Skip to main content

Guidelines for Preclinical Development

  • Chapter
  • First Online:
  • 820 Accesses

Abstract

Preclinical development encompasses the set of activities required to initiate testing for safety and efficacy in humans. These requirements are defined by national and international regulations, and are generally focused on definition of drug composition and safety as well as scientific rationale and establishing a proposed dose regimen. The preclinical regulatory requirements for cell therapies broadly parallel those for small molecules and proteins, but the complexity of cells can bring additional challenges to the definition of potency, composition, immunogenicity, and toxicity. As a consequence of their pluripotent origins, stem cell therapies require additional preclinical considerations related to potential tumorigenicity and genetic/epigenetic stability. The first FDA approved stem cell therapy study initiated clinical trial in 2010. Thus, the field is young and there are few completed studies to provide precedents for planned preclinical development of novel stem cell approaches. Rather, the field must draw practical lessons from other somatic cell therapies. The evolution and harmonization of regulatory guidances for stem cells must also contend with a growing number of unregulated sites around the world that offer unproven stem cell treatments. It takes time for any new technology to identify safety and efficacy barriers to clinical application, and to develop strategies to overcome them. As current research and clinical experience guide the next generation of stem cell therapies in preclinical development, the establishment of validated assays based on cells differentiated from human stem cells may revolutionize the preclinical safety testing for all classes of drugs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ADMET:

absorption distribution, metabolism, excretion, toxicity

AM:

ancillary material

ASCs:

adult stem cells

ATM:

ataxia telangiectasia mutated

ATMP:

Advanced Therapy Medicinal Products

BDNF:

brain derived neurotrophic factor

BSE:

bovine spongiform encephalitis

CAT:

Committee on Advanced Therapies

CBER:

Center for Biologics Evaluation & Research

CDER:

Center for Drug Evaluation & Research

CFR:

Code of Federal Regulations

CGMP:

Current Good Manufacturing Practice

CGT:

Cellular and Gene Therapy

CGTP:

Current Good Tissue Practice

CM:

cardiomyocyte

CMC:

Chemistry Manufacturing, and Control

CNS:

central nervous system

CRO:

contract research organization

CTA:

Clinical Trial Authorisation

CTP:

cellular therapy products

CYP450:

cytochrome P450

DCEPT:

Division of Clinical Evaluation and Pharmacology/Toxicology

DCGT:

Division of Cellular and Gene Therapies

DHHS:

Department of Health and Human Services

DHT:

Division of Human Tissues

ECVAM:

European Center for the Validation of Alternative Methods

EMA:

European Medicines Agency

ESNATS:

embryonic stem cell-derived novel alternative test systems

ESC:

embryonic stem cells

FCS:

fetal calf serum

FDA:

Food and Drug Administration

FETAX:

frog embryo teratogenesis assay

FGF:

fibroblast growth factor

FPD:

field potential duration

GDNF:

glial cell-derived neurotrophic factor

GFP:

green fluorescent protein

GVHD:

graft versus host disease

HCT/P:

human cells tissues, and cellular and tissue-based products

hERG:

human Ether-a-go-go-Related Gene

hESCs:

human embryonic stem cells

hiPSC:

human induced pluripotent stem cells

hiPSC-CMs:

human induced stem cell-derived cardiomyocytes

HSCs:

hematopoietic stem cells

HLA:

human leukocyte antigens

IBMIR:

instant blood mediated inflammatory reaction

ICH:

International Conference on Harmonisation

iPSC:

induced pluripotent stem cells

iPSC-HCs:

induced pluripotent stem cell-derived hepatocytes

IDO:

indoleamine 2,3-dioxygenase

IFN-γ:

interferon-gamma

IND:

Investigational New Drug

ISCT:

International Society for Cellular Therapy

LC-MS:

liquid chromatography- mass spectrometry

MEA:

microelectrode array

mEST:

mouse embryonic stem cell test

MHC:

major histocompatibility complex

MM:

micromass

MOA:

mechanism of action

MSC:

mesenchymal stem cell

NDA:

New Drug Application

NSC:

neural stem cell

OCTGT:

Office of Cellular Tissue & Gene Therapy

OKSM:

OCT4, SOX2, KLF4, MYC

PHH:

primary human hepatocytes

PHSA:

Public Health Safety Act

PK/PD:

pharmacokinetics / pharmacodynamics

PSC:

pluripotent stem cell

ROS:

reactive oxygen species

SCDI:

stearoyl-CoA desaturase-1

SCID:

severe combined immunodeficiency

SR-GVHD:

steroid-refractory acute graft versus host disease

TdP:

Torsade de Pointes

TGF-β:

transforming growth factor beta

WEC:

whole embryo culture

References

  • Abbassi YA, Xi B, Li N et al (2012) Dynamic monitoring of beating periodicity of stem cell-derived cardiomyocytes as a predictive tool for preclinical safety assessment. Br J Pharmacol 165:1424–1441

    Article  CAS  Google Scholar 

  • Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105(4):1815–1822

    Article  CAS  PubMed  Google Scholar 

  • Ährlund-Richter L, De Luca M, Marshak DR et al (2009) Isolation and production of cells suitable for human therapy: challenges ahead. Cell Stem Cell 4:20–26

    Article  PubMed  CAS  Google Scholar 

  • Allison M (2009) Genzyme backs osiris, despite Prochymal flop. Nat Biotechnol 27:966–967

    Google Scholar 

  • Amariglio N, Hirshberg A, Scheithauer BW et al (2009) Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med 6:e1000029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Amit M, Carpenter MK, Inokuma MS et al (2005) Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol 227:271–278

    Article  CAS  Google Scholar 

  • Arnhold S, Lenartz D, Kruttwig K et al (2000) Differentiation of green fluorescent protein-labeled embryonic stem cell-derived neural precursor cells into Thy-1 positive neurons and glia after transplantation into adult rat stratum. J Neurosurg 93:1026–1032

    Article  CAS  PubMed  Google Scholar 

  • Atouf F, Provost NM, Rosenthal FM (2013) Standards for ancillary materials used in cell- and tissue-based therapies. BioProcess Int 11(8):12–21

    Google Scholar 

  • Bailey GP, Wise LD, Buschmann J et al (2009) Pre- and postnatal developmental toxicity study design for pharmaceuticals. Birth Defects Res B Dev Reprod Toxicol 86:437–445

    Article  CAS  PubMed  Google Scholar 

  • Balmer NV, Weng MK, Zimmer B et al (2012) Epigenetic changes and disturbed neural development in a human embryonic stem cell-based model relating to the fetal valproate syndrome. Hum Mol Genet 21(18):4104–4114

    Article  CAS  PubMed  Google Scholar 

  • Bartholomew A, Sturgeon C, Siatskas M et al (2002) Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft. Exp Hematol 30(1):42–48

    Article  PubMed  Google Scholar 

  • Ben-David U, Mayshar Y, Benvenisty N (2011) Large-scale analysis reveals acquisition of lineage-specific chromosomal aberrations in human adult stem cells. Cell Stem Cell 9:97–102

    Article  CAS  PubMed  Google Scholar 

  • Ben-David U, Gan QF, Golan-Lev T et al (2013) Selective elimination of human pluripotent stem cells by an oleate synthesis inhibitor discovered in a high-throughput screen. Cell Stem Cell 12(2):167–179

    Article  CAS  PubMed  Google Scholar 

  • Bernardo ME, Cometa AM, Pagliara D et al (2011) Ex vivo expansion of mesenchymal stromal cells. Best Pract Res Clin Haematol 24:73–81

    Article  CAS  PubMed  Google Scholar 

  • Bjorklund LM, Sanchez-Pernaute R, Chung S et al (2002) Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci U S A 99:2344–2349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blazar BR, Murphy WJ, Abedi M (2012) Advances in graft-versus-host disease biology and therapy. Nat RevImmunol 12:443–458

    CAS  Google Scholar 

  • Bork S, Pfister S, Witt H et al (2010) DNA methylation pattern changes upon long-term aging of human mesenchymal stromal cells. Aging Cell 9(1):54–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyd A, Rodrigues NP, Lui KO et al (2012) Concise review: Immune recognition of induced pluripotent stem cells. Stem Cells 30:797–803

    Article  CAS  PubMed  Google Scholar 

  • Braam SR, Tertoolen L, van de Stolpe A et al (2010) Prediction of drug-induced cardiotoxicity using human embryonic stem cell-derived cardiomyocytes. Stem Cell Res 4(2):107–116

    Article  CAS  PubMed  Google Scholar 

  • Bravery CA, Carmen J, Fong T et al (2013) Potency assay development for cellular therapy products: an ISCT review of the requirements and experiences in the industry. Cytotherapy 15:9–19

    Article  PubMed  Google Scholar 

  • Brivanlou AN, Gage FH, Jaenisch R et al (2003) Stem cells. Setting standards for human embryonic stem cells. Science 300:913–916

    Article  CAS  PubMed  Google Scholar 

  • Brustle O, Jones KN, Learish RD et al (1999) Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science 285:754–756

    Article  CAS  PubMed  Google Scholar 

  • Buta C, David R, Dressel R et al (2013) Reconsidering pluripotency tests: do we still need teratoma assays? Stem Cell Res 11:552–562

    Article  PubMed  Google Scholar 

  • Buzanska L, Sypecka J, Nerini-Molteni S et al (2009) A human stem cell-based model for identifying adverse effects of organic and inorganic chemicals on the developing nervous system. Stem Cells 27:2591–2601

    Article  CAS  PubMed  Google Scholar 

  • CBER/CDER/CVM/ORA (2006) Guidance for industry: quality systems approaches to pharmaceutical current good manufacturing (CGMP) regulations. US Food and Drug Administration, Rockville. http://www.fda.gov/downloads/Drugs/…/Guidances/UCM070337.pdf

