Skip to main content

History of Regenerative Medicine

  • Chapter
  • First Online:
  • 989 Accesses

Abstract

Generation and regeneration as an answer to disease are far from being a new idea. Philosophers, naturalists and scientists were intrigued by the marvels of regeneration seen in nature. By the middle of the nineties life scientists thought we were only a few years away from bioartificial organs grown in a Petri dish. However, by the dawn of the new millennium it became clear that the mechanistic approach dictated by tissue engineering so far, had neglected issues of vascularization. Processes of angiogenesis were central to homeostasis, bioassimilation and biointegration of tissue engineered constructs. Furthermore, the field of tissue engineering had evolved into something vast, encompassing satellite technologies that were becoming separate science sectors. Advances in genetical engineering, stem cell biology, cloning, biomaterials and biomedical devices to name a few, would come to play a major role of their own – tissue engineering had become a part of a bigger whole. Regenerative medicine is the collective field to shelter these technologies “…that seeks to develop functional cell, tissue, and organ substitutes to repair, replace or enhance biological function that has been lost due to congenital abnormalities, injury, disease, or aging”.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Now the phenomenon of desquamation of the intestinal epithelium and the epidermis has been described. The intestinal epithelium is completely regenerated in 4–5 days. The total regeneration of the epidermis takes 4 weeks. This may mean that for a life expectancy of 77 years, the human epidermis is regenerated 1000 times.

References

  • Aeschylus (415 BC) Prometheus bound

    Google Scholar 

  • Andrews PW (1988) Human teratocarcinomas. Biochim Biophys Acta 948(1):17–36

    CAS  PubMed  Google Scholar 

  • Aristotle (1984) The complete works: the revised Oxford edition. Bollingen series LXXI.2, Barnes J (ed) Princeton University Press, Princeton

    Google Scholar 

  • Arnst C, Carey J (1998) Biotech bodies. Bus Week. p 56

    Google Scholar 

  • Asenjo A (1963) Neurosurgical techniques. Charles C Thomas, Springfield

    Google Scholar 

  • Barth A (1893) Ueber histologische Befunde nach Knochenimplantationen. Arch Klin Chir 46:409–417

    Google Scholar 

  • Beier JP, Klumpp D, Rudisile M, Dersch R, Wendorff JH, Bleiziffer O, Arkudas A, Polykandriotis E, Horch RE, Kneser U (2009) Collagen matrices from sponge to nano: new perspectives for tissue engineering of skeletal muscle. BMC Biotechnol 9:34

    Article  PubMed  PubMed Central  Google Scholar 

  • Bell E, Ehrlich HP, Buttle DJ, Nakatsuji T (1981) Living tissue formed in vitro and accepted as skin-equivalent tissue of full thickness. Science 211(4486):1052–1054

    Article  CAS  PubMed  Google Scholar 

  • BL (1794) Curious chirurgical operation – new nose. Gentlemen‘s Magazine and Historical Chronicle 64:891

    Google Scholar 

  • California Proposition 71 (2004) Wikipedia [cited 2009 10 August]

    Google Scholar 

  • Caplan AI (1994) The mesengenic process. Clin Plast Surg 21(3):429–435

    CAS  PubMed  Google Scholar 

  • Carpue J (1981 [1816]) An account of two successful operations for restoring a lost nose from the Integuments of the forehead. Classics of Medicine Library, Birmingham

    Google Scholar 

  • Cheung H (ed) (2010) Stem cell & regenerative medicine. Bentham Science Publishers Ltd, Sharjah, ISBN: 978-1-60805-008-6

    Google Scholar 

  • Coleman W (1978) Biology in the nineteenth century: problems of form, function and transformation, 2nd edn, Cambridge history of science series. Cambridge University Press, Cambridge

    Google Scholar 

  • Daar AS, Greenwood HL (2007) A proposed definition of regenerative medicine. J Tissue Eng Regen Med 1(3):179–184

    Article  CAS  PubMed  Google Scholar 

  • Damjanov I (1993) Teratocarcinoma: neoplastic lessons about normal embryogenesis. Int J Dev Biol 37(1):39–46

