Skip to main content

Regenerative Medicine in the Central Nervous System: Stem Cell-Based Cell- and Gene-Therapy

  • Chapter
  • First Online:
Regenerative Medicine - from Protocol to Patient
  • 796 Accesses

Abstract

Human neurological diseases such as Parkinson’s disease (PD), Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS), Alzheimer’s disease (AD), multiple sclerosis (MS), stroke and spinal cord injury are caused by a loss of neurons and glial cells in the brain or spinal cord. Cell replacement therapy and gene transfer to the diseased or injured brain have provided the basis for the development of potentially powerful new therapeutic strategies for a broad spectrum of human neurological diseases. However, the paucity of suitable cell types for cell replacement therapy in patients suffering from neurological disorders has hampered the development of this promising therapeutic approach. In recent years, neurons and glial cells have successfully been generated from stem cells such as embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs) and neural stem cells (NSCs), and extensive efforts by investigators to develop stem cell-based brain transplantation therapies have been carried out. I review here notable experimental and pre-clinical studies previously published involving stem cell-based cell- and gene-therapies for PD, HD, ALS, AD, MS and stroke, and discuss for future prospect for the stem cell therapy of neurological disorders in clinical setting. There are still many obstacles to be overcome before clinical application of cell- and gene-therapy in neurological disease patients is adopted: (i) it is still uncertain how to generate specific cell types of neurons or glia suitable for cellular grafts in great quantity, (ii) it is required to abate safety concern related to tumor formation following NSC transplantation, and (iii) it needs to be better understood by what mechanism transplantation of NSCs leads to an enhanced functional recovery. Steady and stepwise progress in stem cell research in both basic and pre-clinical settings should support the hope for development of stem cell-based therapies for neurodegenerative diseases. This review focuses on the utility of stem cells particularly NSCs as substrates for structural and functional repair of the diseased or injured brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agid Y (1991) Parkinson’s disease: pathophysiology. Lancet 337:1321–1324

    Article  CAS  PubMed  Google Scholar 

  • Aharonowiz M, Einstein O, Fainstein N, Lassmann H, Reubinoff B, Ben-Hur T (2008) Neuroprotective effect of transplanted human embryonic stem cell-derived neural precursors in an animal model of multiple sclerosis. PLoS ONE 3:e3145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Akiyama Y, Radke C, Kocsis JD (2002) Remyelination of rat spinal cord by implantation of identified bone marrow stromal cells. J Neurosci 22:6623–6630

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alston TA, Mela L, Bright HJ (1977) 3-Nitropropionate, the toxic substrate of indigofera, si a suicide inactivator of succinate dehydrogenase. Proc Natl Acad Sci U S A 74:3767–3771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anton R, Kordower JH, Maidment NT, Manaster JS, Kane DJ, Rabizadeh S, Schueller SB, Yang J, Rabizadeh S, Edwards RH (1994) Neural-targeted gene therapy for rodent and primate hemiparkinsonism. Exp Neurol 127:207–218

    Article  CAS  PubMed  Google Scholar 

  • Armstrong RJ, Watts C, Svendsen CN, Dunnett SB, Rosser AE (2000) Survival, neuronal differentiation, and fiber outgrowth of propagated human neural precursor grafts in an animal model of Huntington’s disease. Cell Transplant 9:55–64

    CAS  PubMed  Google Scholar 

  • Aubry L, Bugi A, Lefort N, Rousseau F, Peschanski M, Perrier AL (2008) Striatal progenitors derived from ES cells mature into DARPP32 neurons in vitro and in quinolinic acid-lesioned rats. Proc Natl Acad Sci U S A 105:16707–16712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azzouz M, Ralph GS, Storkebaum E, Walmsley LE, Mitrophanous KA, Kingsman SM, Carmeliet P, Mazarakis ND (2004) VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model. Nature 429:413–417

    Article  CAS  PubMed  Google Scholar 

  • Bachoud-Lévi AC, Rémy P, Nguyen JP, Brugières P, Lefaucheur JP, Bourdet C, Baudic S, Gaura V, Maison P, Haddad B, Boissé MF, Grandmougin T, Jény R, BartOLomeo P, Dalla Barba G, Degos JD, Lisovoski F, Ergis AM, Pailhous E, Cesaro P, Hantraye P, Peschanski M (2000) Motor and cognitive improvements in patients with Huntington’s disease after neural transplantation. Lancet 356:1975–1979

    Article  PubMed  Google Scholar 

  • Bales KR, Tzavara ET, Wu S, Wade MR, Bymaster FP, Paul SM, Nomikos GG (2006) Cholinergic dysfunction in a mouse model of Alzheimer disease is reversed by an anti-Aβ antibody. J Clin Invest 116:825–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartus R, Dean RL, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217:408–411

    Article  CAS  PubMed  Google Scholar 

  • Beal MF, Brouillet E, Jenkins BG, Ferrante RJ, Kowall NW, Miller JM, Storey E, Srivastava R, Rosen BR, Hyman BT (1993) Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. J Neurosci 13:4181–4192

    CAS  PubMed  Google Scholar 

  • Bemelmans AP, Horellou P, Pradier L, Brunet I, Colin P, Mallet J (1999) Brain-derived neurotrophic factor-mediated protection of striatal neurons in an excitotoxic rat model of Huntington’s disease, as demonstrated by adenoviral gene transfer. Hum Gene Ther 10:2987–2997

    Article  CAS  PubMed  Google Scholar 

  • Bencsics C, Wachtel SR, Milstien S, Hatakeyama K, Becker JB, Kang UJ (1996) Double transduction with GTP cyclohydrolase1 and tyrosine hydroxylase is necessary for spontaneous synthesis of L-DOPA by primary fibroblasts. J Neurosci 16:4449–4456

    CAS  PubMed  Google Scholar 

  • Ben-Hur T, Einstein O, Mizrachi-KOL R, Ben-Menachem O, Reinhartz E, Karussis D, Abramsky O (2003) Transplanted multipotential neural progenitor cells migrate into the inflamed white matter in response to experimental allergic encephalitis. Glia 41:73–80

    Article  PubMed  Google Scholar 

  • Bjorklund A, Lindvall O (2000) Cell replacement therapies for central nervous system disorders. Nat Neurosci 3:537–544

    Article  CAS  PubMed  Google Scholar 

  • Blurton-Jones M, Kitazawa M, Martinez-Coria H, Castello NA, Muller FJ, Loring JF, Yamasaki TR, Poon W, Green KN, LaFerla FM (2009) Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc Natl Acad Sci U S A 106:13594–13598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boillee S, Van de Velde C, Cleveland DW (2006) ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron 52:39–59

    Article  CAS  PubMed  Google Scholar 

  • Borlongan CV, Tajima Y, Trojanowski JQ, Lee VM, Sanberg PR (1998) Transplantation of cryopreserved human embryonic carcinoma-derived neurons (NT2N cells) promotes functional recovery in ischemic rats. Exp Neurol 149:310–321

    Article  CAS  PubMed  Google Scholar 

  • Brouillet E, Hantraye P, Ferrante RJ, Dolan R, Leroy-Willig A, Kowall NW, Beal MF (1995) Chronic mitochondrial energy impairment produces selective striatal degeneration and abnormal movements in primates. Proc Natl Acad Sci U S A 92:7105–7109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brustle O, McKay RG (1996) Neuronal progenotors as tools for cell replacement in the nervous system. Curr Opin Neurobiol 6:688–695

    Article  CAS  PubMed  Google Scholar 

  • Brüstle O, Jones KN, Learish RD, Karram K, Choudhary K, Wiestler OD, Duncan ID, McKay RD (1999) Embryonic stem cell-derived glial precursors: a source for myelinating transplants. Science 285:754–756

    Article  PubMed  Google Scholar 

  • Chen J, Sanberg PR, Li Y, Wang L, Lu M, Willing AE, Sanchez-Ramos J, Chopp M (2001) Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke 32:2682–2688

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Li Y, Katakowski M, Chen X, Wang L, Lu D, Lu M, Gautam SC, Chopp M (2003) Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J Neurosci Res 73:778–786

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Gao XQ, Yang CX, Tan SK, Sun ZL, Yan NH, Pang YG, Yuan M, Chen GJ, Xu GT, Zhang K, Yuan QL (2009) Neuroprotective effect of grafting GDNF gene-modified neural stem cells on cerebral ischemia in rats. Brain Res 1284:1–11

    Article  CAS  PubMed  Google Scholar 

  • Cho MS, Lee YE, Kim JY, Chung S, Cho YH, Kim D, Kang S, Lee H, Kim M, Kim J, Leem JW, Oh SK, Choi YM, Hwang D, Chang JW, Kim D (2008) Highly efficient and large scale generation of functional dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci U S A 105:3387–3392

    Google Scholar 

  • Cho GW, Koh SH, Kim MH, Yoo AR, Noh MY, Oh S, Kim SH (2010) Neuroprotective effect of erythropoietin-transduced human mesenchymal stromal cells in an animal model of ischemic stroke. Brain Res 1353:1–13

    Article  CAS  PubMed  Google Scholar 

  • Chu K, Kim M, Jeong SW, Kim SU, Yoon BW (2003) Human neural stem cells can migrate, differentiate and integrate after intravenous transplantation in adult rats with transient forbrain ischemia. Neurosci Lett 343:637–643

    Article  CAS  Google Scholar 

  • Chu K, Park KI, Lee ST, Jung KH, Ko SY, Kang L, Sinn DI, Lee YS, Kim SU, Kim M, Roh JK (2005) Combined treatment of vascular endothelial growth factor and human neural stem cells in experimental focal cerebral ischemia. Neurosci Res 53:384–390

    Article  CAS  PubMed  Google Scholar 

  • Chung S, Sonntag KC, Andersson T, Bjorklund LM, Park JJ, Kim DW, Kang UJ, Isacson O, Kim KS (2002) Genetic engineering of mouse embryonic stem cells by Nurr1 enhances differentiation and maturation into dopaminergic neurons. Eur J Neurosci 16:1829–1838

    Article  PubMed  PubMed Central  Google Scholar 

  • Connick P, Kolappan M, Patani R, Scott M, Crawley C, He X, Richardson K, Barber K, Webber D, Claudia A, Wheeler-Kingshott C, Tozer D, Samson D, David L, Thomas D, Du M, Luan S, Michell A, Daniel R, Altmann D, Thompson A, Miller D, Compston A, Chandran S (2011) The mesenchymal stem cells in multiple sclerosis (MSCIMS) trial protocol and baseline cohort characteristics: an open-label pre-test: post-test study with blinded outcome assessments. Trials 12:62

    Article  PubMed  PubMed Central  Google Scholar 

  • Copray S, Balasubramaniyan V, Levenga J, de Bruijn J, Liem R, Boddeke E (2006) Olig2 overexpression induces the in vitro differentiation of neural stem cells into mature Oligodendrocytes. Stem Cells 24:1001–1010

    Article  CAS  PubMed  Google Scholar 

  • Coyle JT, Price DL, DeLong MR (1983) Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science 219:1184–1190

    Article  CAS  PubMed  Google Scholar 

  • Daadi MM, Davis AS, Arac A, Li Z, Maag AL, Bhatnagar R, Jiang K, Sun G, Wu JC, Steinberg GK (2010) Human neural stem cell grafts modify microglial response and enhance axonal sprouting in neonatal hypoxic-ischemic brain injury. Stroke 41(516-523):2010

    Google Scholar 

  • DiFiglia M (1990) Excitotoxic injury of the neostriatum: a model for Huntington’s disease. Trends Neurosci 13:286–289

    Article  CAS  PubMed  Google Scholar 

  • Dimos JT, RodOLfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, Croft GF, Saphier G, Leibel R, Goland R, Wichterle H, Henderson CE, Eggan K (2008) Induce pluripotent stem cells generated from patient with ALS can be differentiated into motor neurons. Science 321:1218–1221

    Article  CAS  PubMed  Google Scholar 

  • Ding J, Cheng Y, Gao S, Chen J (2011) Effects of nerve growth factor and Noggin-modified bone marrow stromal cells on stroke in rats. J Neurosci Res 89:222–230

    Article  CAS  PubMed  Google Scholar 

  • Dunnett SB, Bjorklund A (1999) Prospects for new restorative and neuroprotective treatments in Parkinson’s disease. Nature 399:A32–A39

    Article  CAS  PubMed  Google Scholar 

  • Dunnett SB, Carter RJ, Watts C, Torres EM, Mahal A, Mangiarini L, Bates G, Morton AJ (1998) Striatal transplantation in a transgenic mouse model of Huntington’s disease. Exp Neurol 154:31–40

    Article  CAS  PubMed  Google Scholar 

  • During MJ, Naegele JR, O’Malley KL, Geller AI (1994) Long-term behavioral recovery in parkinsonian rats by an HSV vector expressing tyrosine hydroxylase. Science 266:1399–1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebers GC (1988) Multiple scelrosis and other demyelinating diseases. In: Asbury A, McKhann G, McDonald W (eds) Diseases of the nervous system. WB Saunders, Philadelphia, pp 1268–1291

    Google Scholar 

  • Emerich DF, Winn SR, Harper J, Hammang JP, Baetge EE, Kordower JH (1994) Implants of polymer-encapsulated human NGF-secreting cells in the non-human primate: rescue and sprouting of degenerating cholinergic basal forebrain neurons. J Comp Neurol 349:148–164

    Article  CAS  PubMed  Google Scholar 

  • Eriksson PS, Perfilieva E, Björk-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317

    Article  CAS  PubMed  Google Scholar 

  • Espinosa de los Monteros A, Zhao P, Huang C, Pan T, Chang R, Nazarian R, Espejo D, de Vellis J (1997) Transplantation of CG4 oligodendrocyte progenitor cells in the myelin-deficient rat brain results in myelination of axons and enhanced oligodendroglial markers. J Neurosci Res 50:872–887

    Article  CAS  PubMed  Google Scholar 

  • Espinosa de los Monteros A, Baba H, Zhao PM, Pan T, Chang R, de Vellis J, Ikenaka K (2001) Remyelination of the adult demyelinated mouse brain by grafted oligodendrocyte progenitors. Neurochem Res 26:673–682

    Article  CAS  PubMed  Google Scholar 

  • Farris W, Mansourian S, Chang Y, Lindsley L, Eckman EA, Frosch MP, Eckman CB, Tanzi RE, Selkoe DJ, Guenette S (2003) Insulin-degrading enzyme regulates the levels of insulin, amyloid beta protein and the beta-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci U S A 100:4162–4167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer W, Wictorin K, Björklund A, Williams LR, Varon S, Gage FH (1987) Amelioration of cholinergic neuron atrophy and spatial memory impairment in aged rats by nerve growth factor. Nature 329:65–68

    Article  CAS  PubMed  Google Scholar 

  • Fisher LJ, Jinnah HA, Kale LC, Higgins GA, Gage FH (1991) Survival and function of intrastriatally grafted primary fibroblasts genetically modified to produce L-DOPA. Neuron 6:371–380

    Article  CAS  PubMed  Google Scholar 

  • Flax JD, Aurora S, Yang C, Simonin C, Wills AM, Billinghurst LL, Jendoubi M, Sidman RL, Wolfe JH, Kim SU, Snyder EY (1998) Engraftable human neural stem cells respond to developmental cues, replace neurons and express foreign genes. Nat Biotechnol 16:1033–1039

    Article  CAS  PubMed  Google Scholar 

  • Franklin RJ, Blakemore WF (1997) Transplanting oligodendrocyte progenitors into the adult CNS. J Anat 190:23–33

    Article  PubMed  PubMed Central  Google Scholar 

  • Freeman TB, Cicchetti F, Hauser RA, Deacon TW, Li XJ, Hersch SM, Nauert GM, Sanberg PR, Kordower JH, Saporta S, Isacson O (2000) Transplanted fetal striatum in Huntington’s disease: phenotypic development and lack of pathology. Proc Natl Acad Sci U S A 97:13877–13882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gage FH (2000) Mammalian neural stem cells. Science 287:1433–1438

    Article  CAS  PubMed  Google Scholar 

  • Glaser T, Perez-Bouza A, Klein K, Brustle O (2005) Generation of purified oligodendrocyte progenitors from embryonic stem cells. FASEB J 19:112–114

    CAS  PubMed  Google Scholar 

  • Goldman S (2005) Stem and progenitor cell-based therapy of the human central nervous system. Nat Biotechnol 7:862–871

    Article  CAS  Google Scholar 

  • Gottlieb DI (2002) Large scale sources of neural stem cells. Annu Rev Neurosci 25:381–407

    Article  CAS  PubMed  Google Scholar 

  • Greenamyre JT, Shoulson I (1994) Huntington disease. In: Calne D (ed) Neurodegenrative disease. WB Saunders, Philadelphia, pp 65–704

    Google Scholar 

  • Gumpel M, Lachapelle F, Gansmuller A, Baulac M, Baron van Evercooren A, Baumann N (1987) Transplantation of human embryonic oligodendrocytes into shiverer brain. Ann N Y Acad Sci 495:71–85

    Article  CAS  PubMed  Google Scholar 

  • Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng HX et al (1994) Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264:1772–1775

    Article  CAS  PubMed  Google Scholar 

  • Guzman R, De Los AA, Cheshier S, Choi R, Hoang S, Liauw J, Schaar B, Steinberg G (2008) Intracarotid injection of fluorescence activated cell-sorted CD49d-positive neural stem cells improves targeted cell delivery and behavior after stroke in a mouse stroke model. Stroke 39:1300–1306

    Article  PubMed  Google Scholar 

  • Hagell P, Brundin P (2002) Cell survival and clinical outcome following intrastriatal transplantation in Parkinson disease. J Neuropathol Exp Neurol 60:741–752

    Article  Google Scholar 

  • Hagell P, Schrag A, Piccini P, Jahanshahi M, Brown R, Rehncrona S, Widner H, Brundin P, Rothwell JC, Odin P, Wenning GK, Morrish P, Gustavii B, Björklund A, Brooks DJ, Marsden CD, Quinn NP, Lindvall O (1999) Sequential bilateral transplantation in Parkinson’s disease: effects of the second graft. Brain 122:1121–1132

    Article  PubMed  Google Scholar 

  • Harper PS (1996) Huntington’s disease. W.B. Saunders, Philadelphia

    Google Scholar 

  • Harper JM, Krishnan C, Darman JS (2004) Axonal growth of embryonic stem cell-derived motoneurons in vitro and in motoneuron-injured adult rats. Proc Natl Acad Sci U S A 101:7123–7128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris GJ, Codori AM, Lewis RF, Schmidt E, Bedi A, Brandt J (1999) Reduced basal ganglia blood flow and volume in pre-symptomatic, gene-tested persons at-risk for Huntington’s disease. Brain 122:1667–1678

    Article  PubMed  Google Scholar 

  • Hefti F (1986) NGF promotes survival of septal cholinergic neurons after fimbrial transection. J Neurosci 6:2155–2161

    CAS  PubMed  Google Scholar 

  • Hemming ML, Patterson M, Reske-Nielsen C, Lin L, Isacson O, Selkoe DJ (2007) Reducing amyloid plaque burden via ex vivo gene delivery of an Aβ-degrading protease: a novel therapeutic approach to Alzheimer disease. PLoS Med 4(e262):1405–1416

    CAS  Google Scholar 

  • Honmou O, Houkin K, Matsunaga T, Niitsu Y, Ishiai S, Onodera R, Waxman SG, Kocsis JD (2011) Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke. Brain 134:1790–1807

    Article  PubMed  PubMed Central  Google Scholar 

  • Hudson AJ (1990) Amyotrophic lateral sclerosis: concepts in pathogenesis and etiology. University of Toronto Press, Toronto

    Google Scholar 

  • Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983

    Article  Google Scholar 

  • Hwang DH, Kim BG, Kim EJ, Lee SI, Joo IS, Suh-Kim H, Sohn S, Kim SU (2009a) Transplantation of human neural stem cells transduced with Olig2 transcription factor improves locomotor recovery and enhances myelination in the white matter of rat spinal cord following contusive injury. BMC Neurosci 10:117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hwang DH, Lee HJ, Seok JI, Kim BG, Joo IS, Kim SU (2009b) Intrathecal transplantation of human neural stem cells over-expressing VEGF provide behavioral improvement, disease onset delay and survival extension in transgenic ALS mice. Gene Ther 16:1234–1244

    Article  CAS  PubMed  Google Scholar 

  • Iwata N, Tsubuki S, Takaki Y, Shirotani K, Lu B, Gerard NP, Gerard C, Hama E, Lee HJ, Saido TC (2001) Metabolic regulation of brain Abeta by neprilysin. Science 292:1550–1562

    Article  CAS  PubMed  Google Scholar 

  • Jeong SW, Chu K, Kim MH, Kim SU, Roh JK (2003) Human neural stem cell transplantation in experimental intracerebral hemorrhage. Stroke 34:2258–2263

    Article  PubMed  Google Scholar 

  • Jiao S, Gurevich V, Wolff JA (1993) Long-term correction of rat model of Parkinson’s disease by gene therapy. Nature 362:450–453

    Article  CAS  PubMed  Google Scholar 

  • Jin K, Mao X, Xie L, Galvan V, Lai B, Wang Y, Gorostiza O, Wang X, Greenberg DA (2010) Transplantation of human neural precursor cells in Matrigel scaffolding improves outcome from focal cerebral ischemia after delayed postischemic treatment in rats. J Cereb Blood Flow Metab 30(534-544):2010

    Google Scholar 

  • Kang UJ, Fisher LJ, Joh TH, O’Malley KL, Gage FH (1993) Regulation of dopamine production by genetically modified primary fibroblasts. J Neurosci 13:5203–5211

    CAS  PubMed  Google Scholar 

  • Kawai H, Yamashita T, Ohta Y, Deguchi K, Nagotani S, Zhang X, Ikeda Y, Matsuura T, Abe K (2010) Tridermal tumorigenesis of induced pluripotent stem cells transplanted in ischemic brain. J Cereb Blood Flow Metab 30:1487–1493

    Article  PubMed  PubMed Central  Google Scholar 

  • Kawasaki H, Mizuseki K, Nishikawa S, Kaneko S, Kuwana Y, Nakanishi S, Nishikawa SI, Sasai Y (2000) Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28:31–40

    Article  CAS  PubMed  Google Scholar 

  • Keene CD, Chang RC, Leverentz JB, Kopyov O, Perlman S, Hevner RF, Born DE, Bird TD, Montine TJ (2009) A patient with Huntington’s disease and long-surviving fetal neural transplants that developed mass lesions. Acta Neuropathol 117:329–338

    Article  PubMed  Google Scholar 

  • Kerr DA, Lladó J, Shamblott MJ, Maragakis NJ, Irani DN, Crawford TO, Krishnan C, Dike S, Gearhart JD, Rothstein JD (2003) Human embryonic germ cell derivatives facilitate motor recovery of rats with diffuse motor neuron injury. J Neurosci 23:5131–5140

    CAS  PubMed  Google Scholar 

  • Kim SU (2004) Human neural stem cells genetically modified for brain repair in neurological disorders. Neuropathology 24:159–174

    Article  PubMed  Google Scholar 

  • Kim JH, Auerbach JM, Rodríguez-Gómez JA, Velasco I, Gavin D, Lumelsky N, Lee SH, Nguyen J, Sánchez-Pernaute R, Bankiewicz K, McKay R (2002) Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature 418:50–56

    Article  CAS  PubMed  Google Scholar 

  • Kim TE, Lee HS, Lee YB, Hong SH, Lee YS, Ichinose H, Kim SU, Lee MA (2003) Sonic hedgehog and FGF8 collaborate to induce dopaminergic phenotype in Nurr-1 over-expressing neural stem cells. Biochem Biophys Res Commun 305:1040–1048

    Article  CAS  PubMed  Google Scholar 

  • Kim SU, Park IH, Kim TH, Kim KS, Choi HB, Hong SH, Bang JH, Lee MA, Joo IS, Lee CS, Kim YS (2006) Brain transplantation of human neural stem cells transduced with tyrosine hydroxylase and GTP cyclohydrolase 1 provides functional improvement in animal models of Parkinson disease. Neuropathology 26:129–140

    Article  PubMed  Google Scholar 

  • Kim M, Lee ST, Chu K, Kim SU (2008a) Stem cell-based cell therapy for Huntington disease: a review. Neuropathology 28:1–9

    Article  CAS  PubMed  Google Scholar 

  • Kim SS, Yoo SW, Park TS, Ahn SC, Jeong HS, Kim JW, Chang DY, Cho KG, Kim SU, Huh Y, Lee JE, Lee SY, Lee YD, Suh-Kim H (2008b) Neural induction with neurogenin1 increases the therapeutic effects of mesenchymal stem cells in the ischemic brain. Stem Cells 26:2217–2228

    Article  PubMed  Google Scholar 

  • Kim SU, Nagai A, Nakagawa E, Choi HB, Bang JH, Lee HJ, Lee MA, Lee YB, Park IH (2008c) Production and characterization of immortal human neural stem cell line with multipotent differentiation property. Methods Mol Biol 438:103–121

    Article  CAS  PubMed  Google Scholar 

  • Kim KS, Lee HJ, An J, Seo YY, Park SJ, Lim IJ, Kim SU (2011) Generation of motor neurons from human neural stem cells and motor neuron-base cell therapy in ALS mouse. Abstr Soc Neurosci

    Google Scholar 

  • Kirks S, Shim JW, Piao J, Ganat YM, Wakeman DR, Xie Z, Carrillo-Reid L, Auyeung G, Antonacci C, Buch A, Yang L, Beal MF, Surmeier DJ, Kordower JH, Tabar V, Studer L (2011) Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 480:547–551

    Google Scholar 

  • Kish SJ, Shannak K, Hornykiewitcz O (1988) Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. Pathophysiologic and clinical implications. N Engl J Med 318:876–880

    Article  CAS  PubMed  Google Scholar 

  • Klein SM, Behrstock S, McHugh J, Hoffmann K, Wallace K, Suzuki M, Aebischer P, Svendsen CN (2005) GDNF delivery using human neural progenitor cells in a rat model of ALS. Hum Gene Ther 16:509–521

    Article  CAS  PubMed  Google Scholar 

  • Kondziolka D, Wechsler L, Goldstein S, Meltzer C, Thulborn KR, Gebel J, Jannetta P, DeCesare S, Elder EM, McGrogan M, Reitman MA, Bynum L (2000) Transplantation of cultured human neuronal cells for patients with stroke. Neurology 55:565–569