  • CBER (2008) Guidance for FDA reviewers and sponsors: Content and review of Chemistry, Manufacturing, and Control (CMC)- Information for human somatic cell therapy Investigational New Drug Applications (INDs). US Food and Drug Administration, Rockville. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm070273.pdf

  • Chambers SM, Fasano CA, Papapetrou EP et al (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27(3):275–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang CW, Lai YS, Pawlik KM (2009) Polycistronic lentivial vector for “hit and run” reprogramming of adult skin fibroblasts to induced pluripotent stem cells. Stem Cells 27(5):1042–1049

    Article  CAS  PubMed  Google Scholar 

  • Corsini A, Ganey P, Ju C et al (2012) Current challenges and controversies in drug-induced liver injury. Drug Saf 35:1099–1117

    Article  CAS  PubMed  Google Scholar 

  • Cyranoski D (2010) Strange lesions after stem-cell therapy. Nature 465:997

    Article  CAS  PubMed  Google Scholar 

  • Deal G (2009) Stem cell therapy regulations: the US vs the EU. Regul Rapp 6(7/8):4–6

    Google Scholar 

  • De Bruin ML, Pettersson M, Meyboom R et al (2005) Anti-HERG activity and the risk of drug-induced arrhythmias and sudden death. Eur Heart J 6:590–597

    Google Scholar 

  • DeFrancesco L (2009) Fits and starts for Geron. Nat Biotechnol 27:877

    Article  CAS  Google Scholar 

  • Deshmukh RS, Kovács KA, Dinnyés A (2012) Drug discovery models and toxicity testing using embryonic and induced pluripotent stem-cell-derived cardiac and neuronal cells. Stem Cells Int 2012:379569. doi:10.1155/2012/379569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Digirolamo CM, Stokes D, Colter D et al (1999) Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiated. Br J Haematol 107:275–281

    Article  CAS  PubMed  Google Scholar 

  • Dlouhy BJ, Awe O, Rao RC et al (2014) Autograft-derived spinal cord mass following olfactory mucosal cell transplantation in a spinal cord injury patient: Case report. J Neurosurg Spine 21:618–622

    Article  PubMed  Google Scholar 

  • Doi D, Morizane A, Kikuchi T et al (2012) Prolonged maturation culture favors a reduction in the tumorigenicity and the dopaminergic function of human ESC-derived neural cells in a primate model of Parkinson’s disease. Stem Cells 30:935–945

    Article  CAS  PubMed  Google Scholar 

  • Dominici M, Le Blanc K, Muellet I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  CAS  PubMed  Google Scholar 

  • Draper JS, Pigott C, Thomson JA et al (2002) Surface antigens of human embryonic stem cells: changes upon differentiation in culture. J Anat 200:249–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Draper JS, Smith K, Gokhale P et al (2004) Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat Biotechnol 22:53–54

    Article  CAS  PubMed  Google Scholar 

  • Dreisig K, Taxvig C, Birkhøj M et al (2013) Predictive value of cell assays for developmental toxicity and embryotoxicity of conazole fungicides. ALTEX 30(3):319–330

    Article  PubMed  Google Scholar 

  • Ebert AD, Liang P, Wu JC (2012) Induced pluripotent stem cells as a disease modeling and drug screening platform. J Cardiovasc Pharmacol 60:408–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elferink MG, Olinga P, van Leeuwen EM et al (2011) Gene expression analysis of precision-cut human liver slices indicates stable expression of ADM-Tox related genes. Toxicol Appl Pharmacol 253:57–69

    Article  CAS  PubMed  Google Scholar 

  • Erdo F, Buhrle C, Blunk J et al (2003) Host-dependent tumorigenesis of embryonic stem cell transplantation in experimental stroke. J Cereb Blood Flow Metab 23:780–785

    PubMed  Google Scholar 

  • Eliopoulos N, Stagg J, Lejeune L et al (2005) Allogeneic marrow stromal cells are immune rejected by MHC class I- and class II-mismatched recipient mice. Blood 106:4057–4065

    Article  CAS  PubMed  Google Scholar 

  • Fekete N, Gadelorge M, Furst D et al (2012) Platelet lysate from whole blood-derived pooled platelet concentrates and apheresis-derived platelet concentrates for the isolation and expansion of human bone marrow mesenchymal stromal cells: production, process, content and identification of active components. Cytotherapy 14:540–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Focosi D, Amabile G, Di Ruscio A et al (2014) Induced pluirpotent stem cells in hematology: current and future applications. Blood Cancer J 4:e211. doi:10.1038/bcj.2014.30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francois M, Copland IB, Yuan S et al (2012a) Cryopreserved mesenchymal stromal cells display impaired immunosuppressive properties as a result of heat-shock response and impaired interferon-gamma licensing. Cytotherapy 14:147–152

    Article  CAS  PubMed  Google Scholar 

  • Francois M, Romieu-Mourez R, Li M, Galipeau J (2012b) Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation. Mol Ther 20:187–195

    Article  CAS  PubMed  Google Scholar 

  • Fujikawa T, Oh S-H, Pi L et al (2005) Teratoma formation leads to failure of treatment for type 1 diabetes using embryonic stem cell-derived insulin-producing cells. Am J Pathol 166:1781–1791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galipeau J (2013) The mesenchymal stromal cells dilemma- does a negative phase III trial of random donor mesenchymal stromal cells in a steroid-resistant graft-versus-host disease represent a death knell or a bump in the road? Cytotherapy 15:2–8

    Article  PubMed  Google Scholar 

  • Galipeau J, Krampera M (2015) The challenge of defining mesenchymal stromal cell potency assays and their potential use as release criteria. Cytotherapy 17:125–127

    Article  PubMed  Google Scholar 

  • Genschow E, Spielmann H, Scholz G et al (2002) The EVCAM international validation study on in vitro embryotoxicology tests: Results of the definitive phase and evaluation of prediction models. European centre for the validation of alternative methods. Altern Lab Anim 30:151–176

    CAS  PubMed  Google Scholar 

  • George B (2011) Regulations and guidelines governing stem cell based products: clinical considerations. Perspect Clin Res 2(3):94–99

    Article  PubMed  PubMed Central  Google Scholar 

  • Grens K (2014) Judges side with FDA on stem cells. The Scientist, February 6

    Google Scholar 

  • Guha P, Morgan JW, Mostslavsky G, Rodrigues NP, Boyd AS (2013) Lack of immune response to differentiated cells derived from syngeneic induced pluripotent stem cells. Cell Stem Cell 12:407–412

    Article  CAS  PubMed  Google Scholar 

  • Guidance for FDA Reviewers and Sponsors: Content and Review of Chemistry, Manufacturing, and Control (CMC) Information for Human Somatic Cell Therapy Investigational New Drug Applications (INDs). FDA Center for Drug Evaluation and Research, FDA Center for Biologics Evaluation and Research (2008) http://www.fda.gov/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/Xenotransplantation/ucm074131.htm

  • Guidance for industry: Preclinical assessment of investigational cellular and gene therapy products. FDA Center for Biologics Evaluation and Research, November 2013

    Google Scholar 

  • Guidance for industry: Immunogenicity assessment for therapeutic protein products. FDA Center for Drug Evaluation and Research, FDA Center for Biologics Evaluation and Research, August 2014 http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM338856.pdf

  • Gunawan BK, Kaplowitz N (2007) Mechanisms of drug-induced liver disease. Clin Liver Dis 11:459–475

    Article  PubMed  Google Scholar 

  • Guo L, Abrams RM, Babiarz JE et al (2011) Estimating the risk of drug-induced proarrhythmia using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Sci 123:281–289

    Article  CAS  PubMed  Google Scholar 

  • Halme DG, Kessler DA (2006) FDA regulation of stem-cell-based therapies. N Engl J Med 355:1730–1735

    Article  CAS  PubMed  Google Scholar 

  • Harrill JA, Freudenrich TM, Robinette BL, Mundy WR (2011) Comparative sensitivity of human and rat neural cultures to chemical-induced inhibition of neurite outgrowth. Toxicol Appl Pharmacol 256:268–280

    Article  CAS  PubMed  Google Scholar 

  • Hentze H, Soong PL, Want ST et al (2009) Teratoma formation by human embryonic stem cells: evaluation of essential parameters for future safety studies. Stem Cell Res 2:198–210

    Article  PubMed  Google Scholar 

  • Heslop JA, Hammond TG, Santeramo I et al (2015) Concise review: workshop review: understanding and assessing the risks of stem cell-based therapies. Stem Cells Transl Med 4(4):389–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horwitz EM, Gordon PL, Koo WK et al (2002) Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfect: Implications for cell therapy of bone. Proc Natl Acad Sci U S A 99:8932–8937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horwitz EM, Le Blanc K, Dominici M et al (2005) Clarification of the nomenclature for MSC. The International Society for Cellular Therapy position statement. Cytotherapy 7:393–395

    Article  CAS  PubMed  Google Scholar 

  • Hovatta O, Jaconi M, Töhönen V et al (2010) A teratocarcinoma-like human embryonic stem cell (hESC) line and four hEST lines reveal potentially oncogenic genomic changes. PLoS One 5:e10263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hyka-Nouspikel N, Desmarais J, Gokhale PJ et al (2012) Deficient DNA damage response and cell cycle checkpoints lead to accumulation of point mutations in human embryonic stem cells. Stem Cells 30:1901–1910

    Article  CAS  PubMed  Google Scholar 

  • Jonsson MK, Duker G, Tropp C et al (2010) Quantified proarrhythmic potential of selected human embryonic stem cell-derived cardiomyocytes. Stem Cell Res 4(3):189–200

