Skip to main content

A Differential Evolution Algorithm for Solving Resource Constrained Project Scheduling Problems

  • Conference paper
  • First Online:
Artificial Life and Computational Intelligence (ACALCI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9592))

Abstract

The resource constrained project scheduling problem is considered as a complex scheduling problem. In order to solve this NP-hard problem, an efficient differential evolution (DE) algorithm is proposed in this paper. In the algorithm, improved mutation and crossover operators are introduced with an aim to maintain feasibility for generated individuals and hence being able to converge quickly to the optimal solutions. The algorithm is tested on a set of well-known project scheduling problem library (PSPLIB), with instances of 30, 60, 90 and 120 activities. The proposed DE is shown to have superior performance in terms of lower average deviations from the optimal solutions compared to some of the state-of-the-art algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhai, X., Tiong, R.L.K., Bjornsson, H.C., Chua, D.K.H.: A simulation-GA based model for production planning in precast plant. In: Proceedings of the 38th Conference on Winter Simulation, pp. 1796–1803. Winter Simulation Conference (2006)

    Google Scholar 

  2. Mathaisel, D.F., Comm, C.L.: Course and classroom scheduling: an interactive computer graphics approach. J. Syst. Softw. 15, 149–157 (1991)

    Article  Google Scholar 

  3. Chang, S.C.: A new aircrew-scheduling model for short-haul routes. J. Air Transp. Manag. 8, 249–260 (2002)

    Article  Google Scholar 

  4. Fleming, P.J., Fonseca, C.M.: Genetic algorithms in control systems engineering: a brief introduction. In: IEE Colloquium on Genetic Algorithms for Control Systems Engineering, pp. 1/1–1/5. IET (1993)

    Google Scholar 

  5. Brucker, P., Drexl, A., Möhring, R., Neumann, K., Pesch, E.: Resource-constrained project scheduling: notation, classification, models, and methods. Eur. J. Oper. Res. 112, 3–41 (1999)

    Article  MATH  Google Scholar 

  6. Kolisch, R., Padman, R.: An integrated survey of deterministic project scheduling. Omega 29, 249–272 (2001)

    Article  Google Scholar 

  7. Hartmann, S., Briskorn, D.: A survey of variants and extensions of the resource-constrained project scheduling problem. Eur. J. Oper. Res. 207, 1–14 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Demeulemeester, E., Herroelen, W.: A branch-and-bound procedure for the multiple resource-constrained project scheduling problem. Manag. Sci. 38, 1803–1818 (1992)

    Article  MATH  Google Scholar 

  9. Li, C., Bettati, R., Zhao, W.: Static priority scheduling for ATM networks. In: Proceedings of the 18th IEEE Real-Time Systems Symposium, pp. 264–273. IEEE (1997)

    Google Scholar 

  10. Lupetti, S., Zagorodnov, D.: Data popularity and shortest-job-first scheduling of network transfers. In: ICDT 2006 International Conference on Digital Telecommunications, pp. 26–26. IEEE (2006)

    Google Scholar 

  11. Cheng, X., Wu, C.: Hybrid algorithm for complex project scheduling. Comput. Integr. Manuf. Syst. Beijing 12, 585 (2006)

    Google Scholar 

  12. Zheng, X.-L., Wang, L.: A multi-agent optimization algorithm for resource constrained project scheduling problem. Expert Syst. Appl. 42, 6039–6049 (2015)

    Article  Google Scholar 

  13. Nonobe, K., Ibaraki, T.: Formulation and tabu search algorithm for the resource constrained project scheduling problem. Essays and Surveys in Metaheuristics, pp. 557–588. Springer, Berlin (2002)

    Chapter  Google Scholar 

  14. Fang, C., Wang, L.: An effective shuffled frog-leaping algorithm for resource-constrained project scheduling problem. Comput. Oper. Res. 39, 890–901 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, W., Ni, X.: Chaotic differential evolution algorithm for resource constrained project scheduling problem. Int. J. Comput. Sci. Math. 5, 81–93 (2014)

    Article  MathSciNet  Google Scholar 

  16. Damak, N., Jarboui, B., Siarry, P., Loukil, T.: Differential evolution for solving multi-mode resource-constrained project scheduling problems. Comput. Oper. Res. 36, 2653–2659 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cheng, M.Y., Tran, D.H.: An efficient hybrid differential evolution based serial method for multimode resource-constrained project scheduling. KSCE J. Civil Eng. 1–11 (2015)

    Google Scholar 

  18. Jia, D., Zheng, G., Khan, M.K.: An effective memetic differential evolution algorithm based on chaotic local search. Inf. Sci. 181, 3175–3187 (2011)

    Article  Google Scholar 

  19. Christofides, N., Alvarez-Valdés, R., Tamarit, J.M.: Project scheduling with resource constraints: a branch and bound approach. Eur. J. Oper. Res. 29, 262–273 (1987)

    Article  MATH  Google Scholar 

  20. Kolisch, R., Hartmann, S.: Heuristic algorithms for the resource-constrained project scheduling problem: classification and computational analysis. In: Weglarz, J. (ed.) Project Scheduling, vol. 14, pp. 147–178. Springer, Berlin (1999)

    Chapter  Google Scholar 

  21. Storn, R., Price, K.: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Blum, C., Chiong, R., Clerc, M., De Jong, K., Michalewicz, Z., Neri, F., Weise, T.: Evolutionary Optimization. Variants of Evolutionary Algorithms for Real-World Applications, pp. 1–29. Springer, Berlin (2012)

    Google Scholar 

  23. Kolisch, R., Schwindt, C., Sprecher, A.: Benchmark instances for project scheduling problems. In: Weglarz, J. (ed.) Project Scheduling, vol. 14, pp. 197–212. Springer, Berlin (1999)

    Chapter  Google Scholar 

  24. Stinson, J.P., Davis, E.W., Khumawala, B.M.: Multiple resource–constrained scheduling using branch and bound. AIIE Trans. 10, 252–259 (1978)

    Article  Google Scholar 

  25. Ronkkonen, J., Kukkonen, S., Price, K.V.: Real-parameter optimization with differential evolution. In: Proceedings of IEEE CEC, Vol. 1, pp. 506–513 (2009)

    Google Scholar 

  26. Fahmy, A., Hassan, T.M., Bassioni, H.: Improving RCPSP solutions quality with stacking justification-application with particle swarm optimization. Expert Syst. Appl. 41, 5870–5881 (2014)

    Article  Google Scholar 

  27. Zamani, R.: A competitive magnet-based genetic algorithm for solving the resource-constrained project scheduling problem. Eur. J. Oper. Res. 229, 552–559 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismail M. Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Ali, I.M., Elsayed, S.M., Ray, T., Sarker, R.A. (2016). A Differential Evolution Algorithm for Solving Resource Constrained Project Scheduling Problems. In: Ray, T., Sarker, R., Li, X. (eds) Artificial Life and Computational Intelligence. ACALCI 2016. Lecture Notes in Computer Science(), vol 9592. Springer, Cham. https://doi.org/10.1007/978-3-319-28270-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28270-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28269-5

  • Online ISBN: 978-3-319-28270-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics