Skip to main content

Modeling, Fabrication, and Characterization of Superoleophobic/Philic Surfaces

  • Chapter
  • First Online:
Biomimetics

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 1933 Accesses

Abstract

Oleophobic surfaces have the potential for self-cleaning and antifouling from organic and biological contaminants both in air and underwater applications and can reduce fluid drag.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For this research, authors received 2015 Institution of Chemical Engineers (UK) Global Award.

References

  • Adamson A. V. (1990), Physical Chemistry of Surfaces, Wiley, New York.

    Google Scholar 

  • Anonymous (1994), ASTM standard 3-89, (1994), Metals Test Methods and Analytical Procedures, Annual Book of ASTM standards (v.03.02, Wear and erosion; metal corrosion), ASTM. Philadelphia.

    Google Scholar 

  • Anonymous (2005), ISO 17475:2005, Corrosion of Metals and Alloys-Electrochemical Test Methods-Guidelines for Conducting Potentiostatic and Potentiodynamic Polarization Measurements. Americal National Standards Institute.

    Google Scholar 

  • Anonymous (2015a), Silicone Fluid Technical Data, retrieved from: http://www.shinetsusilicone-global.com/catalog/pdf/kf96_e.pdf, accessed July 26 2015.

  • Anonymous (2015b), Fluorinert™ Electronic Liquid FC-72 retrieved from: http://multimedia.3m.com/mws/media/64892O/fluorinert-electronic-liquid-fc-72.pdf, accessed August 7 2015.

  • Barthlott, W. and Neinhuis, C. (1997), “Purity of the Sacred Lotus, or Escape from Contamination in Biological Surfaces,” Planta 202, 1-8.

    Google Scholar 

  • Barthwal, S., Kim, Y. S. and Lim, S.-H. (2013), “Mechanically Robust Superamphiphobic Aluminum Surface with Nanopore-Embedded Microtexture,” Langmuir 29, 11966–11974.

    Google Scholar 

  • Bellanger, H., Darmanin, T. and Guittard, F. (2012), “Surface Structuration (Micro and/or Nano) Governed by the Fluorinated Tail Lengths toward Superoleophobic Surfaces,” Langmuir 28, 186–192.

    Google Scholar 

  • Bhushan, B. (2009), “Biomimetics: Lessons from Nature – An Overview,” Phil. Trans. R. Soc. A 367, 1445-1486.

    Google Scholar 

  • Bhushan, B. (2012), Biomimetics: Bioinspired Hierarchical-Structured Surfaces for Green Science and Technology, Springer-Verlag, Heidelberg, Germany.

    Google Scholar 

  • Bhushan, B. (2013), Introduction to Tribology, 2nd ed., Wiley, New York.

    Google Scholar 

  • Bhushan, B. and Jung, Y. C. (2011), “Natural and Biomimetic Artificial Surfaces for Superhydrophobicity, Self-Cleaning, Low Adhesion, and Drag Reduction,” Prog. Mater. Sci. 56, 1–108.

    Google Scholar 

  • Bhushan, B. and Muthiah, P. (2013), “Anti-Smudge Screening Apparatus for Electronic Touch Screens,” Microsyst. Technol. 19, 1261–1263

    Google Scholar 

  • Bhushan, B., Koch, K., and Jung, Y. C. (2008), “Nanostructures for Superhydrophobicity and Low Adhesion,” Soft Matter 4, 1799-1804.

    Google Scholar 

  • Bhushan, B., Jung, Y. C., and Koch, K. (2009), “Micro-, Nano- and Hierarchical Structures for Superhydrophobicity, Self-Cleaning and Low Adhesion,” Phil. Trans. R. Soc. A 367, 1631-1672

    Google Scholar 

  • Bixler, G. D. and Bhushan, B. (2012a), “Biofouling: Lessons from Nature,” Phil. Trans. R. Soc. A 370, 2381-2417.