    Article  CAS  PubMed  Google Scholar 

  • Jonsson MK, Wang QD, Becjer B (2011) Impedance-based detection of beating rhythm and proarrhythmic effects of compounds on stem cell-derived cardiomyocytes. Assay Drug Dev Technol 9:589–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung JW, Kwon M, Choi JC et al (2013) Familial occurrence of pulmonary embolism after intravenous, adipose tissue-derived stem cell therapy. Yonsei Med J 54:1293–1296

    Article  PubMed  PubMed Central  Google Scholar 

  • Kameoka S, Babiarz J, Kolaja K, Chiao E (2014) A high-throughput screen for teratogens using human pluripotent stem cells. Toxicol Sci 137(1):76–90

    Article  CAS  PubMed  Google Scholar 

  • Kaneko S, Yamanaka S (2013) To be immunogenic, or not to be: that’s the iPSC question. Cell Stem Cell 12:385–386

    Article  CAS  PubMed  Google Scholar 

  • Kannankeril P, Roden DM, Darvay D (2010) Drug-induced long qt syndrome. Curr Opin Cardiol 17:43–51

    Google Scholar 

  • Kim EJ, Kim N, Cho SG (2013) The potential use of mesenchymal stem cells in hematopoietic stem cell transplantation. Exp Mol Med 45:e2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Knoepfler PS (2009) Deconstructing stem cell tumorigenicity: a roadmap to safe regenerative medicine. Stem Cells 27:1050–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knoepfler PS (2013) Key action items for the stem cell field: looking ahead to 2014. Stem Cells Dev 22(Suppl 1):10–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Kola I, Landis J (2004) Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 3(8):711–715

    Article  CAS  PubMed  Google Scholar 

  • Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256(5517):495–497

    Article  PubMed  Google Scholar 

  • Kramer J, Obejero-Paz CA, Myatt G et al (2013) MICE models: superior to the HERG model in predicting Torsade de Pointes. Sci Rep 3:2100. doi:10.1038/srep02100

    Article  PubMed  PubMed Central  Google Scholar 

  • Krtolica A, Ilic D, Genbacev O, Miller RK (2009) Human embryonic stem cells as a model for embryotoxiticity screening. Regen Med 4(3):449–459

    Article  CAS  PubMed  Google Scholar 

  • Krug AK, Kolde R, Gaspar JA et al (2013) Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol 87:123–143

    Article  CAS  PubMed  Google Scholar 

  • Kuegler PB, Zimmer B, Waldmann T et al (2010) Markers of murine embryonic and neural stem cells, neurons and astrocytes: reference points for developmental neurotoxicity testing. ALTEX 27(1):17–42

    PubMed  Google Scholar 

  • Lau D, Ogbogu U, Taylor B et al (2008) Stem cell clinics online the direct-to-consumer portrayal of stem cell medicine. Cell Stem Cell 3:591–594

    Article  CAS  PubMed  Google Scholar 

  • Laurent LC, Ulitsky I, Slavin I et al (2011) Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ED and iPS cells during reprogramming and time in culture. Cell Stem Cell 8(1):106–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawrenz B, Schiller H, Willbold E et al (2004) Highly sensitive biosafety model for stem-cell derived grafts. Cytotherapy 6:212–222

    Article  CAS  PubMed  Google Scholar 

  • Le BK, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I et al (2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: A phase II study. Lancet 371:1579–1586

    Article  CAS  Google Scholar 

  • LeBlanc J, Rasnyssib U, Sundberg B et al (2004) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363:1439–1441

    Article  Google Scholar 

  • Lee AS, Tang C, Rao MS et al (2013) Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med 19(8):998–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee WM (2003a) Acute liver failure in the United States. Semin Liver Dis 23:217–226

    Article  CAS  PubMed  Google Scholar 

  • Lee WM (2003b) Drug-induced hepatotoxicity. N Engl J Med 349:474–485

    Article  CAS  PubMed  Google Scholar 

  • Lima C, Pratas-Vital J, Escada P et al (2006) Olfactory mucosa autografts in human spinal cord injury: a pilot clinical study. J Spinal Cord Med 29:191–206

    PubMed  PubMed Central  Google Scholar 

  • Liras A (2010) Future research and therapeutic applications of human stem cells: general, regulatory, and bioethical aspects. J Transl Med 8:131

    Article  PubMed  PubMed Central  Google Scholar 

  • Locatelli F, Lucarelli B, Merli P (2014) Current and future approaches to treat graft failure after allogeneic hematopoietic stem cell transplantation. Expert Opin Pharmacother 15:23–36

    Article  CAS  PubMed  Google Scholar 

  • Lund RJ, Nikula T, Rahkonen N et al (2012) High-throughput karyotyping of human pluripotent stem cells. Stem Cell Res 9:192–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lysaght T, Kerridge I, Sipp D et al (2013) Oversight for clinical uses of autologous adult stem cells: Lessons from international regulations. Cell Stem Cell 13:647–651

