Skip to main content

Fabrication and Characterization of Micro-, Nano- and Hierarchically Structured Lotus-Like Surfaces

  • Chapter
  • First Online:
Biomimetics

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 1852 Accesses

Abstract

It has been demonstrated experimentally that roughness changes contact angle (CA) in accordance with the Wenzel model or the Cassie-Baxter model, depending upon whether the surface is hydrophilic or hydrophobic (Bhushan and Jung, Prog. Mater. Sci. 56:1–108, 2011). Yost et al. (Acta Metall. Mater. 45:299–305, 1995) found that roughness enhances wetting of a copper surface with Sn-Pb eutectic solder, which has a contact angle of 15–20° for a smooth surface. Shibuichi et al. (J. Phys. Chem., 100, 19512–19517, 1996) measured the contact angle of various liquids (mixtures of water and 1,4-dioxane) on alkylketene dimmer (AKD) substrate (contact angle not larger than 109° for a smooth surface).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamson A. V. (1990), Physical Chemistry of Surfaces, Wiley, New York.

    Google Scholar 

  • Balu, B., Breedveld, V., and Hess, D. W. (2008), “Fabrication of Roll-off and Sticky Superhydrophobic Cellulose Surfaces via Plasma Processing,” Langmuir 24, 4785-4790.

    Article  Google Scholar 

  • Bartolo, D., Bouamrirene, F., Verneuil, E., Buguin, A., Silberzan, P., and Moulinet, S. (2006), “Bouncing or Sticky Droplets: Impalement Transitions on Superhydrophobic Micropatterned Surfaces,” Europhys. Lett. 74, 299-305.

    Article  ADS  Google Scholar 

  • Bhushan, B. (2003), “Adhesion and Stiction: Mechanisms, Measurement Techniques and Methods for Reduction,” J. Vac. Sci. Technol. B 21, 2262-2296.

    Article  Google Scholar 

  • Bhushan, B. (2010), Springer Handbook of Nanotechnology, third ed., Springer, Heidelberg, Germany.

    Book  Google Scholar 

  • Bhushan B. (2011) Nanotribology and Nanomechanics I – Measurement Techniques, II – Nanotribology, Biomimetics, and Industrial Applications, third ed., Springer-Verlag, Heidelberg, Germany.

    Book  Google Scholar 

  • Bhushan, B. (2013a), Principles and Applications of Tribology, 2 nd Ed., Wiley, New York.

    Book  Google Scholar 

  • Bhushan, B. (2013b), Introduction to Tribology, 2 nd Ed., Wiley, New York.

    Book  Google Scholar 

  • Bhushan, B. and Blackman, G. S. (1991), “Atomic Force Microscopy of Magnetic Rigid Disks and Sliders and Its Applications to Tribology,” ASME J. Tribol. 113, 452-457.

    Article  Google Scholar 

  • Bhushan, B. and Gupta, B. K. (1991), Handbook of Tribology: Materials, Coatings, and Surface Treatments, McGraw-Hill, New York.

    Google Scholar 

  • Bhushan, B. and Jung, Y. C. (2006), “Micro and Nanoscale Characterization of Hydrophobic and Hydrophilic Leaf Surface,” Nanotechnology 17, 2758-2772.

    Article  ADS  Google Scholar 

  • Bhushan, B. and Jung, Y. C. (2007), “Wetting Study of Patterned Surfaces for Superhydrophobicity,” Ultramicroscopy 107, 1033-1041.

    Article  Google Scholar 

  • Bhushan, B. and Jung, Y. C. (2008), “Wetting, Adhesion and Friction of Superhydrophobic and Hydrophilic Leaves and Fabricated Micro/nanopatterned Surfaces,” J. Phys.: Condens. Matter 20, 225010.

    ADS  Google Scholar 

  • Bhushan, B. and Jung, Y. C. (2011), “Natural and Biomimetic Artificial Surfaces for Superhydrophobicity, Self-Cleaning, Low Adhesion, and Drag Reduction,” Prog. Mater. Sci. 56, 1-108.

    Article  Google Scholar 

  • Bhushan, B., Hansford, D., and Lee, K. K. (2006), “Surface Modification of Silicon and Polydimethylsiloxane Surfaces with Vapor-Phase-Deposited Ultrathin Fluorosilane Films for Biomedical Nanodevices,” J. Vac. Sci. Technol. A 24, 1197-1202.

    Article  Google Scholar 

  • Bhushan, B., Nosonovsky M., and Jung, Y. C. (2007), “Towards Optimization of Patterned Superhydrophobic Surfaces” J. R. Soc. Interf. 4, 643-648.

    Article  Google Scholar 

  • Bhushan, B., Koch, K., and Jung, Y. C. (2008a), “Nanostructures for Superhydrophobicity and Low Adhesion,” Soft Matter 4, 1799-1804.

    Article  ADS  Google Scholar 

  • Bhushan, B., Koch, K., and Jung, Y. C. (2008b), “Biomimetic Hierarchical Structure for Self-Cleaning,” Appl. Phys. Lett. 93, 093101.

    Article  ADS  Google Scholar 

  • Bhushan, B., Jung, Y. C., and Koch, K. (2009a), “Self-Cleaning Efficiency of Artificial Superhydrophobic Surfaces,” Langmuir 25, 3240-3248.

    Article  Google Scholar 

  • Bhushan, B., Jung, Y. C., and Koch, K. (2009b), “Micro-, Nano- and Hierarchical Structures for Superhydrophobicity, Self-Cleaning and Low Adhesion,” Phil. Trans. R. Soc. A 367, 1631-1672

    Article  ADS  Google Scholar 

  • Bhushan, B., Jung, Y. C., Niemietz, A., and Koch, K. (2009c), “Lotus-like Biomimetic Hierarchical Structures Developed by the Self-assembly of Tubular Plant Waxes,” Langmuir 25, 1659-1666.

    Article  Google Scholar 

  • Bhushan, B., Koch, K., and Jung, Y. C. (2009d), “Fabrication and Characterization of the Hierarchical Structure for Superhydrophobicity,” Ultramicroscopy 109, 1029-1034.

    Article  Google Scholar 

  • Bhushan, B., Jung, Y.C., and Nosonovsky, M. (2012), “Hierarchical Structures for Superhydrophobic Surfaces and Methods of Making,” U.S. Patent No. 8,137,751 B2, March 20.

    Google Scholar 

  • Bormashenko, E., Pogreb, R., Whyman, G., and Erlich, M. (2007), “Cassie-Wenzel Wetting Transition in Vibrated Drops Deposited on the Rough Surfaces: Is Dynamic Cassie-Wenzel Transition 2D or 1D Affair?” Langmuir 23, 6501-6503.

    Article  Google Scholar 

  • Bourges-Monnier, C. and Shanahan, M. E. R. (1995), “Influence of Evaporation on Contact Angle,” Langmuir 11, 2820-2829.

    Article  Google Scholar 

  • Brugnara, M., Della Volpe, C., Siboni, S., and Zeni, D, (2006), “Contact Angle Analysis on Polymethylmethacrylate and Commercial Wax by Using an Environmental Scanning Electron Microscope,” Scanning 28, 267-273.

    Article  Google Scholar 

  • Bunshah, R. F. (1994), Handbook of Deposition Technologies for Films and Coatings: Science, Technology and Applications, Applied Science Publishers, Westwood, New Jersey.

    Google Scholar 

  • Burton, Z. and Bhushan, B. (2005), “Hydrophobicity, Adhesion, and Friction Properties of Nanopatterned Polymers and Scale Dependence for Micro- and Nanoelectromechanical Systems,” Nano Lett. 5, 1607-1613.

    Article  ADS  Google Scholar 

  • Burton, Z. and Bhushan, B. (2006), “Surface Characterization and Adhesion and Friction Properties of Hydrophobic Leaf Surfaces,” Ultramicroscopy 106, 709-719.

    Article  Google Scholar 

  • Callister, W. D. (2000), Materials Science and Engineering – An Introduction, fifth ed., John Wiley and Sons, New York.

    Google Scholar 

  • Celestini, F. and Kofman, R. (2006), “Vibration of Submillimeter-size Supported Droplets,” Phys. Rev. E 73, 041602.

