Skip to main content
Book cover

Biomimetics pp 531–547Cite as

Structure and Mechanical Properties of Nacre

  • Chapter
  • First Online:
  • 1932 Accesses

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

Many biological organisms exhibit unique chemical and physical properties (Lowenstam and Werner, On Biomineralization. Oxford University Press, New York, 1989). They often use components that contain both inorganic and organic compounds with complex structures, and are often hierarchically organized, ranging from nano- to meso-levels. The hierarchical structure provides a high tolerance against defects at all length scales.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbot, R., Tucker, D., and Peter, S. (2000), Compendium of Seashells, 4 th Ed., Odyssey Publishing, El Cajon, California.

    Google Scholar 

  • Barthelat, F. (2010), “Nacre from Mollusk Shells: A Model for High-performance Structural Materials,” Bioinspir. Biomim. 5, 035001-1-8.

    Google Scholar 

  • Barthelat, F. and Zhu, D. J. (2011), “A Novel Biomimetic Material Duplicating the Structure and Mechanics of Natural Nacre,” J. Mater. Res. 26, 1203-1215.

    Google Scholar 

  • Barthelat, F., Li, C.M., Comi, C. and Espinosa, H. D. (2006), “Mechanical Properties of Nacre Constituents and Their Impact on Mechanical Performance,” J. Mater. Res. 21, 1977-1986.

    Google Scholar 

  • Barthelat, F., Tang, H., Zavattieri, P. D., Li, C. M. and Espinosa, H. D. (2007), “On the Mechanics of Mother-of-Pearl: A Key Feature in the Material Hierarchical Structure,” J. Mech. Phys. Solids 55, 306-337.

    Google Scholar 

  • Bhushan, B. (2009), “Biomimetics: Lessons from Nature- An Overview,” Phil. Trans. R. Soc. A 367, 1445-1486.

    Google Scholar 

  • Bonderer, L. J., Studart, A. R. and Gauckler, L. J. (2008), “Bioinspired Design and Assembly of Platelet Reinforced Polymer Films,” Science 319, 1069-1073.

    Google Scholar 

  • Bruet, B. J. F., Qi, H. J., Boyce, M. C., Panas, R., Tai, K., Frick, L., and Ortiz, C. (2005), “Nanoscale Morphology and Indentation of Individual Nacre Tablets from the Gastropod Mollusc Trochus niloticus,” J. Mater. Res. 20, 2400-2419.

    Google Scholar 

  • Bueno, S. and Baudin, C. (2009), “Design and Processing of a Ceramic Laminate with High Toughness and Strong Interfaces,” Compos. Part A 40, 137-143.

    Google Scholar 

  • Cartwright, J. H. E. and Checa, A. G. (2007), “The Dynamics of Nacre Self-assembly,” J. R. Soc. Interface 4, 491–504.

    Google Scholar 

  • Checa, A. G., Cartwright, J. H. E., Willinger, M. G. (2011), “Mineral Bridges in Nacre,” J. Struct. Biol. 176, 330-339.

    Google Scholar 

  • Chen, R. F., Wang, C. A., Huang, Y. and Le, H. R. (2008), “An Efficient Biomimetic Process for Fabrication of Artificial Nacre with Ordered-Nano Structure,” Mater. Sci. Eng. C 28, 218-222.

    Google Scholar 

  • Currey, J. D. (1977), “Mechanical Properties of Mother of Pearl in Tension,” Proc. R. Soc. Lond. B 196, 443-463.

    Google Scholar 

  • Deville, S., Saiz, E., Nalla, R. K., and Tomsia, A. P. (2006), “Freezing as a Path to Build Complex Composites,” Science 27, 515-518.

    Google Scholar 

  • Deville S., Saiz E., and Tomsia A. P. (2008), “Using Ice to Mimic Nacre: From Structural Applications to Artificial Bone,” in: Handbook of Biomineralization: Biomimetic and Bioinspired Chemistry, Behrens P. and Bäuerlein E. (Eds.), John Wiley & Sons, Ltd, Weinheim, Germany.

    Google Scholar 

  • Gunnison K. E., Sarikaya M., Liu J. and Aksay I. A. (1991), “Structure-mechanical Property Relationships in a Biological Ceramic-polymer Composite: Nacre,” MRS Proc., 255, 171-184.

    Google Scholar 

  • Jackson, A. P., Vincent, J.F.V. and Turner, R.M. (1988), “The Mechanical Design of Nacre,” Proc. R. Soc. Lond. B 234, 415-440.

    Google Scholar 

  • Katti, D. R. and Katti, K. S. (2001), “3D Finite Element Modeling of Mechanical Response in Nacre-based Hybrid Nanocomposites,” J. Mater. Sci. 36, 1411-1417.

    Google Scholar 

  • Launey, M. E., Munch, E., Alsem, D. H., Saiz, E., Tomsia, A. P., and Ritchie, R. O. (2010), “A Novel Biomimetic Approach to the Design of High-performance Ceramic-metal Composites,” J. R. Soc. Interface 7, 741-753.

    Google Scholar 

  • Li, X. D., Chang, W. C., Chao, Y. J., Wang, R. and Chang, M. (2004), “Nanoscale Structural and Mechanical Characterization of a Natural Nanocomposite Material: The Shell of Red Abalone,” Nano Lett. 4, 613-617.

    Google Scholar 

  • Li, X. D., Xu, Z. H. and Wang, R. Z. (2006), “In Situ Observation of Nanograin Rotation and Deformation in Nacre,” Nano Lett. 6, 2301-2304.

    Google Scholar 

  • Lin, A. Y. M., Chen, P. Y. and Meyers, M. A. (2008). “The Growth of Nacre in the Abalone Shell,” Acta Biomater. 4, 131-138.

    Google Scholar 

  • Lin, T. H., Huang, W. H., Jun, I. K., and Jiang, P. (2009), “Bioinspired Assembly of Colloidal Nanoplatelets by Electric Field,” Chem. Mater. 21, 2039-2044.

    Google Scholar 

  • Liu, K. S. and Jiang, L. (2011), “Bio-inspired Design of Multiscale Structures for Function Integration,” Nano Today 6, 155-175.

    Google Scholar 

  • Lowenstam, H. A. and Weiner, S. (1989), On Biomineralization, Oxford University Press, New York.

    Google Scholar 

  • Luz, G. M. and Mano, J. F. (2009), “Biomimetic Design of Materials and Biomaterials Inspired by the Structure of Nacre,” Phil. Trans. R. Soc. A. 367, 1587-1605.

    Google Scholar 

  • Menig, R., Meyers, M. H., Meyers, M. A. and Vecchio, K. S. (2000), “Quasi-static and Dynamic Mechanical Response of Haliotis rufescens (Abalone) Shells,” Acta mater. 48, 2383- 2398.

    Google Scholar 

  • Meyers, M. A. and Chawla, K. K. (2008), Mechanical Behavior of Materials, Cambridge University Press, New York.

    Google Scholar 

  • Meyers, M. A., Lin, A. Y. M., Seki, Y., Chen, P. Y., Kad, B. K., Bodde, S. (2006), “Structural Biological Composites: An Overview,” JOM, July, 35-41.

    Google Scholar 

  • Meyers, M. A., Chen, P. Y., Lin, A.Y.M. and Seki, Y. (2008), “Biological Materials: Structure and Mechanical Properties,” Prog. Mater. Sci. 53, 1-206.

    Google Scholar 

  • Meyers, M. A., Chen, P. Y., Lopez, M. I., Seki, Y. and Lin, A.Y.M. (2011), “Biological Materials: A Materials Science Approach,” J. Mech. Behav. Biomed. Mater. 4, 626-657.

    Google Scholar 

  • Mohanty, B., Katti, K. S., Katti, D. R. and Verma, D., 2006, “Dynamic Nanomechanical Response of Nacre,” J. Mater. Res. 21, 2045-2051.

    Google Scholar 

  • Munch, E., Launey, M. E., Alsem, D. H., Saiz, E., Tomsia, A. P., and Ritchie, R. O. (2008) “Tough Bio-inspired Hybrid Materials,” Science 322, 1516-1520.

    Google Scholar 

  • Ortiz, C. and Boyce, M. C. (2008), “Bioinspired Structural Materials,” Science 319, 1053-1054.

    Google Scholar 

  • Podsiadlo, P., Paternel, S., Rouillard J. M., Zhang, Z. F., Lee, J., Lee, J. W., Gulari, L. and Kotov, N. A. (2005), “Layer-by-layer Assembly of Nacre-like Nanostructured Composites with Antimicrobial Properties,” Langmuir 21, 11915-11921.

    Google Scholar 

  • Podsiadlo, P., Kaushik, A. K., Arruda, E. M., Waas, A. M., Shim, B. S., Xu, J. D., Nandivada, H., Pumplin, B. G., Lahann, J., Ramamoorthy, A. and Kotov, N. A. (2007), “Ultrastrong and Stiff Layered Polymer Nanocomposites,” Science 318, 80-83.

    Google Scholar 

  • Podsiadlo, P., Kaushik, A. K., Shim, B. S., Agarwal, A., Tang, Z., Waas, A. M., Arruda, E. M. and Kotov, N. A. (2008), “Can Nature’s Design be Improved Upon? High Strength, Transparent Nacre-like Nanocomposites with Double Network of Sacrificial Cross Links,” J. Phys. Chem. B 112, 14359-14363.