    Google Scholar 

  • Bixler, G. D. and Bhushan, B. (2012b), “Bioinspired Rice Leaf and Butterfly Wing Surface Structures Combining Shark Skin and Lotus Effects,” Soft Matter 8, 11271-11284 (2012).

    Google Scholar 

  • Bixler, G.D. and Bhushan, B. (2013a), “Fluid Drag Reduction with Shark-skin Riblet Inspired Microstructured Surfaces,” (Invited), Adv. Func. Mater. 23, 4507-4528.

    Google Scholar 

  • Bixler, G. D. and Bhushan, B. (2013b), “Fluid Drag Reduction and Efficient Self-Cleaning with Rice Leaf and Butterfly Wing Bioinspired Surfaces,” Nanoscale 5, 7685-7710.

    Google Scholar 

  • Brown, P. S. and Bhushan, B (2015a), “Mechanically Durable, Superoleophobic Coatings Prepared by Layer-by-Layer Technique for Anti-smudge and Oil–water Separation,” Sci. Rep. – Nature 5, 8701.

    Google Scholar 

  • Brown, P. S. and Bhushan, B. (2015b), “Mechanically Durable, Superomniphobic Coatings Prepared by Layer-by-Layer Technique for Self-cleaning and Anti-smudge,” J. Colloid Interf. Sci. 456, 210-218.

    Google Scholar 

  • Brown, P. S. and Bhushan, B. (2015c), “Bioinspired, Roughness-Induced, Water and Oil Super-philic and Super-phobic Coatings Prepared by Adaptable layer-by-Layer Technique,” Sci. Rep. – Nature 5, 14030.

    Google Scholar 

  • Brown, P. S. and Bhushan, B. (2016a), “Designing Bioinspired Superoleophobic Surfaces,” APL Materials 4, 015703.

    Google Scholar 

  • Brown, P. S. and Bhushan, B. (2016b), “Durable, Superoleophobic Polymer-nanoparticle Composite Surfaces with Re-entrant Geometry via Solvent-induced Phase Transformation,” Sci. Rep. – Nature 6, 21048.

    Google Scholar 

  • Brown, P. S., Atkinson, O. D. L. A. and Badyal, J. P. S. (2014) “Ultrafast Oleophobic−Hydrophilic Switching Surfaces for Antifogging, Self-Cleaning, and Oil−Water Separation,” ACS Appl. Mater. Interfaces 6, 7504–7511.

    Google Scholar 

  • Bunshah, R. F. (1994), Handbook of Deposition Technologies for Films and Coatings: Science, Technology and Applications, Applied Science Publishers, Westwood, New Jersey.

    Google Scholar 

  • Campos, R., Guenthner, A. J., Meuler, A. J., Tuteja, A., Cohen, R. E., McKinley, G. H., Haddad, T. S. and Mabry, J. M. (2012), “Superoleophobic Surfaces Through Control of Sprayed-on Stochastic Topography,” Langmuir 28, 9834–9841.

    Google Scholar 

  • Cao, L., Jones, A. K., Sikka, V. K., Wu, J. and Gao, D. (2009), “Anti-Icing Superhydrophobic Coatings,” Langmuir 25, 12444–12448.

    Google Scholar 

  • Cebeci, F. Ç., Zhizhong, W., Zhai, L., Cohen, R. E., and Rubner, M. F. (2006), “Nanoporosity-Driven Superhydrophilicity: A Means to Create Multifunctional Antifogging Coatings,” Langmuir 22, 2856–2862.

    Google Scholar 

  • Cheng, Q., Li, M., Zheng, Y., Su, B., Wang, S. and Jiang, L. (2011), “Janus interface materials: superhydrophobic air/solid interface and superoleophobic water/solid interface inspired by a lotus leaf,” Soft Matter 7, 5948–5951.

    Google Scholar 

  • Cui, Y., Paxson, A. T., Smyth, K. M., and Varanasi, K. K. (2012), “Hierarchical Polymeric Textures via Solvent-induced Phase Transformation: A Single-step Production of Large-area Superhydrophobic Surfaces,” Colloids Surf. A 394, 8–13.

    Google Scholar 

  • Darmanin, T., Guittard, F., Amigoni, S., Tafin de Givenchy, E., Noblin, X., Kofman, R. and Celestini, F. (2011), “Superoleophobic Behavior of Fluorinated Conductive Polymer Films Combining Electropolymerization and Lithography,” Soft Matter 7, 1053–1057.

    Google Scholar 

  • Das, A., Schutzius, T. M., Bayer, I. S. and Megaridis, C. M. (2012), “Superoleophobic and Conductive Carbon Nanofiber/Fluoropolymer Composite Films,” Carbon 50, 1346–1354.

    Google Scholar 

  • Davis, J. R. (1993), ASM Special Handbook, Aluminum and Aluminum Alloys, ASM International, Materials Park, Ohio.

    Google Scholar 

  • Dean, B. and Bhushan, B. (2010), “Shark-Skin Surfaces for Fluid-Drag Reduction in Turbulent Flow: A Review,” Phil. Trans. Roy. Soc. A 368, 4775-4806.

    Google Scholar 

  • Deng, X., Mammen, L., Butt, H.-J. and Vollmer, D. (2012), “Candle Soot as a Template for a Transparent Robust Superamphiphobic Coating,” Science 335, 67–70.

    Google Scholar 

  • Du, X., Li, X. and He, J. (2010), “Facile Fabrication of Hierarchically Structured Silica Coatings from Hierarchically Mesoporous Silica Nanoparticles and Their Excellent Superhydrophilicity and Superhydrophobicity” ACS Appl. Mater. Interfaces 2, 2365–2372.

    Google Scholar 

  • Ebert, D. and Bhushan, B. (2012), “Transparent, Superhydrophobic, and Wear-Resistant Coatings on Glass and Polymer Substrates Using SiO2, ZnO, and ITO nanoparticles,” Langmuir 28, 11391–11399.

    Google Scholar 

  • Feng, L., Zhang, Z., Mai, Z., Ma, Y., Liu, B., Jiang, L. and Zhu, D. (2004), “A Super-Hydrophobic and Super-Oleophilic Coating Mesh Film for the Separation of Oil and Water,” Angew. Chem., Int. Ed. 43, 2012−2014.

    Google Scholar 

  • Fu, X. and He, X. (2008), “Fabrication of Super-Hydrophobic Surfaces on Aluminum Alloy Substrates,”Appl. Surf. Sci. 255, 1776–1781.

    Google Scholar 

  • Genzer, J. and Efimenko, K. (2006), “Recent Developments in Superhydrophobic Surfaces and Their Relevance to Marine Fouling: A Review,” Biofouling 22, 339-360.

    Google Scholar 

  • Goddard, E. D. (1986) “Polymer−Surfactant Interaction. Part II. Polymer and Surfactant of Opposite Charge,” Colloids Surf. 19, 301−329.

    Google Scholar 

  • Gogolides, E., Vlachopoulou, M., Tsoungeni, K., Vourdas, N., and Tserepi, A. (2010), “Micro and Nano Structuring and Texturing of Polymers Using Plasma Processes: Potential Manufacturing Applications,” Int. J. Nanomanuf. 6, 152–163.

    Google Scholar 

  • Grosu, G., Andrzejewski, L., Veilleux, G. and Ross G. G. (2004), “Relation Between the Size of Fog Droplets and Their Contact Angles with CR39 Surfaces,” J. Phys. D 37, 3350– 3355.

    Google Scholar 

  • Guo, Z., Zhou, F., Hao, J. and Liu, W. (2005), “Stable Biomimetic Super-Hydrophobic Engineering Materials,” J. Am. Chem. Soc. 127, 15670–15671.

    Google Scholar 

  • Han, D. and Steckl, A. J. (2009), “Superhydrophobic and Oleophobic Fibers by Coaxial Electrospinning,” Langmuir 25, 9454–9562.

    Google Scholar 

  • Hatch, J. E. (1984), Aluminum-Properties and Physical Metallurgy, Am Soc Metals, Metals Park, Ohio.

    Google Scholar 

  • Haynes, W. M. (2014), CRC Handbook of Chemistry and Physics 95th Ed., Taylor and Francis Group, Boca Raton, FL.

    Google Scholar 

  • He, Z., Ma, M., Lan, X., Chen, F., Wang, K., Deng, H., Zhang, Q. and Fu, Q. (2011), “Fabrication of a Transparent Superamphiphobic Coating with Improved Stability,” Soft Matter 7, 6435–6443.

    Google Scholar 

  • He, M., Zhou, X., Zeng, X., Cui, D., Zhang, Q., Chen, J., Li, H., Wang, J., Cao, Z. and Song, Y. (2012), “Hierarchically Structured Porous Aluminum Surfaces for High-Efficient Removal of Condensed Water,” Soft Matter 8, 6680–6683.

    Google Scholar 

  • Hensel, R., Helbig, R., Aland, S., Braun, H.-G., Voig, A., Neinhuis, C. and Werner, C. (2013) “Wetting Resistance at Its Topographical Limit: The Benefit of Mushroom and Serif T Structures,” Langmuir 29, 1100–1112.

    Google Scholar 

  • Hsieh, C.-T., Chen, J.-M., Kuo, R.-R., Lin, T.-S. and Wu, C.-F. (2005), “Influence of Surface Roughness on Water- and Oil-Repellent Surfaces Coated With Nanoparticles,” Appl. Surf. Sci. 240, 318–326.

    Google Scholar 

  • Hsieh, C.-T., Wu, F.-L. and Chen, W.-Y. (2009), “Super Water- and Oil-Repellencies from Silica-Based Nanocoatings,” Surf. Coat. Technol. 203, 3377–3384.

    Google Scholar 

  • Hutton, S. J., Crowther, J. M. and Badyal, J. P. S. (2000), “Complexation of Fluorosurfactants to Functionalized Solid Surfaces: Smart Behavior,” Chem. Mater. 12, 2282–2286.

    Google Scholar 

  • Im, M., Im, H., Lee, J.-H., Yoon, J.-B. and Choi, Y.-K. (2010), “A Robust Superhydrophobic and Superoleophobic Surface with Inverse-Trapezoidal Microstructures on a Large Transparent Flexible Substrate,” Soft Matter 6, 1401–1404.

    Google Scholar 

  • Israelachvili, J. N. (1992), Intermolecular and Surface Forces, 2nd Edition, Academic Press, London.

    Google Scholar 

  • Jalili, M. M. and Moradian, S. (2009), “Deterministic Performance Parameters for an Automotive Polyurethane Clearcoat Loaded With Hydrophilic or Hydrophobic Nano-Silica,” Prog. Org. Coat. 66, 359–366.

    Google Scholar 

  • Jin, H., Tian, X., Ikkala, O. and Ras, R. H. A. (2013), “Preservation of Superhydrophobic and Superoleophobic Properties Upon Wear Damage,” ACS Appl. Mater. Interfaces 5, 485–488.

    Google Scholar 

  • Jung, Y. C. and Bhushan, B. (2009), “Wetting Behavior of Water and Oil Droplets in Three Phase Interfaces for Hydrophobicity/philicity and Oleophobicity/philicity,” Langmuir 25, 14165-14173.

    Google Scholar 

  • Kaufman, J. G. and Rooy, E. L (eds.). (2004), Aluminum Alloy Castings: Properties, Processes, and Applications. ASM International, Materials Park, Ohio.

    Google Scholar 

  • Kim, Y., Lee, S., Cho, H., Park, B., Kim, D. and Hwang, W. (2012), “Robust Superhydrophilic/Hydrophobic Surface Based on Self-Aggregated Al2O3 Nanowires by Single-Step Anodization and Self-Assembly Method,” ACS Appl. Mater. Interfaces 4, 5074–5078.

    Google Scholar 

  • Koch, K., Bhushan, B., and Barthlott, W. (2009), “Multifunctional Surface Structures of Plants: An Inspiration for Biomimetics,” Prog. Mater. Sci. 54, 137-178 (2009).

    Google Scholar 

  • Lee, M.-T., Hsueh, C.-C., Freund, M. S. and Ferguson, G. S. (1998) “Air Oxidation of Self-Assembled Monolayers on Polycrystalline Gold: The Role of the Gold Substrate,” Langmuir 14, 6419–6423.

    Google Scholar 

  • Lee, K. K. and Ahn, C. H. (2013), “Superhydrophilic Multilayer Silica Nanoparticle Networks on a Polymer Microchannel Using a Spray Layer-by-Layer Nanoassembly Method” ACS Applied Mater. Interfaces 5, 8523–8530.

    Google Scholar 

  • Lee, S. E., Kim, H. J., Lee, S. H., and Choi, D. G. (2013), “Superamphiphobic surface by Nanotransfer Molding and Isotropic Etching,” Langmuir 29, 8070-8075.

    Google Scholar 

  • Li, L., Wang, Y., Gallaschun, C., Risch, T. and Sun, J. (2012), “Why Can a Nanometer-Thick Polymer Coated Surface be More Wettable to Water than to Oil?” J. Mater. Chem. 22, 16719−1672.

    Google Scholar 

  • Li, L., Huang, T., Lei, J., He, J., Qu, L., Huang, P., Zhou, W., Li, N. and Pan, F. (2014), “Robust Biomimetic-Structural Superhydrophobic Surface on Aluminum Alloy,” ACS Appl. Mater. Interfaces 7, 1449–1457.

    Google Scholar 

  • Liu, M. J., Want, S. T., Wei, Z. X., Song, Y. L, and Jiang, L. (2009), “Bioinspired Design of a Superoleophobic and Low Adhesive Water/Solid Interface,” Adv. Mater. 21, 665-669.

    Google Scholar 

  • Liu, L., Zhao, J., Zhang, Y., Zhao, F. and Zhang, Y. (2011), “Fabrication of Superhydrophobic Surface by Hierarchical Growth of Lotus-Leaf-Like Boehmite on Aluminum Foil,” J. Colloid Interface Sci. 358, 277–283.

    Google Scholar 

  • Liu, L., Feng, X. and Guo, M. (2013a), “Eco-Friendly Fabrication of Superhydrophobic Bayerite Array on Al Foil Via an Etching and Growth Process,” J. Phys. Chem.C 117, 25519–25525.

    Google Scholar 

  • Liu, T. and Kim, C. J. (2014), “Turning a Surface Super-repellant Even to Completely Wetting Liquids,” Science 346, 1096–1100.

    Google Scholar 

  • Liu, Y., Liu, J., Li, S., Liu, J., Han, Z. and Ren, L. (2013b), “Biomimetic Superhydrophobic Surface of High Adhesion Fabricated with Micronano Binary Structure on Aluminum Alloy,” ACS Appl. Mater. Interfaces 5, 8907–8914.

    Google Scholar 

  • Lovingood, D. D., Salter, W. B., Griffith, K. R., Simpson, K. M., Hearn, J. D., and Owens, J. R. (2013), “Fabrication of Liquid and Vapor Protective Cotton Fabrics,” Langmuir 29, 15043–15050.

    Google Scholar 

  • Lu, S., Chen, Y., Xu, W. and Liu, W. (2010), “Controlled Growth of Superhydrophobic Films by Sol-Gel Method on Aluminum Substrate,” Appl. Surf. Sci. 256, 6072–6075.