    CAS  PubMed  Google Scholar 

  • Dinsmore E (1991) A history of regeneration research: milestones in the evolution of a science. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819):154–156

    Article  CAS  PubMed  Google Scholar 

  • Goldwyn RM (1968) Johann Friedrich Dieffenbach (1794–1847). Plast Reconstr Surg 42(1):19–28

    Article  CAS  PubMed  Google Scholar 

  • Guillot PV, Cui W, Fisk NM, Polak DJ (2007) Stem cell differentiation and expansion for clinical applications of tissue engineering. J Cell Mol Med 11(5):935–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayflick L (2007) Entropy explains aging, genetic determinism explains longevity, and undefined terminology explains misunderstanding both. PLoS Genet 3(12):e220

    Article  PubMed  PubMed Central  Google Scholar 

  • Horch RE, Bannasch H, Stark GB (2001) Transplantation of cultured autologous keratinocytes in fibrin sealant biomatrix to resurface chronic wounds. Transplant Proc 33(1–2):642–644

    Article  CAS  PubMed  Google Scholar 

  • Horch RE, Beier JP, Kneser U, Arkudas A (2014) Successful human long-term application of in situ bone tissue engineering. J Cell Mol Med 18(7):1478–1485. doi:10.1111/jcmm.12296. Epub 2014 May 6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaiser LR (1992) The future of multihospital systems. Top Health Care Financ 18(4):32–45

    CAS  PubMed  Google Scholar 

  • Kemp P (2006) History of regenerative medicine: looking backwards to move forwards. Regen Med 1(5):653–669

    Article  PubMed  Google Scholar 

  • Kleinsmith LJ, Pierce GB Jr (1964) Multipotentiality of single embryonal carcinoma cells. Cancer Res 24:1544–1551

    CAS  PubMed  Google Scholar 

  • Kratz G, Huss F (2003) Tissue engineering-body parts from the Petri dish. Scand J Surg 92(4):241–247

    CAS  PubMed  Google Scholar 

  • Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926

    Article  CAS  PubMed  Google Scholar 

  • Leff D (1983) New biological assembly line. In: The cell: interand intra-relationships. Avery Publishing Group, Wayne

    Google Scholar 

  • Lysaght MJ, Crager J (2009) Origins. Tissue Eng Part A 15(7):1449–1450

    Article  PubMed  Google Scholar 

  • Lysaght MJ, Hazlehurst AL (2004) Tissue engineering: the end of the beginning. Tissue Eng 10(1–2):309–320

    Article  PubMed  Google Scholar 

  • Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78(12):7634–7638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mason C (2007) Regenerative medicine 2.0. Regen Med 2(1):11–18

    Article  PubMed  Google Scholar 

  • Mason C, Dunnill P (2008) The strong financial case for regenerative medicine and the regen industry. Regen Med 3(3):351–363

    Article  PubMed  Google Scholar 

  • Matsuda T, Akutsu T, Kira K, Matsumoto H (1989) Development of hybrid compliant graft: rapid preparative method for reconstruction of a vascular wall. ASAIO Trans 35(3):553–555

    Article  CAS  PubMed  Google Scholar 

  • Matthews LG (1968) SS. Cosmas and Damian – Patron Saints of medicine and pharmacy their cult in England. Med Hist 12(3):281–288

    Article  PubMed Central  Google Scholar 

  • Moffatt SL, Cartwright VA, Stumpf TH (2005) Centennial review of corneal transplantation. Clin Exp Ophthalmol 33(6):642–657

    Article  Google Scholar 

  • Mooney DJ, Mikos AG (1999) Growing new organs. Sci Am 280(4):60–65

    Article  CAS  PubMed  Google Scholar 

  • Nerem RM (1992) Tissue engineering in the USA. Med Biol Eng Comput 30(4):CE8–CE12

    Article  CAS  PubMed  Google Scholar 

  • Newth D (1958) New (and better?) parts for old. In: Johnson M, Abercrombie M, Fogg G (eds) New biology. Harmondsworth (United Kingdom), Penguin Books, London