    Article  ADS  Google Scholar 

  • Checco, A., Guenoun, P., and Daillant, J. (2003), “Nonlinear Dependence of the Contact Angle of Nanodroplets on Contact Line Curvatures,” Phys. Rev. Lett. 91, 186101.

    Article  ADS  Google Scholar 

  • Chen, N. and Bhushan, B. (2006), “Atomic Force Microscopy Studies of Conditioner Thickness Distribution and Binding Interactions on the Hair Surface,” J. Microsc. 221, 203-215.

    Article  MathSciNet  Google Scholar 

  • Chen, Y. L., Helm, C. A., and Israelachvili, J. N. (1991), “Molecular Mechanisms Associated with Adhesion and Contact Angle Hysteresis of Monolayer Surfaces,” J. Phys. Chem. 95, 10736-10747.

    Article  Google Scholar 

  • Chen, X. H., Chen, C. S., Xiao, H. N., Liu, H. B., Zhou, L. P., Li, S. L., and Zhang, G. (2006), “Dry Friction and Wear Characteristics of Nickel/Carbon Nanotube Electroless Composite Deposits,” Tribol. Int. 39, 22-28

    Article  Google Scholar 

  • Cho, Y.-S., Yi, G.-R., Hong, J.-J., Jang, S. H., and Yang, S.-M. (2006), “Colloidal Indium Tin Oxide Nanoparticles for Transparent and Conductive Films,” Thin Solid Films 515, 1864-1871.

    Article  ADS  Google Scholar 

  • Choi, S. E., Yoo, P. J., Baek, S. J., Kim, T. W., and Lee, H. H. (2004), “An ultraviolet-curable mold for sub-100-nm lithography,” J. Am. Chem. Soc. 126, 7744-7745.

    Article  Google Scholar 

  • Danilatos, G. D. and Brancik, J. V. (1986), “Observation of Liquid Transport in the ESEM,” Proc. 44th Annual Meeting EMSA, 678-679

    Google Scholar 

  • Dorset, D. L., Pangborn, W. A., and Hancock, A. J., (1983), “Epitaxial Crystallization of Alkane Chain Lipids for Electron Diffraction Analysis,” J. Biochem. Biophys. Meth. 8, 29-40.

    Article  Google Scholar 

  • Dresselhaus, M. S., Dresselhaus, G., and Avouris, Ph., (2000), Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, Springer, Heidelberg, Germany.

    Book  Google Scholar 

  • Ebert, D. and Bhushan, B. (2012a), “Durable Lotus-Effect Surfaces with Hierarchical Structure Using Micro- and Nanosized Hydrophobic Silica Particles,” J. Colloid Interf. Sci. 368, 584-591.

    Article  Google Scholar 

  • Ebert, D. and Bhushan, B. (2012b), “Transparent, Superhydrophobic, and Wear-Resistant Coatings on Glass and Polymer Substrates Using SiO2, ZnO, and ITO Nanoparticles,” Langmuir 28, 11391-11399.

    Article  Google Scholar 

  • Ederth J., Heszler P., Hultåker A., Niklasson G. A., and Granqvist C. G., (2003), “Indium Tin Oxide Films Made from Nanoparticles: Models for the Optical and Electrical Properties,” Thin Solid Films 445, 199-206.

    Article  ADS  Google Scholar 

  • Englert B. C., Xiu Y., and Wong C. P. (2006), “Deposition and Surface Treatment of Microparticles to Produce Lotus-Effect Surface,” 11 th International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces, March 15-17, Atlanta, GA, 73-78

    Google Scholar 

  • Erbil, H. Y., McHale, G., and Newton, M. I. (2002), “Drop Evaporation on Solid Surfaces: Constant Contact Angle Mode,” Langmuir 18, 2636-2641.

    Article  Google Scholar 

  • Erbil, H. Y., Demirel, A. L., and Avci, Y. (2003), “Transformation of a Simple Plastic into a Superhydrophobic Surface,” Science 299, 1377-1380.

    Article  Google Scholar 

  • Good, R. J. (1952), “A Thermodynamic Derivation of Wenzel’s Modification of Young’s Equation for Contact Angles; Together with a Theory of Hysteresis,” J. Am. Chem. Soc. 74, 5041-5042.

    Article  Google Scholar 

  • Hamberg I. and Granqvist C. G. (1984), “Band-gap Widening in Heavily Sn-doped In2O3,” Phys. Rev. B 30, 3240-3249.

    Article  ADS  Google Scholar 

  • Hong, Y. C. and Uhm, H. S. (2006), “Superhydrophobicity of a Material Made From Multiwalled Carbon Nanotubes,” Appl. Phys. Lett. 88, 244101.

    Article  ADS  Google Scholar 

  • Huang, L., Lau, S. P., Yang, H. Y., Leong, E. S. P., and Yu, S. F. (2005), “Stable Superhydrophobic Surface via Carbon Nanotubes Coated with a ZnO Thin Film,” J. Phys. Chem. 109, 7746-7748.

    Article  Google Scholar 

  • Israelachvili, J. N. (1992), Intermolecular and Surface Forces, second edition, Academic Press, London.

    Google Scholar 

  • Joanny, J. F. and de Gennes, P. G. (1984), “A Model for Contact Angle Hysteresis,” J. Chem. Phys. 81, 552-562.

    Article  ADS  Google Scholar 

  • Johnson, R. E. and Dettre, R. H. (1964), “Contact Angle Hysteresis,” Contact Angle, Wettability, and Adhesion, Adv. Chem. Ser., Vol. 43, Ed. F. M. Fowkes, pp. 112-135American Chemical Society, Washington, D. C.

    Google Scholar 

  • Jung, Y. C. and Bhushan, B. (2006), “Contact Angle, Adhesion, and Friction Properties of Micro- and Nanopatterned Polymers for Superhydrophobicity,” Nanotechnology 17, 4970-4980.

    Article  ADS  Google Scholar 

  • Jung, Y. C. and Bhushan, B. (2007), “Wetting Transition of Water Droplets on Superhydrophobic Patterned Surfaces,” Scripta Mater. 57, 1057-1060.

    Article  Google Scholar 

  • Jung, Y. C. and Bhushan, B. (2008a), “Wetting Behavior During Evaporation and Condensation of Water Microdroplets on Superhydrophobic Patterned Surfaces” J. Micros. 229, 127-140.

    Article  MathSciNet  Google Scholar 

  • Jung, Y. C. and Bhushan, B. (2008b), “Dynamic Effects of Bouncing Water Droplets on Superhydrophobic Surfaces,” Langmuir 24, 6262-6269.

    Article  Google Scholar 

  • Jung, Y. C. and Bhushan, B. (2008c), “Technique to Measure Contact Angle of Micro/Nanodroplets using Atomic Force Microscopy,” J. Vac. Sci. Technol. A 26, 777-782.

    Article  Google Scholar 

  • Jung, Y. C. and Bhushan, B. (2009a), “Dynamic Effects Induced Transition of Droplets on Biomimetic Superhydrophobic Surfaces,” Langmuir 25, 9208-9218.

    Article  Google Scholar 

  • Jung, Y. C. and Bhushan, B. (2009c), “Mechanically Durable CNT-Composite Hierarchical Structures with Superhydrophobicity, Self-Cleaning, and Low-Drag,” ACS Nano 3, 4155-4163.

    Article  Google Scholar 

  • Jung, Y. C. and Bhushan, B. (2010), “Biomimetic Structures for Fluid Drag Reduction in Laminar and Turbulent Flows,” J. Phys.: Condens. Matter 22, 035104.

    ADS  Google Scholar 

  • Karunakaran R. G., Lu C.-H., Zhang Z., and Yang S. (2011), “Highly Transparent Superhydrophobic Surfaces from the Coassembly of Nanoparticles (≤ 100 nm),” Langmuir 27, 4594-4602.

    Article  Google Scholar 

  • Kasai, T., Bhushan, B., Kulik, G., Barbieri, L., and Hoffmann, P. (2005), “Micro/Nanotribological Study of Perfluorosilane SAMs for Antistiction and Low Wear,” J. Vac. Sci. Technol. B 23, 995-1003.

    Article  Google Scholar 

  • Kim, H., Gilmore, C. M., Pique, A., Horowitz, J. S., Mattoussi, H., Murata, H., Kafafi, Z. H., and Chrisey, D. B. (1999), “Electrical, Optical, and Structural Properties of Indium-Tin-Oxide Thin Films for Organic Light Emitting Devices,” J. Appl. Phys. 86, 6451-6461.

    Article  ADS  Google Scholar 

  • Koch, K., Dommisse, A., and Barthlott, W. (2006a), “Chemistry and Crystal Growth of Plant Wax Tubules of Lotus (Nelumbo nucifera) and Nasturtium (Tropaeolum majus) Leaves on Technical Substrates,” Crystl. Growth Des. 6, 2571-2578.

    Article  Google Scholar 

  • Koch, K., Barthlott, W., Koch, S., Hommes, A., Wandelt, K., Mamdouh, W., De-Feyter, S. and Broekmann, P. (2006b), “Structural Analysis of Wheat Wax (Triticum aestivum, c.v. ‘Naturastar’ L.): from the Molecular Level to Three Dimensional Crystals,” Planta 223, 258-270.

    Article  Google Scholar 

  • Koch, K., Dommisse, A., Barthlott, W., and Gorb, S. (2007), “The Use of Plant Waxes as Templates for Micro- and Nanopatterning of Surfaces,” Acta Biomat. 3, 905-909.

    Article  Google Scholar 

  • Koch, K., Schulte, A. J., Fischer, A., Gorb, S. N., and Barthlott, W. (2008), “A Fast and Low-cost Replication Technique for Nano- and High-Aspect-Ratio Structures of Biological and Artificial Materials,” Bioinsp. Biomim. 3, 046002.

    Article  Google Scholar 

  • Koch, K., Bhushan, B., Jung, Y. C., and Barthlott, W. (2009), “Fabrication of Artificial Lotus Leaves and Significance of Hierarchical Structure for Superhydrophobicity and Low Adhesion,” Soft Matter 5, 1386-1393.

    Article  ADS  Google Scholar 

  • Kucheyev, S. O., Bradby, J. E., Williams, J. S., and Jagadish, C. (2002), “Mechanical Deformation of Single-crystal ZnO,” J. Appl. Phys. 80, 956-958.

    Google Scholar 

  • Lafuma, A. and Quéré, D. (2003), “Superhydrophobic States,” Nature Materials 2, 457-460.

    Article  ADS  Google Scholar 

  • Lamb, H. (1932), Hydrodynamics, Cambridge University Press, Cambridge, England.

    MATH  Google Scholar 

  • Lau, K. K. S., Bico, J., Teo, K. B. K., Chhowalla, M., Amaratunga, G. A. J., Milne, W. I., McKinley, G. H., and Gleason, K. K. (2003), “Superhydrophobic Carbon Nanotube Forests,” Nano Lett. 3, 1701-1705.

    Article  ADS  Google Scholar 

  • Lee, S. -W. and Laibinis, P. E. (2000), “Directed Movement of Liquids on Patterned Surfaces Using Noncovalent Molecular Adsorption,” J. Am. Chem. Soc. 122, 5395-5396.

    Article  Google Scholar 

  • Liu Y., Chen X., and Xin J. H. (2006), “Super-Hydrophobic Surfaces from a Simple Coating Method: A Bionic Nanoengineering Approach,” Nanotechnology 17, 3259-3263.

    Article  ADS  Google Scholar 

  • Lodge, R. A. and Bhushan, B. (2006), “Surface Characterization of Human Hair using Tapping Mode Atomic Force Microscopy and Measurement of Conditioner Thickness Distribution,” J. Vac. Sci. Technol. A 24, 1258-1269.

    Article  Google Scholar 

  • Malitson, H. (1965), “Interspecimen Cmparison of the Refractive Index of Fused Silica,” J. Opt. Soc. America 55, 1205-1209.

