Skip to main content

Towards Evolved Time to Contact Neurocontrollers for Quadcopters

  • Conference paper
  • First Online:
Artificial Life and Computational Intelligence (ACALCI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9592))

Abstract

Bio-inspired controllers based on visual odometry — or time to contact — have been previously shown to allow vehicles to navigate in a way that simultaneously specifies both the spatial waypoint and temporal arrival time at the waypoint, based on a single variable, tau (\(\tau \)). In this study, we present an initial investigation into the evolution of neural networks as bio-inspired tau-controllers that achieve successful mappings between \(\tau \) and desired control outputs. As this mapping is highly nonlinear and difficult to hand-design, an evolutionary algorithm is used to progressively optimise a population of neural networks based on quality of generated behaviour. The proposed system is implemented on Hardware-in-the-loop setup and demonstrated for the autonomous landing of a quadcopter. Preliminary results indicate that suitable controllers can be successfully evolved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alkowatly, M.T., Becerra, V.M., Holderbaum, W.: Bioinspired autonomous visual vertical control of a quadrotor unmanned aerial vehicle. J. Guidance Control Dynam. 38(2), 249–262 (2014)

    Article  Google Scholar 

  2. Åström, K.J., Hägglund, T.: Advanced PID control. ISA-The Instrumentation, Systems, and Automation Society, Research Triangle Park, NC 27709 (2006)

    Google Scholar 

  3. Chahl, J., Srinivasan, M., Zhang, S.: Landing strategies in honeybees and applications to uninhabited airborne vehicles. Int. J. Robot. Res. 23(2), 101–110 (2004)

    Article  Google Scholar 

  4. De Nardi, R., Togelius, J., Holland, O., Lucas, S.: Evolution of neural networks for helicopter control: Why modularity matters. In: 2006 IEEE Congress on Evolutionary Computation, CEC 2006, pp. 1799–1806 (2006)

    Google Scholar 

  5. Floreano, D., Dürr, P., Mattiussi, C.: Neuroevolution: from architectures to learning. Evol. Intel. 1(1), 47–62 (2008)

    Article  Google Scholar 

  6. Gibson, J.: Visually controlled locomotion and visual orientation in animals. Br. J. Psychol. 49(3), 182–194 (1958)

    Article  Google Scholar 

  7. Herisse, B., Hamel, T., Mahony, R.E., Russotto, F.X.: Landing a VTOL unmanned aerial vehicle on a moving platform using optical flow. IEEE Trans. Robot. 28(1), 77–89 (2012)

    Article  Google Scholar 

  8. Howard, D., Elfes, A.: Evolving spiking networks for turbulence-tolerant quadrotor control. In: International Conference on Artificial Life (ALIFE14), pp. 431–438 (2014)

    Google Scholar 

  9. Howard, G.D., Bull, L.: On the effects of node duplication and connection-oriented constructivism in neural XCSF. In: Proceedings of the 10th Annual Conference Companion on Genetic and Evolutionary Computation, pp. 1977–1984. ACM (2008)

    Google Scholar 

  10. Jang, J.S., Tomlin, C.: Autopilot design for the stanford dragonfly UAV: validation through hardware-in-the-loop simulation. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference (2001)

    Google Scholar 

  11. Kendoul, F.: Survey of advances in guidance, navigation, and control of unmanned rotorcraft systems. J. Field Robot. 29(2), 315–378 (2012)

    Article  Google Scholar 

  12. Kendoul, F.: Four-dimensional guidance and control of movement using time-to-contact: application to automated docking and landing of unmanned rotorcraft systems. Int. J. Robot. Res. 33(2), 237–267 (2014)

    Article  Google Scholar 

  13. Lee, D.N.: Guiding movement by coupling taus. Ecol. Psychol. 10, 221–250 (1998)

    Article  Google Scholar 

  14. Lee, D.N.: A theory of visual control of braking based on information about time-to-collision. Perception 5(4), 437–459 (1976)

    Article  Google Scholar 

  15. Merz, T., Rudol, P., Wzorek, M.: Control system framework for autonomous robots based on extended state machines. In: 2006 International Conference on Autonomic and Autonomous Systems, ICAS 2006, p. 14 IEEE (2006)

    Google Scholar 

  16. Rechenberg, I.: Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Frommann-Holzboog, Stuttgart (1973)

    Google Scholar 

  17. Ruffier, F., Franceschini, N.: Optic flow regulation: the key to aircraft automatic guidance. Elseiver Robot. Auton. Syst. 50, 177–194 (2005)

    Article  Google Scholar 

  18. Rumelhart, D., McClelland, J.: Parallel Distributed Processing, vol. 1 & 2. MIT Press, Cambridge (1986)

    Google Scholar 

  19. Shepherd III, J.F., Tumer, K.: Robust neuro-control for a micro quadrotor. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, GECCO 2010, pp. 1131–1138. ACM, New York (2010)

    Google Scholar 

  20. Tan, H.R., Leuthold, A., Lee, D., Lynch, J., Georgopoulos, A.: Neural mechanisms of movement speed and tau as revealed by magnetoencephalography. Exp. Brain Res. 195(4), 541–552 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Howard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Howard, D., Kendoul, F. (2016). Towards Evolved Time to Contact Neurocontrollers for Quadcopters. In: Ray, T., Sarker, R., Li, X. (eds) Artificial Life and Computational Intelligence. ACALCI 2016. Lecture Notes in Computer Science(), vol 9592. Springer, Cham. https://doi.org/10.1007/978-3-319-28270-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28270-1_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28269-5

  • Online ISBN: 978-3-319-28270-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics