Skip to main content

Modeling of Contact Angle for a Liquid in Contact with a Rough Surface for Various Wetting Regimes

  • Chapter
  • First Online:
Book cover Biomimetics

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

The roughness distribution affects contact angle and surface wetting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamson A. V. (1990), Physical Chemistry of Surfaces, Wiley, New York.

    Google Scholar 

  • Anisimov, M. A. (2007), “Divergence of Tolman’s Length for a Droplet Near the Critical Point,” Phys. Rev. Lett. 98, 035702.

    Google Scholar 

  • Bahadur, V. and Garimella, S. V. (2007), “Electrowetting-Based Control of Static Droplet States on Rough Surfaces,” Langmuir 23, 4918-4924.

    Google Scholar 

  • Barbieri, L., Wagner, E., and Hoffmann, P. (2007), “Water Wetting Transition Parameters of Perfluorinated Substrates with Periodically Distributed Flat-Top Microscale Obstavles,” Langmuir 23, 1723-1734.

    Google Scholar 

  • Bartell, F.E. and Shepard, J. W. (1953), “Surface Roughness as Related to Hysteresis of Contact Angles” J. Phys. Chem. 57, 455-458.

    Google Scholar 

  • Bhushan, B. (2013a), Principles and Applications of Tribology, 2 nd Ed., Wiley, New York.

    Google Scholar 

  • Bhushan, B. (2013b), Introduction to Tribology, 2 nd Ed., Wiley, New York.

    Google Scholar 

  • Bhushan, B. and Jung, Y. C. (2007), “Wetting Study of Patterned Surfaces for Superhydrophobicity,” Ultramicroscopy 107, 1033-1041.

    Google Scholar 

  • Bhushan, B. and Jung, Y. C. (2008), “Wetting, Adhesion and Friction of Superhydrophobic and Hydrophilic Leaves and Fabricated Micro/nanopatterned Surfaces,” J. Phys.: Condens. Matter 20, 225010.

    Google Scholar 

  • Bhushan, B. and Jung, Y. C. (2011), “Natural and Biomimetic Artificial Surfaces for Superhydrophobicity, Self-Cleaning, Low Adhesion, and Drag Reduction,” Prog. Mater. Sci. 56, 1-108.

    Google Scholar 

  • Bhushan, B. and Nosonovsky, M. (2010), “The Rose Petal Effect and the Modes of Superhydrophobicity,” Phil. Trans. R. Soc. A 368, 4713-4728.

    Google Scholar 

  • Bhushan, B., Nosonovsky, M., and Jung, Y. C. (2007), “Towards Optimization of Patterned Superhydrophobic Surfaces” J. R. Soc. Interf. 4, 643-648.

    Google Scholar 

  • Bormashenko, E., Pogreb, R., Whyman, G., and Erlich, M. (2007), “Cassie-Wenzel Wetting Transition in Vibrated Drops Deposited on the Rough Surfaces: Is Dynamic Cassie-Wenzel Transition 2D or 1D Affair?” Langmuir 23, 6501-6503.

    Google Scholar 

  • Boruvka, L. and Neumann, A. W. (1977), “Generalization of the Classical Theory of Capillarity,” J. Chem. Phys. 66, 5464-5476.

    Google Scholar 

  • Cassie, A. B. D. (1948), “Contact Angles,” Discuss. Faraday Soc. 3, 11-16.

    Google Scholar 

  • Cassie, A. B. D. and Baxter, S. (1944), “Wettability of Porous Surfaces,” Trans. Faraday Soc. 40, 546-551.

    Google Scholar 

  • Checco, A., Guenoun, P., and Daillant, J. (2003), “Nonlinear Dependence of the Contact Angle of Nanodroplets on Contact Line Curvatures,” Phys. Rev. Lett. 91, 186101.

    Google Scholar 

  • Cheng, Y. T., Rodak, D. E., Angelopoulos, A., and Gacek, T. (2005), “Microscopic Observations of Condensation of Water on Lotus Leaves,” Appl. Phys. Lett. 87, 194112.

    Google Scholar 

  • de Gennes, P. G., Brochard-Wyart, F., and Quėrė, D. (2003) Capillarity and Wetting Phenomena, Springer, Berlin.

    Google Scholar 

  • Derjaguin, B. V. and Churaev, N. V. (1974), “Structural Component of Disjoining Pressure,” J. Colloid Interface Sci. 49, 249-255.

    Google Scholar 

  • Eustathopoulos N., Nicholas, M. G., Drevet, B. (1999), Wettability at High Temperatures, Pergamon, Amsterdam.

    Google Scholar 

  • Extrand, C. W. (2002), “Model for Contact Angle and Hysteresis on Rough and Ultraphobic Surfaces,” Langmuir 18, 7991-7999.

    Google Scholar 

  • Extrand, C. W. (2003), “Contact Angle Hysteresis on Surfaces with Chemically Heterogeneous Islands,” Langmuir 19, 3793-3796.

    Google Scholar 

  • Feng, X. J., Feng, L., Jin, M. H., Zhai, J., Jiang, L., Zhu, D. B. (2004), “Reversible Super-hydrophobicity to Super-hydrophilicity Transition of Aligned ZnO Nanorod Films,” J. Am. Chem. Soc. 126, 62-63.

    Google Scholar 

  • Gao, L. and McCarthy, T. J. (2007). “How Wenzel and Cassie Were Wrong,” Langmuir 23, 3762-3765.

    Google Scholar 

  • Gupta, P., Ulman, A., Fanfan, F., Korniakov, A., and Loos, K. (2005), “Mixed Self-Assembled Monolayer of Alkanethiolates on Ultrasmooth Gold do not Exhibit Contact Angle Hysteresis,” J. Am. Chem. Soc. 127, 4-5.

    Google Scholar 

  • Israelachvili, J. N. (1992), Intermolecular and Surface Forces, second edition, Academic Press, London.

    Google Scholar 

  • Israelachvili, J. N. and Gee, M. L. (1989), “Contact Angles on Chemically Heterogeneous Surfaces,” Langmuir 5, 288-289.

    Google Scholar 

  • Johnson, R. E. and Dettre, R. H. (1964), “Contact Angle Hysteresis,” Contact Angle, Wettability, and Adhesion, Adv. Chem. Ser., Vol. 43, Ed. F. M. Fowkes, pp. 112-135, American Chemical Society, Washington, D. C.

    Google Scholar 

  • Jung, Y. C. and Bhushan, B. (2006), “Contact Angle, Adhesion, and Friction Properties of Micro- and Nanopatterned Polymers for Superhydrophobicity,” Nanotechnology 17, 4970-4980.

    Google Scholar 

  • Jung, Y. C. and Bhushan, B. (2007), “Wetting Transition of Water Droplets on Superhydrophobic Patterned Surfaces,” Scripta Mater. 57, 1057-1060.

    Google Scholar 

  • Jung, Y. C. and Bhushan, B. (2008a), “Wetting Behavior During Evaporation and Condensation of Water Microdroplets on Superhydrophobic Patterned Surfaces” J. Micros. 229, 127-140.

    Google Scholar 

  • Jung, Y. C. and Bhushan, B. (2008b), “Dynamic Effects of Bouncing Water Droplets on Superhydrophobic Surfaces,” Langmuir 24, 6262-6269.

    Google Scholar 

  • Kamusewitz, H., Possart, W., and Paul, D. (1999), “The Relation Between Young’s Equilibrium Contact Angle and the Hysteresis on Rough Paraffin Wax Surfaces,” Colloid Surf. A-Physicochem. Eng. Asp. 156, 271 – 279.

    Google Scholar 

  • Kijlstra, J., Reihs, K., and Klami, A. (2002), “Roughness and Topology of Ultra-Hydrophobic surfaces,” Colloid Surf. A-Physicochem. Eng. Asp. 206, 521-529.

    Google Scholar 

  • Krupenkin, T. N., Taylor, J. A., Schneider, T. M., and Yang, S. (2004), “From Rolling Ball to Complete Wetting: The Dynamic Tuning of Liquids on Nanostructured Surfaces,” Langmuir 20, 3824-3827.

    Google Scholar 

  • Lafuma, A. and Quéré, D. (2003), “Superhydrophobic States,” Nature Materials 2, 457-460.

    Google Scholar 

  • Li, W. and Amirfazli, A. (2006), “A Thermodynamic Approach for Determining the Contact Angle Hysteresis for Superhydrophobic Surfaces,” J. Colloid. Interface Sci. 292, 195-201.

    Google Scholar 

  • Marmur, A. (2003), “Wetting on Hydrophobic Rough Surfaces: to be Heterogeneous or Not to be?” Langmuir 19, 8343-8348.

    Google Scholar 

  • Nosonovsky, M. (2007a), “Multiscale Roughness and Stability of Superhydrophobic Biomimetic Interfaces,” Langmuir 23, 3157-3161.

    Google Scholar 

  • Nosonovsky, M. (2007b), “Model for Solid-Liquid and Solid-Solid Friction for Rough Surfaces with Adhesion Hysteresis,” J. Chem. Phys. 126, 224701.

    Google Scholar 

  • Nosonovsky, M. (2007c), “On the Range of Applicability of the Wenzel and Cassie Equations” Langmuir 23 9919-9920.

    Google Scholar 

  • Nosonovsky, M. and Bhushan, B. (2005), “Roughness Optimization for Biomimetic Superhydrophobic Surfaces,” Microsyst. Technol. 11, 535-549.

    Google Scholar 

  • Nosonovsky, M. and Bhushan, B. (2006a), “Stochastic Model for Metastable Wetting of Roughness-Induced Superhydrophobic Surfaces,” Microsyst. Technol. 12, 231-237.

    Google Scholar 

  • Nosonovsky, M. and Bhushan, B. (2006b), “Wetting of Rough Three-Dimensional Superhydrophobic Surfaces,” Microsyst. Technol. 12, 273-281.

    Google Scholar 

  • Nosonovsky, M. and Bhushan, B. (2007a), “Multiscale Friction Mechanisms and Hierarchical Surfaces in Nano- and Bio-Tribology,” Mater. Sci. Eng.:R 58, 162-193.

    Google Scholar 

  • Nosonovsky, M. and Bhushan, B. (2007b), “Hierarchical Roughness Makes Superhydrophobic Surfaces Stable,” Microelectronic Eng. 84, 382-386.

    Google Scholar 

  • Nosonovsky, M. and Bhushan, B. (2007c), “Biomimetic Superhydrophobic Surfaces: Multiscale Approach,” Nano Lett. 7, 2633-2637.

    Google Scholar 

  • Nosonovsky, M. and Bhushan, B. (2007d), “Hierarchical Roughness Optimization for Biomimetic Superhydrophobic Surfaces,” Ultramicroscopy 107, 969-979.

    Google Scholar 

  • Nosonovsky, M. and Bhushan, B. (2008a), Multiscale Dissipative Mechanisms and Hierarchical Surfaces: Friction, Superhydrophobicity, and Biomimetics, Springer-Verlag, Heidelberg, Germany.

    Google Scholar 

  • Nosonovsky, M. and Bhushan, B. (2008b), “Roughness-Induced Superhydrophobicity: A Way to Design Non-Adhesive Surfaces,” J. Phys.: Condens. Matter 20, 225009.

    Google Scholar 

  • Nosonovsky, M. and Bhushan, B. (2008c), “Biologically-Inspired Surfaces: Broadening the Scope of Roughness,” Adv. Func. Mater. 18, 843-855.

    Google Scholar 

  • Nosonovsky, M. and Bhushan, B. (2008d), “Patterned Non-Adhesive Surfaces: Superhydrophobicity and Wetting Regime Transitions,” Langmuir 24, 1525-1533.

    Google Scholar 

  • Nosonovsky, M. and Bhushan, B. (2008e), “Do Hierarchical Mechanisms of Superhydrophobicity Lead to Self-Organized Criticality?,” Scripta Mater. 59, 941-944.

    Google Scholar 

  • Nosonovsky, M. and Bhushan, B. (2008f), “Energy Transitions in Superhydrophobicity: Low Adhesion, Easy Flow and Bouncing,” J. Phys.: Condens. Matter 20, 395005.

    Google Scholar 

  • Nosonovsky, M. and Bhushan, B. (2009), “Superhydrophobic Surfaces and Emerging Applications: Non-Adhesion, Energy, Green Engineering,” Curr. Opin. Colloid Interface Sci. 14, 270-280.

    Google Scholar 

  • Patankar, N. A. (2004), “Transition between Superhydrophobic States on Rough Surfaces” Langmuir 20, 7097-7102.

    Google Scholar 

  • Pompe, T., Fery, A., and Herminghaus, S. (2000), “Measurement of Contact Line Tension by Analysis of the Three-Phase Boundary with Nanometer Resolution,” in Apparent and Microscopic Contact Angles pp. 3-12 (Drelich, J., Laskowski, J.S., and Mittal, K.L., eds.,) VSP, Utrecht.

    Google Scholar 

  • Quéré, D. (2005), “Non-Sticking Drops,” Rep. Prog. Phys. 68, 2495-2535.

    Google Scholar 

  • Sun, M., Luo, C., Xu, L., Ji, H., Ouyang, Q., Yu, D., and Chen, Y. (2005), “Artificial Lotus Leaf by Nanocasting,” Langmuir 21, 8978-8981.

    Google Scholar 

  • Tretinnikov, O. N. (2000), “Wettability and Microstructure of Polymer Surfaces: Stereochemical and Conformational Aspects” in Apparent and Microscopic Contact Angles pp. 111-128 (Drelich, J., Laskowski, J.S., and Mittal, K.L., eds.) VSP, Utrecht.

    Google Scholar 

  • Wenzel, R. N. (1936), “Resistance of Solid Surfaces to Wetting by Water,” Indust. Eng. Chem. 28, 988-994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharat Bhushan .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bhushan, B. (2016). Modeling of Contact Angle for a Liquid in Contact with a Rough Surface for Various Wetting Regimes. In: Biomimetics. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-28284-8_3

Download citation

Publish with us

Policies and ethics