    Google Scholar 

  • Maitra, T., Antonini, C., auf der Mauer, M., Stamatopoulos, C., Tiwari, M. K. and Poulikakos, D. (2014), “Hierarchically Nanotextured Surfaces Maintaining Superhydrophobicity under Severely Adverse Conditions,” Nanoscale 6, 8710–8719.

    Google Scholar 

  • Meng, H., Wang, S., Xi, J., Tang, Z. and Jiang, L. (2008), “Facile Means of Preparing Superamphiphobic Surfaces on Common Engineering Metals,” J. Phys. Chem.C 112, 11454–11458.

    Google Scholar 

  • Mijatovic, D., Eijkel, J. C. T., and van den Berg, A. (2005), “Technologies for Nanofluidic Systems: Top-down vs. Bottom-up—A Review,” Lab Chip 5, 492–500.

    Google Scholar 

  • Muthiah, P., Bhushan, B., Yun, K. and Kondo, H. (2013), “Dual-Layered-Coated Mechanically-Durable Superomniphobic Surfaces With Anti-Smudge Properties,” J. Colloid Interf. Sci. 409, 227–236.

    Google Scholar 

  • Nie, Z. and Kumacheva, E. (2008), “Patterning Surfaces with Functional Polymers,” Nature Mater. 7, 277–290.

    Google Scholar 

  • Nishimoto, S. and Bhushan, B. (2013), “Bioinspired Self-cleaning Surfaces with Superhydrophobicity, Superoleophobicity, and Superhydrophilicity,” RSC Advances 3, 671–690.

    Google Scholar 

  • Nishino, T., Meguro, M., Nakamae, K., Matsushita, M., and Ueda, Y. (1999), “The Lowest Surface Free Energy Based on –CF3 Alignment,” Langmuir 15, 4321-4323.

    Google Scholar 

  • Nosonovsky, M. and Bhushan, B. (2008), Multiscale Dissipative Mechanisms and Hierarchical Surfaces: Friction, Superhydrophobicity, and Biomimetics, Springer, Heidelberg, Germany.

    Google Scholar 

  • Pan, S., Kota, A.K., Mabry, J.M. and Tuteja, A. (2013), “Superomniphobic Surfaces for Effective Chemical Shielding,” J. Am. Chem. Soc. 135, 578–581.

    Google Scholar 

  • Peng, S. and Bhushan, B. (2016), “Mechanically Durable Superoleophobic Aluminum Surfaces with Microstep and Nanoreticula Hierarchical Structure for Self-Cleaning and Anti-smudge Properties,” J. Colloid Interf. Sci. 461, 273-284.

    Google Scholar 

  • Peng, S., Tian, D., Yang, X. and Deng, W. (2014a), “Highly Efficient and Large-Scale Fabrication of Superhydrophobic Alumina Surface with Strong Stability Based on Self-Congregated Alumina Nanowires,” ACS Appl. Mater. Interfaces 6, 4831– 4841.

    Google Scholar 

  • Peng, S., Yang, X., Tian, D. and Deng, W. (2014b), “Chemically Stable and Mechanically Durable Superamphiphobic Aluminum Surface with a Micro/Nanoscale Binary Structure,” ACS Appl. Mater. Interfaces 6, 15188–15197.

    Google Scholar 

  • Poetes, R., Holtzmann, K., Franze, K. and Steiner, U. (2010) “Metastable Underwater Superhydrophobicity,” Phys. Rev. Lett. 105 166104, 1–4.

    Google Scholar 

  • Qian, B. and Shen, Z. (2005), “Fabrication of Superhydrophobic Surfaces by Dislocation-Selective Chemical Etching on Aluminum, Copper, and Zinc Substrates,” Langmuir 21, 9007–9009.

    Google Scholar 

  • Rakitov, R. and Gorb, S. N. (2013) “Brochosomal coats turn leafhopper (Insecta, Hemiptera, Cicadellidae) integument to superhydrophobic state,” Proc. R. Soc. B 280, 20122391, pp 1–9.

    Google Scholar 

  • Ren, S.,Yang, S. and Zhao, Y. (2004), “Nano-Tribological Study on a Super-Hydrophobic Film Formed on Rough Aluminium Substrates,” Acta Mech. Sin. 20, 159–164.

    Google Scholar 

  • Saito, T., Tsushima, Y. and Sawada, H. (2015), “Facile Creation of Superoleophobic and Superhydrophilic Surface by Using Fluoroalkyl End-Capped Vinyltrimethoxysilane Oligomer/Calcium Silicide Nanocomposites—Development of these Nanocomposites to Environmental Cyclical Type-Fluorine Recycle through Formation of Calcium Fluoride,” Colloid Polym. Sci. 293, 65 – 73.

    Google Scholar 

  • Sheen, Y., Huang, Y., Liao, C., Chou, H. and Chang, F. (2008), “New Approach to Fabricate an Extremely Super-Amphiphobic Surface Based on Fluorinated Silica Nanoparticles,” J. Polym. Sci. Part B: Polym. Phys. 46, 1984–1990.

    Google Scholar 

  • Slavov, S. V., Sanger, A. R. and Chuang, K. T. (2000), “Mechanism of Silation of Silica with Hexamethyldisilazane,” J. Phys. Chem. B 104, 983–989.

    Google Scholar 

  • Song, J., Xu, W. and Lu, Y. (2012), “One-Step Electrochemical Machining of Superhydrophobic Surfaces on Aluminum Substrates,” J. Mater. Sci. 47, 162–168.

    Google Scholar 

  • Song, J., Huang, S., Hu, K., Lu, Y., Liu, X. and Xu, W. (2013), “Fabrication of Superoleophobic Surfaces on Al Substrates,” J. Mater. Chem. A 1,14783–14789.

    Google Scholar 

  • Sun, Z., Liao, T., Liu, K., Jiang, L., Kim, J. H., and Dou, S. X. (2014), “Fly-Eye Inspired Superhydrophobic Anti-fogging Inorganic Nanostructures,” Small 10, 3001-3006.

    Google Scholar 

  • Steele, A., Bayer, I. and Loth, E. (2009), “Inherently Superoleophobic Nanocomposite Coatings by Spray Atomization,” Nano Lett. 9, 501–505.

    Google Scholar 

  • Tahmasebpoor, M., de Martín, L., Talebi, M., Mostoufi, N., and van Ommen, J. R. (2013), “The Role of the Hydrogen Bond in Dense Nanoparticle-Gas Suspensions,” Phys. Chem. Chem. Phys. 15, 5788-5793.

    Google Scholar 

  • Tajima, K., Tsutsui, T., and Murata, H. (1980), “Thermodynamic Relation of Interfacial Tensions in Three Fluid Phases,” Bull. Chem. Soc. Jpn. 53, 1165-1166.

    Google Scholar 

  • Thomsen, S. V., Hulme, R., Landa, L. & Landa, K., “High Visible Transmission and Infrared/Ultraviolet Radiation Absorption; for Automotive Windows (Windshields, Sidelites, Backlites and Sunroofs) and in Architectural Windows,” US Patent 20050020430 A1, 27 Jan. 2005.

    Google Scholar 

  • Thünemann, A. F. and Lochhaas, K. H. (1999), “Surface and Solid-State Properties of a Fluorinated Polyelectrolyte−Surfactant Complex,” Langmuir 15, 4867−4874.

    Google Scholar 

  • Tsujii, K., Yamamoto, T., Onda, T. and Shibuichi, S. (1997), “Super Oil-Repellent Surfaces,” Angew. Chem. Int. Ed. Engl. 36, 1011–1012.

    Google Scholar 

  • Tuteja, A., Choi, W., Mabry, J. M., Mckinley, G. H., and Cohen, R. E. (2008), “Robust Omniphobic Surfaces,” Proc. Natl. Acad. Sci. U.S.A. 105, 18200–18205.