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Guo L, Fiene SJ et al (2011) High purity human-induced pluripotent stem cell-derived cardiomyocytes: Electrophysiological properties of action potentials and ionic currents. Am J Physiol Heart Circ Physiol 301:2006–2017

    Article  CAS  Google Scholar 

  • Maitra A, Arking DE, Shivapurkar N et al (2005) Genomic alterations in cultured human embryonic stem cells. Nat Genet 37:1099–1103

    Article  CAS  PubMed  Google Scholar 

  • Makris SL, Raffaele K, Allen S et al (2009) A retrospective performance assessment of the developmental neurotoxicity study in support of OECD test guideline 426. Environ Health Perspect 117(1):17–25

    Article  CAS  PubMed  Google Scholar 

  • Mann DA (2015) Human induced pluripotent stem cell-derived hepatocytes for toxicology testing. Expert Opin Drug Metab Toxicol 11(1):1–5

    CAS  PubMed  Google Scholar 

  • Martin MJ, Muotri A, Gage F et al (2005) Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med 11:228–232

    Article  CAS  PubMed  Google Scholar 

  • Martin PJ, Uberti JP, Soiffer RJ et al (2010) Prochymal improves response rates in patients with steroid-refractory acute graft versus host disease (SR-GVHD) involving the liver and gut: results of a randomized, placebo-controlled, multicenter phase III trial in GVHD. Biol Blood Marrow Transplant 16:S169–S170

    Article  Google Scholar 

  • Marx-Stoelting P, Adriaens E, Abr HJ et al (2009) A review of the implementation of the embryonic stem cell test (EST). The report and recommendations of an ECVAM/ReProTect Workshop. Altern Lab Anim 37:313–328

    CAS  PubMed  Google Scholar 

  • Mayshar Y, Ben-David U, Lavon N et al (2010) Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell 7:521–531

    Article  CAS  PubMed  Google Scholar 

  • Meisel R, Zibert A, Laryea M, Gobel U, Daubener W, Dilloo D (2004) Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 103:4619–4621

    Article  CAS  PubMed  Google Scholar 

  • Mendicino M, Bailey AM, Wonnacott K et al (2014) MSC-based product characterization for clinical trials: an FDA perspective. Cell Stem Cell 14:141–145

    Article  CAS  PubMed  Google Scholar 

  • Moll G, Rasmusson-Duprez I, von Bahr L et al (2012) Are therapeutic human mesenchymal stromal cells compatible with human blood? Stem Cells 30:1565–1574

    Article  CAS  PubMed  Google Scholar 

  • Moll G, Alm JJ, Davies LC, von Bahr L et al (2014) Do cryopreserved mesenchymal stromal cells display impaired immunomodulatory and therapeutic properties? Stem Cells 32(9):2430–2442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mordwinkin NM, Burridge PW, Wu JC (2013) A review of human pluripotent stem cell-derived cardiomyocytes for high-throughput drug discovery, cardiotoxicity screening, and publication standards. J Cardiovasc Transl Res 6:22–30

    Article  PubMed  Google Scholar 

  • Morizane A, Doi D, Kikuchi T et al (2013) Direct comparison of autologous and allogeneic transplantation of iPSC-derived neural cells in the brain of a non-human primate. Stem Cell Rep 1(4):283–292

    Article  CAS  Google Scholar 

  • Müller FJ, Goldmann J, Loser P, Loring JF (2010) A call to standardize teratoma assays used to define human pluripotent cell lines. Cell Stem Cell 6:412–414

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa M, Koyanagi M, Tanabe K et al (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26:101–106

    Article  CAS  PubMed  Google Scholar 

  • Närvä E, Autio R, Rahkonen N et al (2010) High-resolution DNA analysis of human embryonic stem cell lines reveals culture-induced copy number changes and loss of heterozygocity. Nat Biotechnol 28:371–377

    Article  PubMed  CAS  Google Scholar 

  • Nauta AJ, Westerhuis G, Kruisselbrink AB et al (2006) Donor-derived mesnchymal stem cells are immunogenic in an allogenic host and stimulate donor graft rejection in a nonmyeloblative setting. Blood 108:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarrete EG, Liang P, Lan F et al (2014) Screening drug-induced arrhythmia using human induced pluripotent stem cell-derived cardiomyocytes and low-impedance microelectrode arrays. Circulation 128:S3–S13

    Article  CAS  Google Scholar 

  • Nguyen PK, Nag D, Wu JC (2010) Methods to assess stem cell lineage, fate and function. Adv Drug Deliv Rev 62:1175–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsson B, Korsgren O, Lambris JD, Ekdahl KN (2010) Can cells and biomaterials in therapeutic medicine be shielded from innate immune recognition? Trends Immunol 31:32–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induce pluripotent stem cells. Nature 448:313–317