    Google Scholar 

  • Ratner, B. D. and Bryant, S. J. (2004), “Biomaterials: Where We Have Been and Where We are Going,” Annu. Rev. Biomed. Eng. 6, 41–75.

    Google Scholar 

  • Rubner, M. (2003), “Synthetic Sea Shell,” Nature 423, 925-926.

    Google Scholar 

  • Sarikaya, M., Gunnison, K. E., Yasrebi, M. and Aksay, I. A. (1989), “Mechanical Property-Microstructural Relationships in Abalone Shell,” MRS Proc., 174, 109.

    Google Scholar 

  • Schäffer, T. E., IonescuZanetti, C., Proksch, R., Fritz, M., Walters, D. A., Almqvist, N., Zaremba, C. M., Belcher, A. M., Smith, B. L., Stucky, G. D., Morse, D. E. and Hansma, P. K. (1997), “Does Abalone Nacre Form by Heteroepitaxial Nucleation or by Growth Through Mineral Bridges?,” Chem. Mater. 9, 1731-1740.

    Google Scholar 

  • Song, F., Zhang, X. H. and Bai, Y. L. (2002), “Microstructure and Characteristics in the Organic Matrix Layers of Nacre,” J. Mater. Res. 17, 1567-1570.

    Google Scholar 

  • Song, F., Soh, A. K. and Bai, Y. L. (2003), “Structural and Mechanical Properties of the Organic Matrix Layers of Nacre,” Biomater. 24, 3623-3631.

    Google Scholar 

  • Sun, J. and Bhushan, B. (2012), “Hierarchical Structure and Mechanical Properties of Nacre: A Review,” RSC Advances 2, 7617-7632.

    Google Scholar 

  • Tang, Z. Y., Kotov, N. A., Magonov, S. and Ozturk, B. (2003), “Nanostructured Artificial Nacre,” Nature Mater. 2, 413-418.

    Google Scholar 

  • Verma, D., Katti, K. and Katti, D. (2007), “Nature of Water in Nacre: A 2D Fourier Transform Infrared Spectroscopic Study,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 67, 784-788.

    Google Scholar 

  • Vincent, J. F. V. (1991), Structural Biomaterials, Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Wachtman, J. B. (1996), Mechanical Properties of Ceramics, Wiley-Interscience, New York.

    Google Scholar 

  • Walther, A., Bjurhager, I., Malho, J.-M., Ruokolainen, J., Berglund, L. and Ikkala, O. (2010), “Supramolecular Control of Stiffness and Strength in Lightweight High-performance Nacre-mimetic Paper with Fire-shielding Properties,” Angew. Chem. Int. Ed. Engl. 49, 6448-6453.

    Google Scholar 

  • Wang, C. A., Huang, Y., Zan, Q. F., Guo, H., and Cai, S. Y. (2000), “Biomimetic Structure Design – A Possible Approach to Change the Brittleness of Ceramics in Nature,´Mater. Sci. Eng. C 11, 9-12.

    Google Scholar 

  • Wang, J. F., Cheng Q. F. and Tang, Z. Y. (2012), “Layered Nanocomposites Inspired by the Structure and Mechanical Properties of Nacre,” Chem. Soc. Rev. 41, 1111-1129

    Google Scholar 

  • Wang, R. Z., Suo, Z., Evans, A. G., Yao, N. and Aksay, I. A. (2001), “Deformation Mechanisms in Nacre,” J. Mater. Res. 16, 2485-2493.

    Google Scholar 

  • Yourdkhani, M., Pasini, D. and Barthelat, F. (2011), “Multiscale Mechanics and Optimization of Gastropod Shells,” J. Bionic Eng. 8, 357-368.

    Google Scholar 

  • Zhang, L. and Krstic, V. D. (1995), “High Toughness Silicon Carbide/Graphite Laminar Composite by Slip Casting,” Theor. Appl. Fract. Mech. 24, 13-19.

    Google Scholar 

  • Zhang, S. M., Zhang, J. W., Zhang, Z. J., Dang, H. X., Liu,W. M. and Xue, Q. J. (2004), “Preparation and Characterization of Self-assembled Organic-Inorganic Nacre-like Nanocomposite Thin Films,” Mater. Lett. 58, 2266-2269.

    Google Scholar 

  • Zhang, X., Liu, C. L., Wu, W. J. and Wang, J. F. (2006), “Evaporation-induced Self-assembly of Organic-inorganic Ordered Nanocomposite Thin Films that Mimic Nacre,” Mater. Lett. 60, 2086-2089.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharat Bhushan .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bhushan, B. (2016). Structure and Mechanical Properties of Nacre. In: Biomimetics. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-28284-8_14

Download citation

Publish with us

Policies and ethics