    Article  ADS  Google Scholar 

  • Manca M., Cannavale A., De Marco L., Aricò A. S., Cingolani R., and Gigli G. (2009), “Durable Superhydrophobic and Antireflective Surfaces by Trimethylsilanized Silica Nanoparticles-Based Sol-Gel Processing,” Langmuir 25, 6357-6362.

    Article  Google Scholar 

  • McHale, G., Aqil, S., Shirtcliffe, N. J., Newton, M. I., and Erbil, H. Y. (2005), “Analysis of Droplet Evaporation on a Superhydrophobic Surface,” Langmuir 21, 11053-11060.

    Article  Google Scholar 

  • Meyyappan, M. (2005), Carbon Nanotubes – Science and Applications, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Ming, W., Wu, D., van Benthem, R., and de With, G. (2005), “Superhydrophobic Films from Raspberry-Like Particles,” Nano Lett. 5, 2298-2301.

    Article  ADS  Google Scholar 

  • Moustaghfir A., Tomasella E., Rivaton A., Mailhot B., Jacquet M., Gardette J. L., and Cellier J. (2004), “Sputtered Zinc Oxide Coatings: Structural Study and Application to the Photoreception of the Polycarbonate,” Surf. Coatings Technol. 180-181, 642-645.

    Article  Google Scholar 

  • Nakajima, A., Fujishima, A., Hashimoto, K., and Watanabe, T. (1999), “Preparation of Transparent Superhydrophobic Boehmite and Silica Films by Sublimation of Aluminum Acetylacetonate,” Adv. Mater. 11, 1365-1368.

    Article  Google Scholar 

  • Natsume Y. and Sakata H. (2000), “Zinc Oxide Films Prepared by Sol-gel Spin-coating,” Thin Solid Films 372, 30-36.

    Article  ADS  Google Scholar 

  • Neinhuis, C., and Barthlott, W. (1997), “Characterization and Distribution of Water-Repellent, Self-Cleaning Plant Surfaces,” Annals of Botany 79, 667-677.

    Article  Google Scholar 

  • Niemietz, A., Wandelt, K., Barthlott, W., and Koch, K. (2009), “Thermal Evaporation of Multi-Component Waxes and Thermally Activated Formation of Nano-Tubules for Superhydrophobic Surfaces,” Prog. Org. Coat. 66, 221-227.

    Article  Google Scholar 

  • Nishimoto S., Kubo A., Nohara K., Zhang X., Taneichi N., Okui T., Liu Z., Nakata K., Sakai H., Murakami T., Abe M., Komine T., and Fujishima A. (2009), “TiO2-based Superhydrophobic-Superhydrophilic Patterns: Fabrication via an Ink-jet Technique and Application in Offset Printing,” Appl. Surf. Sci. 255, 6221-6225.

    Article  ADS  Google Scholar 

  • Noblin, X., Buguin, A., and Brochard-Wyart, F. (2004), “Vibrated Sessile Drops: Transition between Pinned and Mobile Contact Line Oscillations,” Eur. Phys. J. E 14. 395-404.

    Article  Google Scholar 

  • Noh J. H., Han H. S., Lee S., Kim D. H., Park J. H., Park S., Kim J. Y., Jung H. S., and Hong K. S. (2010), “A Newly Designed Nb-Doped TiO2/Al-Doped ZnO Transparent Conducting Oxide Multilayer for Electrochemical Photoenergy Conversion Devices,” J. Phys. Chem. C 114, 13867-13871.

    Article  Google Scholar 

  • Nosonovsky, M. and Bhushan, B. (2005), “Roughness Optimization for Biomimetic Superhydrophobic Surfaces,” Microsyst. Technol. 11, 535-549.

    Article  Google Scholar 

  • Nosonovsky, M. and Bhushan, B. (2007a), “Multiscale Friction Mechanisms and Hierarchical Surfaces in Nano- and Bio-Tribology,” Mater. Sci. Eng.:R 58, 162-193.

    Google Scholar 

  • Nosonovsky, M. and Bhushan, B. (2007b), “Hierarchical Roughness Makes Superhydrophobic Surfaces Stable,” Microelectronic Eng. 84, 382-386.

    Article  Google Scholar 

  • Nosonovsky, M. and Bhushan, B. (2007c), “Biomimetic Superhydrophobic Surfaces: Multiscale Approach,” Nano Lett. 7, 2633-2637.

    Article  ADS  Google Scholar 

  • Nosonovsky, M. and Bhushan, B. (2007d), “Hierarchical Roughness Optimization for Biomimetic Superhydrophobic Surfaces,” Ultramicroscopy 107, 969-979.

    Article  Google Scholar 

  • Nosonovsky, M. and Bhushan, B. (2008a), Multiscale Dissipative Mechanisms and Hierarchical Surfaces: Friction, Superhydrophobicity, and Biomimetics, Springer-Verlag, Heidelberg, Germany.

    Book  MATH  Google Scholar 

  • Nosonovsky, M. and Bhushan, B. (2008b), “Roughness-Induced Superhydrophobicity: A Way to Design Non-Adhesive Surfaces,” J. Phys.: Condens. Matter 20, 225009.

    ADS  Google Scholar 

  • Nosonovsky, M. and Bhushan, B. (2008c), “Patterned Non-Adhesive Surfaces: Superhydrophobicity and Wetting Regime Transitions,” Langmuir 24, 1525-1533.

    Article  Google Scholar 

  • Nosonovsky, M. and Bhushan, B. (2008d), “Capillary Effects and Instabilities in Nanocontacts,” Ultramicroscopy 108, 1181-1185.

    Article  Google Scholar 

  • Nosonovsky, M. and Bhushan, B. (2008e), “Energy Transitions in Superhydrophobicity: Low Adhesion, Easy Flow and Bouncing,” J. Phys.: Condens. Matter 20, 395005.

    Google Scholar 

  • Obeso, C. G., Sousa, M. P., Song, W., Rodriguez-Perez, M. A., Bhushan, B., and Mano, J. F. (2013), “Modification of Paper Using Polyhydroxybutyrate to Obtain Biomimetic Superhydrophobic Substrates,” Coll. Surf. A: Physicochem. Eng. Aspects 416, 51-55.

    Article  Google Scholar 

  • Palacio, M. and Bhushan, B. (2010), “Normal and Lateral Force Calibration Techniques for AFM Cantilevers,” Crit. Rev. Solid State Mater. Sci. 35, 73-104.

    Article  ADS  Google Scholar 

  • Park T.-Y., Choi Y.-S., Kang J.-W., Jeong J.-H., Park S.-J., Jeon D. M., Kim J. W., and Kim Y. C. (2010), “Enhanced Optical Power and Low Forward Voltage of GaN-based Light-Emitting Diodes with Ga-doped ZnO Transparent Conducting Layer,” Appl. Phys. Lett. 96, 051124.

    Article  ADS  Google Scholar 

  • Pompe, T. and Herminghaus, S. (2000), “Three-Phase Contact Line Energetics from Nanoscale Liquid Surface Topographies,” Phys. Rev. Lett. 85, 1930-1933.

    Article  ADS  Google Scholar 

  • Quere, D. (2004), “Surface Wetting Model Droplets,” Nature Materials 3, 79-80.

    Article  ADS  Google Scholar 

  • Reyssat, M., Pepin, A., Marty, F., Chen, Y., and Quere, D. (2006), “Bouncing Transitions on Microtextured Materials,” Europhys. Lett. 74, 306-312.

    Article  ADS  Google Scholar 

  • Richard, D., Clanet, C., and Quere, D. (2002), “Contact Time of a Bouncing Drop,” Nature 417, 811.

    Article  ADS  Google Scholar 

  • Rowan, S. M., Newton, M. I., and McHale, G. (1995), “Evaporation of Microdroplets and the Wetting of Solid Surfaces,” J. Phys. Chem. 99, 13268-13271.

    Article  Google Scholar 

  • Schneider P. M. and Fowler W. B. (1976), “Band Structure and Optical Properties of Silicon Dioxide,” Phys. Rev. Lett. 36, 425-428.

    Article  ADS  Google Scholar 

  • Semal, S., Blake, T. D., Geskin, V., de Ruijter, M. L., Castelein, G., and De Coninck, J. (1999), “Influence of Surface Roughness on Wetting Dynamics,” Langmuir 15, 8765-8770.