    Article  CAS  PubMed  Google Scholar 

  • Okita K, Nagata N, Yamanaka S (2011) Immunogenicity of induced pluripotent stem cells. Circ Res 109:720–721

    Article  CAS  PubMed  Google Scholar 

  • Panzika-Kelly JM, Brannen KC, Ma Y et al (2013) Establishment of a molecular embryonic stem cell developmental toxicity assay. Toxicol Sci 131:447–457

    Article  CAS  Google Scholar 

  • Papapetrou EP, Sadelain M (2011) Generation of transgene-free human induced pluripotent stem cells with an excisable single polycistronic vector. Nat Protoc 6(9):1251–1273

    Article  CAS  PubMed  Google Scholar 

  • Paquette JA, Kumpf SW, Streck RD et al (2008) Assessment of the embryonic stem cell test and application and use in the pharmaceutical industry. Birth Defects Res Part B Dev Reprod Toxicol 83:104–111

    Article  CAS  Google Scholar 

  • Peng S, Lacerda AE, Kirsch GE et al (2010) The action potential and comparative pharmacology of stem cell-derived human cardiomyocytes. J Pharmacol Toxicol Methods 61:277–286

    Article  CAS  PubMed  Google Scholar 

  • Pritchett T, Little L (2012) “Hard Cell” potency testing for cellular therapy products. BioProcess Int 10:36–38

    CAS  Google Scholar 

  • Ren G, Su J, Zhang L, Zhao X, Ling W, L’ Huillie A et al (2009) Species variation in the mechanisms of mesenchymal stem cell-mediated immunosuppression. Stem Cells 27:1954–1962

    Article  CAS  PubMed  Google Scholar 

  • Romieu-Mourez R, Francois M, Bovin MN et al (2007) Regulation of MHC class II expression and antigen processing in murine and human mesenchymal stromal cells by IFN-gamma, TGF-beta, and cell density. J Immunol 179:1549–1558

    Article  CAS  PubMed  Google Scholar 

  • Scholz D, Poltl D, Genewsky A et al (2011) Rapid, complete and large-scale generation of post-mitotic neurons from the human LUHMES cell line. J Neurochem 119(5):957–971

    Article  CAS  PubMed  Google Scholar 

  • Scott CW, Peters MF, Dragan YP (2013) Human induced pluripotent stem cells and their use in drug discovery for toxicity testing. Toxicol Lett 219(1):49–58

    Article  CAS  PubMed  Google Scholar 

  • Seiler AE, Speilmann H (2011) The validated embryonic stem cell test to predict embryotoxicity in vitro. Nat Protoc 6(7):961–978

    Article  CAS  PubMed  Google Scholar 

  • Shapiro AM, Lakey JR, Ryan EA et al (2000) Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 343:230–238

    Article  CAS  PubMed  Google Scholar 

  • Shuey D, Kim JH (2011) Overview: developmental toxicology: new directions. Birth Defects Res B Dev Reprod Toxicol 92:381–383

    Article  CAS  PubMed  Google Scholar 

  • Sirenko O, Hesley J, Rusyn I, Cormwell EF (2014) High-content assays for hepatotoxicity using induced pluripotent stem cell-derived cells. Assay and Drug Dev Tech 12(1):43–54

    Article  CAS  Google Scholar 

  • Spielmann H, Pohl I, Leibsch M, Moldenhauer F (1997) The embryonic stem cell test, an in vitro embryotoxicity test using two permanent mouse cell lines: 3 T3 fibroblasts and embryonic stem cells. Toxicol In Vitro 10:119–127

    CAS  Google Scholar 

  • Speilmann H (2005) Predicting the risk of developmental toxicity from in vitro assays. Toxicol Appl Pharmacol 207(2 Suppl):375–380

    Article  CAS  Google Scholar 

  • Steinmetz KL, Spack EG (2009) The basics of preclinical drug development for neurodegenerative disease indications. BMC Neurol 12(9 Suppl 1):S2. doi:10.1186/1471-2377-9-S1-S2

    Google Scholar 

  • Steward O, Sharp KG, Matsudaira Yee K (2014) Long-distance migration and colonization of transplanted neural stem cells. Cell 156:385–387

    Article  CAS  PubMed  Google Scholar 

  • Stiegler NV, Krug AK, Matt F, Leist M (2011) Assessment of chemical-induced impairment of human neurite outgrowth by multiparametric live cell imaging in high-density cultures. Toxicol Sci 121(1):73–87

    Article  CAS  PubMed  Google Scholar 

  • Stine JG, Lewis JH (2011) Drug-induced liver injury: a summary of recent advances. Expert Opin Drug Metab Toxicol 7(7):875–890

    Article  PubMed  Google Scholar 

  • Stummann TC, Hareng L, Bremer S (2009) Hazard assessment of methylmercury toxicity to neuronal induction in embryogenesis using human embryonic stem cells. Toxicology 257(3):117–126