    Google Scholar 

  • Ulman, A. (1996), “Formation and Structure of Self-Assembled Monolayers,” Chem. Rev. 96, 1533–1554.

    Google Scholar 

  • Vander Voort, G. F. (1984), Metallography: Principles and Practice, McGraw-Hill, New York.

    Google Scholar 

  • Wang, Y. and Bhushan, B. (2015), “Wear-Resistant and Antismudge Superoleophobic Coating on Polyethylene Terephthalate Substrate Using SiO2 Nanoparticles,” ACS Appl. Mater. Interf. 7, 743-755.

    Google Scholar 

  • Wang, X., Hu, H., Ye, Q., Gao, T., Zhou, F. and Xue, Q. (2012), “Superamphiphobic Coatings with Coralline-Like Structure Enabled by One-Step Spray of Polyurethane/Carbon Nanotube Composites,” J. Mater. Chem. 22, 9624–9631.

    Google Scholar 

  • Wang, Y., Xue, J., Wang, Q., Chen, Q. and Ding, J. (2013), “Verification of Icephobic/Anti-icing Properties of a Superhydrophobic Surface,” ACS Appl. Mater. Interf. 5, 3370–3381.

    Google Scholar 

  • Wu, S. (1979), “Surface-Tension of Solids-Equation of State Analysis,” J. Colloid Interf. Sci. 71, 605-609.

    Google Scholar 

  • Wu, W., Wang, X., Wang, D., Chen, M., Zhou, F., Liu, W. and Xue, Q. (2009), “Alumina Nanowire Forests Via Unconventional Anodization and Super-Repellency Plus Low Adhesion to Diverse Liquids,” Chem. Commun., 1043–1045.

    Google Scholar 

  • Xie, Y., Hill, C. A. S., Xiao, Z., Militz, H. and Mai, C. (2010) “Silane Coupling Agents used for Natural Fiber/Polymer Composites: A Review,” Composites: Part A 41, 806–819.

    Google Scholar 

  • Yang, J., Zhang, Z., Men, X., Xu, X. and Zhu, X. (2011), “A Simple Approach to Fabricate Superoleophobic Coatings,” New J. Chem. 35, 576–580.

    Google Scholar 

  • Zhang, F., Zhao, L., Chen, H., Xu, S., Evans, D. G. and Duan, X. (2008), “Corrosion Resistance of Superhydrophobic Layered Double Hydroxide Films on Aluminum,” Angew. Chem. Int. Ed. 47, 2466–2469.

    Google Scholar 

  • Zhang, J. and Seeger, S. (2011), “Superoleophobic Coatings with Ultralow Sliding Angles Based on Silicone Nanofilaments,” Angew. Chem. Int. Ed. 50, 6652–6656.

    Google Scholar 

  • Zhao, H., Law, K.-Y. and Sambhy, V. (2011), “Fabrication, Surface Properties, and Origin of Superoleophobicity for a Model Textured Surface,” Langmuir 27, 5927–5935.

    Google Scholar 

  • Zhao, N., Weng, L., Zhang, X., Xie, Q., Zhang, X., and Xu, J. (2006), “A Lotus-leaf-like Superhydrophobic Surface Prepared by Solvent-Induced Crystallization,” ChemPhysChem 7, 824–827.

    Google Scholar 

  • Zhu, Z (Ed.). (2004), Technology of Anodizing Aluminum and Surface Treatment, Chemical Industry Press, pp. 32–34.

    Google Scholar 

  • Zimmerman, J., Reifler, F. A., Fortunato, G., Gerhardt, L.-C. and Seeger, S. (2008) “A Simple, One-Step Approach to Durable and Robust Superhydrophobic Textiles,” Adv. Funct. Mater. 18, 3662–3669.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharat Bhushan .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bhushan, B. (2016). Modeling, Fabrication, and Characterization of Superoleophobic/Philic Surfaces. In: Biomimetics. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-28284-8_9

Download citation

Publish with us

Policies and ethics