    Article  Google Scholar 

  • Shackelford J. and Alexander W. (2001), CRC Materials Science and Engineering Handbook, 3rd ed., CRC Press, Boca Raton, FL p. 1716.

    Google Scholar 

  • Shibuichi, S., Onda, T, Satoh, N., and Tsujii, K. (1996), “Super-Water-Repellent Surfaces Resulting from Fractal Structure,” J. Phys. Chem. 100, 19512-19517.

    Article  Google Scholar 

  • Srikant V. and Clarke D. (1998), “On the Optical Band Gap of Zinc Oxide,” J. Appl. Phys. 83, 5447-5451.

    Article  ADS  Google Scholar 

  • Stelmashenko, N. A., Craven, J. P., Donald, A. M., Terentjev, E. M., and Thiel, B. L. (2001), “Topographic Contrast Of Partially Wetting Water Droplets in Environmental Scanning Electron Microscopy,” J. Micros. 204, 172-183.

    Article  MathSciNet  Google Scholar 

  • van Dijk, A. I. J. M, Bruijnzeel, L. A. and Rosewell, C. J. (2002), “Rainfall Intensity–Kinetic Energy Relationships: A Critical Literature Appraisal,” J. Hydrology 261, 1-23.

    Article  ADS  Google Scholar 

  • Vila M., Cáceres D., and Prieto C. (2003), “Mechanical Properties of Sputtered Silicon Nitride Thin Films,” J Appl. Phys. 94, 7868-7873.

    Article  ADS  Google Scholar 

  • Wong, E. W., Sheehan, P. E., and Lieber, C. M. (1997), “Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes,” Science 277, 1971-1975.

    Article  Google Scholar 

  • Yang, H. and Deng, Y. (2008), “Preparation and Physical Properties of Superhydrophobic Papers,” J. Colloid Interf. Sci., 325, 588-593.

    Article  Google Scholar 

  • Yang Y., Sun X. W., Chen B. J., Xu C. X., Chen T. P., Sun C. Q., Tay B. K., and Sun Z. (2006), “Refractive Indices of Textured Indium Tin Oxide and Zinc Oxide Thin Films,” Thin Solid Films 510, 95-101.

    Article  ADS  Google Scholar 

  • Yost, F. G, Michael, J. R., and Eisenmann, E. T. (1995), “Extensive Wetting Due to Roughness,” Acta Metall. Mater. 45, 299-305.

    Article  Google Scholar 

  • Zeng K., Zhu F., Hu J., Shen L., Zhang K., and Gong H. (2003), “Investigation of Mechanical Properties of Transparent Conducting Oxide Thin Films,” Thin Solid Films 443, 60-65.

    Article  ADS  Google Scholar 

  • Zhang, X., Tan, S., Zhao, N., Guo, X., Zhang, X., Zhang, Y., and Xu, J. (2006), “Evaporation of Sessile Water Droplets on Superhydrophobic Natural Lotus and Biomimetic Polymer Surfaces,” Chem. Phys. Chem. 7, 2067-2070.

    Google Scholar 

  • Zhang, Y. Y., Wang, C. M., and Tan, V. B. C. (2008), “Examining the Effects of Wall Numbers on Buckling Behavior and Mechanical Properties of Multiwalled Carbon Nanotubes via Molecular Dynamics Simulations,” J. Appl. Phys. 103, 053505.

    Article  ADS  Google Scholar 

  • Zhu, L., Xiu, Y., Xu, J., Tamirisa, P. A., Hess, D. W., and Wong C. (2005), “Superhydrophobicity on Two-Tier Rough Surfaces Fabricated by Controlled Growth of Aligned Carbon Nanotube Arrays Coated with Fluorocarbon,” Langmuir 21, 11208-11212.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharat Bhushan .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bhushan, B. (2016). Fabrication and Characterization of Micro-, Nano- and Hierarchically Structured Lotus-Like Surfaces. In: Biomimetics. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-28284-8_6

Download citation

Publish with us

Policies and ethics