    Article  CAS  PubMed  Google Scholar 

  • Kordower JH, Tuszinski MH (1999) CNS regeneration: basic sciences and clinical advances. Academic, San Diego

    Google Scholar 

  • Kordower JH, Goetz CG, Freeman TB, OLanow CW (1997a) Doparminergic transplants in patients with Parkinson’s disease: neuroanatomical correlates of clinical recovery. Exp Neurol 144:41–46

    Article  CAS  PubMed  Google Scholar 

  • Kordower JH, Chen EY, Winkler C, Fricker R, Charles V, Messing A, Mufson EJ, Wong SC, Rosenstein JM, Björklund A, Emerich DF, Hammang J, Carpenter MK (1997b) Grafts of EGF responsive neural stem cells derived from GFAP-hNGF transgenic mice: trophic and tropic effects in a rodent model of Huntington’s disease. J Comp Neurol 387:96–113

    Article  CAS  PubMed  Google Scholar 

  • Kurozumi K, Nakamura K, Tamiya T, Kawano Y, Kobune M, Hirai S, Uchida H, Sasaki K, Ito Y, Kato K, Honmou O, Houkin K, Date I, Hamada H (2004) BDNF gene-modified mesenchymal stem cells promote functional recovery and reduce infarct size in the rat middle cerebral artery occlusion model. Mol Ther 9:189–197

    Article  CAS  PubMed  Google Scholar 

  • Lachapelle F, Gumpel M, Baulac C, Jacque C (1983) Transplantation of fragments of CNS into the brain of shiverer mutant mice: extensive myelination of transplanted oligodendrocytes. Dev Neurosci 6:326–334

    Article  Google Scholar 

  • Lang AE, Lozano AM (1998a) Parkinson’s disease. First of two parts. N Engl J Med 339:1044–1053

    Article  CAS  PubMed  Google Scholar 

  • Lang AE, Lozano AM (1998b) Parkinson’s disease. Second of two parts. N Engl J Med 339:1130–1143

    Article  CAS  PubMed  Google Scholar 

  • Learish RD, Brustle O, Zhang SC, Duncan ID (1999) Intraventricular transplantation of oligodendrocyte progenitors into a fetal myelin mutants in widespread formation of myelin. Ann Neurol 46:716–722

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Lumelsky N, Studer L, Auerbach JM, McKay RD (2000) Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat Biotechnol 18:675–679

    Article  CAS  PubMed  Google Scholar 

  • Lee ST, Chu K, Park JE, Lee K, Kang L, Kim SU, Kim M (2005) Intravenous administration of human neural stem cells induces functional recovery in Huntington’s disease rat model. Neurosci Res 52:243–249

    Article  CAS  PubMed  Google Scholar 

  • Lee ST, Park JE, Lee K, Kang L, Chu K, Kim SU, Kim M, Roh JK (2006) Noninvasive method of immortalized neural stem-like cell transplantation in an experimental model of Huntington’s disease. J Neurosci Methods 52:250–254

    Article  CAS  Google Scholar 

  • Lee HJ, Kim KS, Kim EJ, Choi HB, Lee KH, Park IH, Ko Y, Jeong SW, Kim SU (2007a) Brain transplantation of human neural stem cells promotes functional recovery in mouse intracerebral hemorrhage stroke model. Stem Cells 25:211–224

    Article  CAS  Google Scholar 

  • Lee HJ, Kim KS, Kim EJ, Park IH, Kim SU (2007b) Human neural stem cells over-expressing VEGF provide neuroprotection, angiogenesis and functional recovery in mouse stroke model. PLoS ONE 1:e156

    Article  CAS  Google Scholar 

  • Lee HJ, Park IH, Kim HJ, Kim SU (2009a) Human neural stem cells overexpressing glial cell line derived neurotrophic factor (GDNF) promote functional recovery and neuroprotection in experimental cerebral hemorrhage. Gene Ther 16:1066–1076

    Article  CAS  PubMed  Google Scholar 

  • Lee HJ, Kim MK, Kim HJ, Kim SU (2009b) Human neural stem cells genetically modified to overexpress Akt1 provide neuroprotection and functional improvement in mouse stroke model. PLoS One 4:e5586

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee HJ, Lim IJ, Lee MC, Kim SU (2010a) Human neural stem cells genetically modified to overexpress BDNF promote functional recovery and neuroprotection in mouse stroke model. J Neurosci Res 88:3282–3294

    Article  CAS  PubMed  Google Scholar 

  • Lee JS, Hong JM, Moon GJ, Lee PH, Ahn YH, Bang OY (2010b) A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells 28:1099–1106

    Article  PubMed  Google Scholar 

  • Lee HJ, Lim IJ, Park SW, Kim YB, Kim SU (2012) Human neural stem cells genetically modified to express human nerve growth factor gene restore cognition in ibotenic acid-induced cognitive dysfunction. Cell Transplant 21:2487–2496

    Article  PubMed  Google Scholar 

  • Li P, Tessler A, Han SS, Fischer I, Rao MS, Selzer ME (2005) Fate of immortalized human neuronal progenitor cells transplanted in rat spinal cord. Arch Neurol 62:223–229

    Article  PubMed  Google Scholar 

  • Lindvall O, Kokaia Z (2006) Stem cells for the treatment of neurological disorders. Nature 441:1094–1096

    Article  CAS  PubMed  Google Scholar 

  • Lindvall O, Brundin P, Widner H, Rehncrona S, Gustavii B, Frackowiak R, Leenders KL, Sawle G, Rothwell JC, Marsden CD (1990) Grafts of fetal dopamine neurons survive and improve motor function in Parkinson’s disease. Science 247:574–577

    Article  CAS  PubMed  Google Scholar 

  • Lindvall O, Kokaia Z, Martinez-Serrano A (2004) Stem cell therapy for human neurodegenerative disorders-how to make it work. Nat Med 10(suppl):S42–S50

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Qu Y, Stewart TJ, Howard MJ, Chakrabortty S, Holekamp TF, McDonald JW (2000) Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after transplantation. Proc Natl Acad Sci U S A 97:6126–6131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu QR, Yuk D, Alberta JA, Zhu Z, Pawlitzky I, Chan J, McMahon AP, Stiles CD, Rowitch DH (2000) Sonic hedgehog-regulated oligodendrocyte lineage genes encoding bHLH proteins in the mammalian central nervous system. Neuron 25:317–329

    Article  CAS  PubMed  Google Scholar 

  • Lyons MK (2011) Deep brain stimulation: current and future clinical applications. Mayo Clin Proc 86:662–672

    Article  PubMed  PubMed Central  Google Scholar 

  • Marr RA, Rockenstein E, Mukherjee A, Kindy MS, Hersh LB, Gage FH, Verma IM, Masliah E (2003) Neprilysin gene transfer reduces human amyloid pathology in transgenic mice. J Neurosci 23:1992–1996

    CAS  PubMed  Google Scholar 

  • Marshall J, Thomas DJ (1988) Cerebrovascular disease. In: Asbury A, McKhann G, McDonald W (eds) Diseases of the nervous system. WB Saunders, Philadelphia, pp 1101–1135

    Google Scholar 

  • McBride JL, Behrstock SP, Chen EY, Jakel RJ, Siegel I, Svendsen CN, Kordower JH (2004) Human neural stem cell transplants improve motor function in a rat model of Huntington’s disease. J Comp Neurol 475:211–219

    Article  PubMed  Google Scholar 

  • McFarlin DE, McFarland HF (1982) Multiple sclerosis. N Engl J Med 307:1183–1188

    Article  CAS  PubMed  Google Scholar 

  • McKay RG (1997) Stem cells in the central nervous system. Science 276:66–71

    Article  CAS  PubMed  Google Scholar 

  • Melchor JP, Pawlak R, Strickland S (2003) The tissue plasminogen activator-plasminogen proteolytic cascade accelerates amyloid-beta degradation and inhibit Abeta-induced neurodegeneration. J Neurosci 23:8867–8871

    CAS  PubMed  Google Scholar 

  • Miles GB, Yohn DC, Wichterle H (2004) Functional properties of motoneurons derived from mouse embryonic stem cells. J Neurosci 24:7848–7858

    Article  CAS  PubMed  Google Scholar 

  • Miller BC, Eckman EA, Sambamurti K, Dobbs N, Chow KM, Eckman CB, Hersh LB, Thiele DL (2003) Amyloid-beta peptide levels in brain are inversely correlated with insulysin activity levels in vivo. Proc Natl Acad Sci U S A 100:6221–6226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miltrecic D, Nicaise C, Gajovic S, Pochet R (2010) Distribution, differentiation and survival of intravenously administered neural stem cells in a rat model of amuyotrophic lateral sclerosis. Cell Transplant 19:537–548

    Article  Google Scholar 

  • Modo M, Stroemer RP, Tang E, Patel S, Hodges H (2002) Effects of implantation site of stem cell grafts on behavioral recovery from stroke damage. Stroke 33:2270–2278

    Article  PubMed  Google Scholar 

  • Moghadam FH, Alaie H, Karbalaie K, Tanhaei S, Nasr Esfahani MH, Baharvand H (2009) Transplantation of primed or unprimed mouse embryonic stem cells derived neural precursor cells improve cognitive function in Alzheimerian rats. Differentiation 78:59–68

    Article  CAS  PubMed  Google Scholar 

  • Mueller-Steiner S, Zhou Y, Arai H, Roberson ED, Sun B, Chen J, Wang X, Yu G, Esposito L, Mucke L, Gan L (2006) Antiamyloidogenic and neuroprotective functions of cathepsin B: implications for Alzheimer’s disease. Neuron 51:703–714

    Article  CAS  PubMed  Google Scholar 

  • Musiał A, Bajda M, Malawska B (2007) Recent developments in cholinesterase inhibitors for Alzheimer’s disease treatment. Curr Med Chem 14:2654–2679

    Article  PubMed  Google Scholar 

  • Nagai A, Kim WK, Lee HJ, Jeong HS, Kim KS, Hong SH, Park IH, Kim SU (2007) Multilineage potential of stable human mesenchymal stem cell line derived from fetal marrow. PLoS ONE 2:e1272

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakao N, Itakura T (2000) Fetal tissue transplants in animal models of Huntington’s disease: the effects on damaged neuronal circuitry and behavioral deficits. Prog Neurobiol 61:313–338

    Article  CAS  PubMed  Google Scholar 

  • Nistor GI, Totoiu MO, Haque N, Carpenter MK, Keirstead HS (2005) Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation. Glia 49:385–396

    Article  PubMed  Google Scholar 

  • Olanow CW, Kordower J, Freeman T (1996) Fetal nigral transplantation as a therapy for Parkinson’s disease. Trends Neurosci 19:102–109

    Article  CAS  PubMed  Google Scholar 

  • Park IH, Zhao R, West JA (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 415:141–146

    Article  CAS  Google Scholar 

  • Park D, Joo SS, Kim TK, Lee HJ, Lim IJ, Kim YB, Kim SU (2012a) Human neural stem cells overexpressing choline acetyltransferase gene recover cognitive function of kainic acid-Induced learning and memory deficit animals. Cell Transplant 21:365–371

    Article  CAS  PubMed  Google Scholar 

  • Park D, Lee HJ, Joo SS, Bae D, Yang G, Yang Y, Lim IJ, Kim YB, Kim SU (2012b) Human neural stem cells over-expressing choline acetyltransferase restore cognition in rat model of cognitive dysfunction. Exp Neurol 234:521–526

    Article  CAS  PubMed  Google Scholar 

  • Paty D, Ebers GC (1998) Multiple sclerosis. FA Davis, Philadelphia

    Google Scholar 

  • Pendharkar AV, Chua JY, Andres RH, Wang N, Gaeta X, Wang H, De A, Choi R, Chen S, Rutt BK, Gambhir SS, Guzman R (2010) Biodistribution of neural stem cells after intravascular therapy for hypoxic-ischemia. Stroke 41:2064–2070

    Article  PubMed  PubMed Central  Google Scholar 

  • Pérez-Navarro E, Canudas AM, Akerund P, Alberch J, Arenas E (2000) Brain-derived neurotrophic factor, NT-3 and NT-3/4 prevent the death of striatal projection neurons in rodent model of Huntington’s disease. J Neurochem 75:2190–2199

    Article  PubMed  Google Scholar 

  • Perlow MJ, Freed WJ, Hoffer BJ, Seiger A, Olson L, Wyatt RJ (1979) Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system. Science 204:643–647

    Article  CAS  PubMed  Google Scholar 

  • Pluchino S, Zanotti L, Rossi B, Brambilla E, Ottoboni L, Salani G, Martinello M, Cattalini A, Bergami A, Furlan R, Comi G, Constantin G, Martino G (2005) Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature 436:266–271

    Article  CAS  PubMed  Google Scholar 

  • Ramon y Cajal S (1928) Degeneration and regeneration of the nervous system. Hafner, New York