    Article  CAS  PubMed  Google Scholar 

  • Su R-J, Yang Y, Neises A et al (2013) Few single nucleotide variations in exomes of human cord blood induced pluripotent stem cells. PLoS One 8:e59908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sverdlov ED, Mineev K (2013) Mutation rate in stem cells: an underestimated barrier on the way to therapy. Trends Mol Med 19:273–280

    Article  CAS  PubMed  Google Scholar 

  • Takayama K, Kawabata K, Nagamoto Y et al (2013) 3D spheroid culture of hESC/hiPSC-derived hepatocyte-like cells for drug toxicity testing. Biomaterials 34(7):1781–1789

    Article  CAS  PubMed  Google Scholar 

  • Takayama K, Morisaki Y, Kuno S et al (2014) Prediction of interindividual differences in hepatic functions and drug sensitivity by using human iPS-derived hepatocytes. Proc Natl Acad Sci U S A 111(47):16772–16777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tandon S, Jyoti S (2012) Embryonic stem cells: an alternative approach to developmental toxicity testing. J Pharm Bioallied Sci 4(2):96–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor CJ, Peacock S, Chaudhry AN, Bradley JA, Bolton EM (2012) Generating an iPSC bank for HLA-matched tissue transplantation based on known donor and recipient HLA types. Cell Stem Cell 11:147–152

    Article  CAS  PubMed  Google Scholar 

  • Thirabanjasak D, Tantiwongse K, Thorner PS (2010) Angiomyeloproliferative lesions following autologous stem cell therapy. J Am Soc Nephrol 21(7):1218–1222

    Article  PubMed  PubMed Central  Google Scholar 

  • Tse WT, Pendleton JD, Beyer WM et al (2003) Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 75:389–397

    Article  CAS  PubMed  Google Scholar 

  • Turner L (2015) US Stem cell clinics, patient safety, and the FDA. Trends Mol Med 21(5):271–273

    Article  PubMed  Google Scholar 

  • van Thriel C, Westerink RH, Beste C et al (2012) Translating neurobehavioural endpoints of developmental neurotoxicity tests into in vitro assays and readouts. Neurotoxicology 33(4):911–924

    Article  PubMed  CAS  Google Scholar 

  • von Bahr L, Sundberg B, Lonnies L et al (2012) Long-term complications, immunologic effects, and role of passage for outcome in mesenchymal stromal cell therapy. Biol Blood Marrow Transplant 18:557–564

    Article  Google Scholar 

  • Ware BR, Berger DR, Khetani SR (2015) Prediction of drug-induced liver injury in micropatterned co-cultures containing iPSC-derived human hepatocytes. Toxicol Sci 145(2):252–262

    Google Scholar 

  • Weber DJ (2006) Manufacturing considerations for clinical uses of therapies derived from stem cells. Methods Enzymol 420:410–430

    Article  CAS  PubMed  Google Scholar 

  • Wernig M, Meissner A, Cassady JP, Jaenisch R (2008) C-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell 2(1):10–12

    Article  CAS  PubMed  Google Scholar 

  • West PR, Weir AM, Smith AM et al (2010) Predicting human developmental toxicity of pharmaceuticals using human embryonic stem cells and metabolomics. Toxicol Appl Pharmacol 247(1):18–27

    Article  CAS  PubMed  Google Scholar 

  • Wormser U, Ben-Zakine S (1990) The liver slice system: An in vitro acute toxicity test for assessment of hepatotoxins and their antidotes. Toxicol In Vitro 4(4–5):449–451

    Article  CAS  PubMed  Google Scholar 

  • Wu T, Liu Y, Wen D et al (2014) Histone variant H2A.X deposition pattern serves as a functional epigenetic mark for distinguishing the developmental potentials of iPSCs. Cell Stem Cell 15:281–294

    Article  CAS  PubMed  Google Scholar 

  • Wuchter P, Bieback K, Schrezenmeir H et al (2015) Standardization of good manufacturing practice-compliant production of bone marrow-derived human mesenchymal stromal cells for immunotherapeutic applications. Cytotherapy 17(2):128–139

    Article  CAS  PubMed  Google Scholar 

  • Zhao T, Zhang ZN, Rong Z, Xu Y (2011) Immunogenicity of induced pluripotent stem cells. Nature 474:212–215

    Article  CAS  PubMed  Google Scholar 

  • Zheng G-P, Ge M-H, Shu Q et al (2013) Mesenchymal stem cells in the treatment of pediatric diseases. World J Pediatr 9:197–211

    Article  CAS  PubMed  Google Scholar 

  • Zvibel I, Smets F, Soriano H et al (2002) Anoikis: roadblock to cell transplantation? Cell Transplant 11(7):621–630

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward Spack Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Spack, E. (2016). Guidelines for Preclinical Development. In: Steinhoff, G. (eds) Regenerative Medicine - from Protocol to Patient. Springer, Cham. https://doi.org/10.1007/978-3-319-28293-0_4

Download citation

Publish with us

Policies and ethics