    Google Scholar 

  • Papaioannou VE, McBurney MW, Gardner RL, Evans MJ (1975) Fate of teratocarcinoma cells injected into early mouse embryos. Nature 258(5530):70–73

    Article  CAS  PubMed  Google Scholar 

  • Pera MF, Cooper S, Mills J, Parrington JM (1989) Isolation and characterization of a multipotent clone of human embryonal carcinoma cells. Differentiation 42(1):10–23

    Article  CAS  PubMed  Google Scholar 

  • Petrakova KV, Tolmacheva AA, AIa F (1963) Bone formation occurring in bone marrow transplantation in diffusion chambers. Biull Eksp Biol Med 56:87–91

    Article  CAS  PubMed  Google Scholar 

  • Polykandriotis E, Arkudas A, Horch RE, Sturzl M, Kneser U (2007) Autonomously vascularized cellular constructs in tissue engineering: opening a new perspective for biomedical science. J Cell Mol Med 11(1):6–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polykandriotis E, Tjiawi J, Euler S, Arkudas A, Hess A, Brune K, Greil P, Lametschwandtner A, Horch RE, Kneser U (2008) The venous graft as an effector of early angiogenesis in a fibrin matrix. Microvasc Res 75(1):25–33

    Article  CAS  PubMed  Google Scholar 

  • Santayana G (1905) Reason in common sense. In: The life of reason. Charles Scribner‘s Sons, New York, p 284

    Google Scholar 

  • Skalak R, Fox C (1989) Tissue engineering. In: Proceedings of a workshop held at Granlibakken, Lake Tahoe, California. Liss, New York

    Google Scholar 

  • Stocum D (2006) An overview of regenerative biology and medicine. In: Regenerative biology and medicine. Academic, Oxford, pp 1–20

    Chapter  Google Scholar 

  • Thomson JA, Kalishman J, Golos TG, Durning M, Harris CP, Hearn JP (1996) Pluripotent cell lines derived from common marmoset (Callithrix jacchus) blastocysts. Biol Reprod 55(2):254–259

    Article  CAS  PubMed  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  CAS  PubMed  Google Scholar 

  • Vacanti CA (2006) The history of tissue engineering. J Cell Mol Med 10(3):569–576

    Article  PubMed  Google Scholar 

  • Vacanti JP, Langer R, Upton J, Marler JJ (1998) Transplantation of cells in matrices for tissue regeneration. Adv Drug Deliv Rev 33(1–2):165–182

    PubMed  Google Scholar 

  • Weaver CV, Garry DJ (2008) Regenerative biology: a historical perspective and modern applications. Regen Med 3(1):63–82

    Article  CAS  PubMed  Google Scholar 

  • Wenin A (ed) (2001) Studies in the book of genesis: literature, redaction and history. Leuven University Press, Leuven, pp 21–22

    Google Scholar 

  • Weigand A, Beier JP, Hess A, Gerber T, Arkudas A, Horch RE, Boos AM (2015) Acceleration of vascularized bone tissue-engineered constructs in a large animal model combining intrinsic and extrinsic vascularization. Tissue Eng Part A 21(9–10):1680–1694. doi:10.1089/ten.TEA.2014.0568. Epub 2015 Apr 15

    Article  CAS  PubMed  Google Scholar 

  • What will be the 10 hottest jobs? [cited 2009 08.20]; Available from: http://www.time.com/time/reports/v21/work/mag_ten_hottest_jobs.html

  • Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385(6619):810–813

    Article  CAS  PubMed  Google Scholar 

  • Witkowski JA (1980) Dr. Carrel’s immortal cells. Med Hist 24(2):129–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wohlrab F, Henoch U (1988) The life and work of Carl Weigert (1845–1904) in Leipzig 1878–1885. Zentralbl Allg Pathol 134:743–751

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymund E. Horch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Horch, R.E., Popescu, L.M., Polykandriotis, E. (2016). History of Regenerative Medicine. In: Steinhoff, G. (eds) Regenerative Medicine - from Protocol to Patient. Springer, Cham. https://doi.org/10.1007/978-3-319-28293-0_1

Download citation

Publish with us

Policies and ethics