    Google Scholar 

  • Redmond DE Jr, Bjugstad KB, Teng YD, Ourednik V, Ourednik J, Wakeman DR, Parsons XH, Gonzalez R, Blanchard BC, Kim SU, Gu Z, Lipton SA, Markakis EA, Roth RH, Elsworth JD, Sladek JR Jr, Sidman RL, Snyder EY (2007) Behavioral improvement in a primate Parkinson’s model is associated with multiple homeostatic effects of human neural stem cells. Proc Natl Acad Sci U S A 104:12175–12180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renfranz PJ, Cunningham M, McKay R (1991) Region-specific differentiation of the hippocampal stem cell line HiB5 upon implantation into the developing mammalian brain. Cell 66:713–729

    Article  CAS  PubMed  Google Scholar 

  • Roberts TJ, Price J, Williams SC, Modo M (2006) Preservation of striatal tissue and behavioral function after neural stem cell transplantation in a rat model of Huntington’s disease. Neuroscience 139:1187–1199

    Article  CAS  PubMed  Google Scholar 

  • Rowland LP, Shneider NA (2001) Amyotrophic lateral sclerosis. N Engl J Med 344:1688–1700

    Article  CAS  PubMed  Google Scholar 

  • Ryu JK, Kim J, Cho SJ, Hatori K, Nagai A, Choi HB, Lee MC, McLarnon JG, Kim SU (2004) Proactive transplantation of human neural stem cells blocks neuronal cell death in rat model of Huntington disease. Neurobiol Dis 16:68–77

    Article  CAS  PubMed  Google Scholar 

  • Ryu MY, Lee MA, Ahn YH, Kim KS, Yoon SH, Snyder EY, Cho KG, Kim SU (2005) Brain transplantation of genetically modified neural stem cells in parkinsonian rat. Cell Transplant 14:193–202

    Article  CAS  PubMed  Google Scholar 

  • Sah DW, Ray J, Gage F (1997) Bipotent progenitor cell lines from the human CNS. Nat Biotechnol 15:574–580

    Article  CAS  PubMed  Google Scholar 

  • Saporta S, Borlongan CV, Sanberg PR (1999) Neural transplantation of human teratocarcinoma neurons into ischemic rats. A quantitative dose-response analysis of cell survival and behavioral recovery. Neuroscience 180:519–525

    Article  Google Scholar 

  • Savitz SI, Rosenbaum DM, Dinsmore JH, Wechsler LR, Caplan LR (2002) Cell transplantation for stroke. Ann Neurol 52:266–275

    Article  PubMed  Google Scholar 

  • Seilhean D, Gansmüller A, Baron-Van Evercooren A, Gumpel M, Lachapelle F (1996) Myelination by transplanted human and mouse CNS tissue after long-term cryopreservation. Acta Neuropathol 91:82–88

    Article  CAS  PubMed  Google Scholar 

  • Seminatore C, Polentes J, Ellman D, Kozubenko N, Itier V, Tine S, Tritschler L, Brenot M, Guidou E, Blondeau J, Lhuillier M, Bugi A, Aubry L, Jendelova P, Sykova E, Perrier AL, Finsen B, Onteniente B (2010) The postischemic environment differentially impacts teratoma or tumor formation after transplantation of human embryonic stem cell-derived neural progenitors. Stroke 41:153–159

    Article  PubMed  Google Scholar 

  • Shamblott MJ, Axelman J, Wang S, Bugg EM, Littlefield JW, Donovan PJ, Blumenthal PD, Huggins GR, Gearhart JD (1998) Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci U S A 95:13726–13731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shim JW, Koh HC, Chang MY, Roh E, Choi CY, Oh YJ, Son H, Lee YS, Studer L, Lee SH (2004) Enhanced in vitro midbrain dopamine neuron differentiation, dopaminergic function, neurite outgrowth, and 1-methyl-4-phenylpyridium resistance in mouse embryonic stem cells overexpressing Bcl-XL. J Neurosci 24:843–852

    Article  CAS  PubMed  Google Scholar 

  • Sinden JD, Rashid-Doubell F, Kershaw TR, Nelson A, Chadwick A, Jat PS, Noble MD, Hodges H, Gray JA (1997) Recovery of spatial learning by grafts of a conditionally immortalized hippocampal neuroepithelial cell line into the ischemia-lesioned hippocampus. Neuroscience 23:599–608

    Article  Google Scholar 

  • Snyder EY, Deitcher DL, Walsh C (1992) Multipotent neural cell lines can engraft and participate in development of mouse cerebellum. Cell 68:33–51

    Article  CAS  PubMed  Google Scholar 

  • Song J, Lee ST, Kang W, Park JE, Chu K, Lee SE, Hwang T, Chung H, Kim M (2007) Human embryonic stem cell-derived neural precursor transplantation induced rotational behavior in rats with unilateral quinolinic acid lesions. Neurosci Lett 423:58–61

    Article  CAS  PubMed  Google Scholar 

  • Storkebaum E, Lambrechts D, Dewerchin M, Moreno-Murciano MP, Appelmans S, Oh H, Van Damme P, Rutten B, Man WY, De Mol M, Wyns S, Manka D, Vermeulen K, Van Den Bosch L, Mertens N, Schmitz C, Robberecht W, Conway EM, Collen D, Moons L, Carmeliet P (2005) Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS. Nat Neurosci 8:85–92

    Article  CAS  PubMed  Google Scholar 

  • Takagi Y, Takahashi J, Saiki H, Morizane A, Hayashi T, Kishi Y, Fukuda H, Okamoto Y, Koyanagi M, Ideguchi M, Hayashi H, Imazato T, Kawasaki H, Suemori H, Omachi S, Iida H, Itoh N, Nakatsuji N, Sasai Y, Hashimoto N (2005) Dopaminergic neurons generated from monkey ES cells function in a Parkinson primate model. J Clin Invest 115:102–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  CAS  PubMed  Google Scholar 

  • Takebayashi H, Yoshida S, Sugimori M, Kosako H, Kominami R, Nakafuku M, Nabeshima Y (2000) Dynamic expression of bHLH olig family members: Implication of Olig2 in neuron and Oligodendrocyte differentiation and identification of a new member, Olig3. Mech Dev 99:143–148

    Article  CAS  PubMed  Google Scholar 

  • Temple S (2001) The development of neural stem cells. Nature 414:112–117

    Article  CAS  PubMed  Google Scholar 

  • Terry AV, Buccafusco JJ (2003) The cholinergic hypothesis of age and Alzheimer’s disease related cognitive deficits: recent challenges and their implications for novel drug development. J Pharmacol Exp Ther 306:821–827

    Article  CAS  PubMed  Google Scholar 

  • Thieben MJ, Duggins AJ, Good CD, Gomes L, Mahant N, Richards F, McCusker E, Frackowiak RS (2002) The distribution of structural neuropathology in pre-clinical Huntington’s disease. Brain 125:1815–1828

