circuit repair following traumatic brain injury. Neural Regen Res 10:357–359

    Article  PubMed  PubMed Central  Google Scholar 

  • Ronsyn MW, Berneman ZN, Van Tendeloo VF, Jorens PG, Ponsaerts P (2008) Can cell therapy heal a spinal cord injury? Spinal Cord 46:532–539

    Article  CAS  PubMed  Google Scholar 

  • Schwab ME, Strittmatter SM (2014) Nogo limits neural plasticity and recovery from injury. Curr Opin Neurobiol 27:53–60

    Article  CAS  PubMed  Google Scholar 

  • Seil JT, Webster TJ (2010) Electrically active nanomaterials as improved neural tissue regeneration scaffolds. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:635–647

    Article  CAS  PubMed  Google Scholar 

  • Shapiro S, Borgens R, Pascuzzi R et al (2005) Oscillating field stimulation for complete spinal cord injury in humans: a phase 1 trial. J Neurosurg Spine 2:3–10

    Article  PubMed  Google Scholar 

  • Sharp J, Frame J, Siegenthaler M et al (2010) Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants improve recovery after cervical spinal cord injury. Stem Cells 28:152–163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shen F, Wen L, Yang X, Liu W (2007) The potential application of gene therapy in the treatment of traumatic brain injury. Neurosurg Rev 30:291–298

    Article  PubMed  Google Scholar 

  • Stabenfeldt SE, Irons HR, Laplaca MC (2011) Stem cells and bioactive scaffolds as a treatment for traumatic brain injury. Curr Stem Cell Res Ther 6:208–220

    Article  CAS  PubMed  Google Scholar 

  • Stern M, Bicker G (2008) Nitric oxide regulates axonal regeneration in an insect embryonic CNS. Dev Neurobiol 68:295–308

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Taguchi T, Kato Y et al (2011) Transplantation of neurospheres derived from bone marrow stromal cells promotes neurological recovery in rats with spinal cord injury. Med Mol Morphol 44:131–138

    Article  PubMed  Google Scholar 

  • Tam RY, Fuehrmann T, Mitrousis N, Shoichet MS (2014) Regenerative therapies for central nervous system diseases: a biomaterials approach. Neuropsychopharmacology 39:169–188

    Article  CAS  PubMed  Google Scholar 

  • Tate CC, Shear DA, Tate MC, Archer DR, Stein DG, LaPlaca MC (2009) Laminin and fibronectin scaffolds enhance neural stem cell transplantation into the injured brain. J Tissue Eng Regen Med 3:208–217

    Article  CAS  PubMed  Google Scholar 

  • Thompson WG (1890) Successful brain grafting. NY Med J 51:701

    Google Scholar 

  • Tsuji O, Miura K, Okada Y et al (2010) Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury. Proc Natl Acad Sci U S A 107:12704–12709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walczak P, Bulte JW (2007) The role of noninvasive cellular imaging in developing cell-based therapies for neurodegenerative disorders. Neurodegener Dis 4:306–313

    Article  PubMed  Google Scholar 

  • Walmsley AR, Mir AK (2007) Targeting the Nogo-A signalling pathway to promote recovery following acute CNS injury. Curr Pharm Des 13:2470–2484

    Article  CAS  PubMed  Google Scholar 

  • Wang YT, Lu XM, Chen KT et al (2015) Immunotherapy strategies for spinal cord injury. Curr Pharm Biotechnol 16:492–505

    Article  CAS  PubMed  Google Scholar 

  • Webber MJ, Kessler JA, Stupp SI (2010) Emerging peptide nanomedicine to regenerate tissues and organs. J Intern Med 267:71–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong LE, Gibson ME, Arnold HM, et al. (2015) Artemin promotes functional long-distance axonal regeneration to the brainstem after dorsal root crush. Proc Natl Acad Sci U S A 112(19):6170–6175, pii: 201502057

    Google Scholar 

  • Wright BR, Warrington AE, Edberg DD, Rodriguez M (2009) Cellular mechanisms of central nervous system repair by natural autoreactive monoclonal antibodies. Arch Neurol 66:1456–1459

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie F, Zheng B (2008) White matter inhibitors in CNS axon regeneration failure. Exp Neurol 209:302–312

    Article  CAS  PubMed  Google Scholar 

  • Xiong Y, Zhang Y, Mahmood A, Chopp M (2015) Investigational agents for treatment of traumatic brain injury. Expert Opin Investig Drugs 24:743–760

    Google Scholar 

  • Xu XM, Onifer SM (2009) Transplantation-mediated strategies to promote axonal regeneration following spinal cord injury. Respir Physiol Neurobiol 169:171–182

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu CJ, Xu L, Huang LD et al (2011) Combined NgR vaccination and neural stem cell transplantation promote functional recovery after spinal cord injury in adult rats. Neuropathol Appl Neurobiol 37:135–155

    Article  CAS  PubMed  Google Scholar 

  • Yan H, Hong P, Jiang M, Li H (2012) MicroRNAs as potential therapeutics for treating spinal cord injury. Neural Regen Res 7:1352–1359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang XF, Zheng XS, Liu WG, Feng JF (2006) Bcl-2 gene therapy for apoptosis following traumatic brain injury. Chin J Traumatol 9:276–281

    CAS  PubMed  Google Scholar 

  • Yaron A, Zheng B (2007) Navigating their way to the clinic: emerging roles for axon guidance molecules in neurological disorders and injury. Dev Neurobiol 67:1216–1231

    Article  CAS  PubMed  Google Scholar 

  • York GK, Steinberg DA (1994) Hughling Jackson’s theory of cerebral localization. J Hist Neurosci 3:153–168

    Article  CAS  PubMed  Google Scholar 

  • Yu P, Huang L, Zou J et al (2008) Immunization with recombinant Nogo-66 receptor (NgR) promotes axonal regeneration and recovery of function after spinal cord injury in rats. Neurobiol Dis 32:535–542

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kewal K. Jain M.D., FRACS, FFPM .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jain, K.K. (2016). Regenerative Therapy for Central Nervous System Trauma. In: Steinhoff, G. (eds) Regenerative Medicine - from Protocol to Patient. Springer, Cham. https://doi.org/10.1007/978-3-319-28293-0_6

Download citation

Publish with us

Policies and ethics