    Article  CAS  PubMed  Google Scholar 

  • Thompson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell line derived from human blastocysts. Science 282:1145–1147

    Article  Google Scholar 

  • Tuszynski DW (2002) Gene therapy for neurodegenerative disorders. Lancet Neurol 1:51–57

    Article  PubMed  Google Scholar 

  • Tuszynski DW, HS U, Amaral DG, Gage FH (1990) Nerve growth factor infusion in primate brain reduces lesion-induced cholinergic neuronal degeneration. J Neurosci 10:3604–3614

    CAS  PubMed  Google Scholar 

  • Tuszynski MH, Thal L, Pay M, Salmon DP, HS U, Bakay R, Patel P, Blesch A, Vahlsing HL, Ho G, Tong G, Potkin SG, Fallon J, Hansen L, Mufson EJ, Kordower JH, Gall C, Conner J (2005) A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat Med 11:551–555

    Article  CAS  PubMed  Google Scholar 

  • Vasey EM, Dottori M, Jamshidi P (2010) Comparison of transplant efficacy between spontaneously derived and noggin-primed human embryonic stem cell neural precursors in the quinolinic acid rat model of Huntington’s disease. Cell Transplant 19:1055–1062

    Article  Google Scholar 

  • Veizovic T, Beech JS, Stroemer RP, Watson WP, Hodges H (2001) Resolution of stroke deficits following contralateral grafts of conditionally immortalized neuroepithelial stem cells. Stroke 32:1012–1019

    Article  CAS  PubMed  Google Scholar 

  • Visnyei K, Tatsukawa KJ, Erickson RI, Simonian S, Oknaian N, Carmichael ST, Kornblum HI (2006) Neural progenitor implantation restores metabolic deficits in the brain following striatal quinolinic acid lesion. Exp Neurol 197:465–474

    Article  PubMed  Google Scholar 

  • Wagner J, Akerud P, Castro DS, Holm PC, Canals JM, Snyder EY, Perlmann T, Arenas E (1999) Induction of a midbrain dopaminergic phenotype in Nurr1-overexpressing neural stem cells by type 1 astrocytes. Nat Biotechnol 17:653–659

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Matsumoto Y, Shindo T, Miyake K, Shindo A, Kawanishi M, Kawai N, Tamiya T, Nagao S (2006) Neural stem cells transplantation in cortex in a mouse model of Alzheimer’s disease. J Med Invest 53:61–69

    Article  PubMed  Google Scholar 

  • Watabe K, Ohashi T, Sakamoto T, Kawazoe Y, Takeshima T, Oyanagi K, Inoue K, Eto Y, Kim SU (2000) Rescue of lesioned adult rat spinal motoneurons by adenoviral gene transfer of glial cell line-derived neurotrophic factor. J Neurosci Res 60:511–519

    Article  CAS  PubMed  Google Scholar 

  • Werning M, Zhao J, Pruszak J, Hedlund E, Fu D, Soldner F, Broccoli V, Constantine-Paton M, Isacson O, Jaenisch R (2008) Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc Natl Acad Sci U S A 105:5856–5861

    Article  Google Scholar 

  • Whitehouse PJ, Price DL, Clark AW, Coyle JT, DeLong MR (1981) Alzheimer disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann Neurol 10:122–126

    Article  CAS  PubMed  Google Scholar 

  • Wichterle H, Lieberam I, Porter JA, Jessell TM (2002) Directed differentiation of embryo stem cells into motor neurons. Cell 110:385–397

    Article  CAS  PubMed  Google Scholar 

  • Windrem MS, Nunes MC, Rashbaum WK, Schwartz TH, Goodman RA, McKhann G, Roy NS, Goldman SA (2004) Fetal and adult human oligodendrocyte progenitor cell isolates myelinate the congenitally dysmyelinated brain. Nat Med 10:93–97

    Article  CAS  PubMed  Google Scholar 

  • Wolff JA, Fisher LJ, Xu L, Jinnah HA, Langlais PJ, Iuvone PM, O’Malley KL, Rosenberg MB, Shimohama S, Friedmann T et al (1989) Grafting fibroblasts genetically modified to produce L-dopa in a rat model of Parkinson disease. Proc Natl Acad Sci U S A 86:9011–9014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu S, Sasaki A, Yoshimoto R, Kawahara Y, Manabe T, Kataoka K, Asashima M, Yuge L (2008) Neural stem cells improve learning and memory in rats with Alzheimer’s disease. Pathobiology 75:186–194

    Article  PubMed  Google Scholar 

  • Xu L, Yan J, Chen D, Welsh AM, Hazel T, Johe K, Hatfield G, Koliatsos VE (2006) Human neural stem cell grafts ameliorate motor neuron disease in SOD1 transgenic rats. Transplantation 82:865–875

    Article  PubMed  Google Scholar 

  • Yamazaki N, Kato K, Kurihara E, Nagaoka A (1991) Cholinergic drugs reverse AF64A-induced impairment of passive avoidance learning in rats. Psychopharmacology (Berl) 103:215–222

    Article  CAS  Google Scholar 

  • Yandava B, Billinghurst L, Snyder E (1999) Global cell replacement is feasible via neural stem cell transplantation: evidence from the dysmyelinated shiverer mouse brain. Proc Natl Acad Sci U S A 96:7029–7034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasuhara T, Matsukawa N, Hara K, Yu G, Xu L, Maki M, Kim SU, Borlongan CV (2006) Transplantation of neural stem cells exerts neuroprotection in a rat model of Parkinson disease. J Neurosci 26:12497–12511

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Vodyanik MA, Smuga-Otto K (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  CAS  PubMed  Google Scholar 

  • Zhang SC, Ge B, Duncan ID (1999) Adult brain retains the potential to generate oligodendroglial progenitors with extensive myelination capacity. Proc Natl Acad Sci U S A 96:4089–4094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao LR, Duan WM, Reyes M, Keene CD, Verfaillie CM, Low WC (2002) Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischmica brain of rats. Exp Neurol 174:11–20

    Article  PubMed  Google Scholar 

  • Zheng C, Nennesmo I, Fadeel B, Henter JI (2004) Vascular endothelial growth factor prolongs survival in a transgenic mouse model of ALS. Ann Neurol 56:564–567

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Wang S, Anderson DJ (2000) Identification of a novel family of oligodendrocyte lineage specific basic helix loop helix transcription factors. Neuron 25:331–343

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung U. Kim M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kim, S.U. (2016). Regenerative Medicine in the Central Nervous System: Stem Cell-Based Cell- and Gene-Therapy. In: Steinhoff, G. (eds) Regenerative Medicine - from Protocol to Patient. Springer, Cham. https://doi.org/10.1007/978-3-319-28293-0_5

Download citation

Publish with us

Policies and ethics