Skip to main content

Fractal Dimension - A Spatial and Visual Design Technique for the Creation of Lifelike Artificial Forms

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9592))

Abstract

Creating artificial entities that are lifelike and comfortable for human users to interact with is a critical challenge in a number of fields from robotics to human-computer interface design. Fractal systems are a mathematical model that can be observed in many natural systems from microscopic cellular biology through to satellite imagery. The recursive, self-similar nature of fractal systems makes them well suited to the automated creation of natural 3D forms. This research looked at the fractal dimension of artificially created forms, in particular looking at whether differing levels of fractal dimension made a difference to how natural, appealing or lifelike an item was to the user. A randomized trial (n = 25) identified that differing levels of fractal dimension did generate differing levels of response from users. This finding identifies the potential to use fractal dimension as a design principal when creating the physical forms that represent artificial life.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cohen, P., Feigenbaum, E. (eds.): The Handbook of Artificial Intelligence, vol. 3. Butterworth-Heinemann, Oxford (2014)

    Google Scholar 

  2. Yannakakis, G.: Game AI revisited. In: Proceedings of the 9th conference on Computing Frontiers, pp. 285–292. ACM (2012)

    Google Scholar 

  3. Haring, K, Matsumoto, Y., Watanabe, K.: How do people perceive and trust a lifelike robot. In: Ao, S., Douglas, C., Grundfest, W., Burgstone, J (eds.) Proceedings of the World Congress on Engineering and Computer Science, vol. 1 (2013)

    Google Scholar 

  4. Prendinger, H., Ishizuka, M. (eds.): Life-Like Characters: Tools, Affective Functions, and Applications. Springer Science & Business Media, Berlin (2013)

    Google Scholar 

  5. Wu, Y., Fassert, C., Rigaud, A.: Designing robots for the elderly: appearance issue and beyond. Arch. Gerontol. Geriatr. 54(1), 121–126 (2012)

    Article  Google Scholar 

  6. Amos, M., Rasmussen, S., McCaskill, J., Dittrich, P.: Editorial. Artificial life 21(2), 193–194 (2015)

    Article  Google Scholar 

  7. Cussat-Blanc, S., Pollack, J.: Cracking the egg: Virtual embryogenesis of real robots. Artif. Life 20(3), 361–383 (2014)

    Article  Google Scholar 

  8. DiSalvo, C., Gemperle, F., Forlizzi, J., Kiesler, S.: All robots are not created equal: the design and perception of humanoid robot heads. In: Proceedings of the 4th Conference on Designing Interactive Systems: Processes, Practices, Methods, and Techniques, pp. 321–326. ACM (2002)

    Google Scholar 

  9. Fong, T., Nourbakhsh, I., Dautenhahn, K.: A survey of socially interactive robots. Robot. Auton. Syst. 42(3), 143–166 (2003)

    Article  MATH  Google Scholar 

  10. Xu, K., Zhang, H., Cohen-Or, D., Chen, B.: Fit and diverse: set evolution for inspiring 3D shape galleries. ACM Trans. Graph. (TOG) 31(4), 57 (2012)

    Article  Google Scholar 

  11. Cook, M., Colton, M., Gow, J.: Automating game design in three dimensions. In: Proceedings of the AISB Symposium on AI and Games, pp. 20–24 (2014)

    Google Scholar 

  12. Merrick, K.E., Isaacs, A., Barlow, M., Gu, N.: A shape grammar approach to computational creativity and procedural content generation in massively multiplayer online role playing games. In: Anacleto, J.C., Clua, E.W.G., Correa da Silva, F.S., Fels, S.,Yang, H.S. (eds.) Entertainment Computing, vol. 4(2), pp. 115–130 (2013)

    Google Scholar 

  13. Hendrikx, M., Meijer, S., Van Der Velden, J., Iosup, A.: Procedural content generation for games: A survey. ACM Trans. Multimedia Comput. Commun. Appl. (TOMM) 9(1), 1–22 (2013)

    Article  Google Scholar 

  14. Mandelbrot, B.B.: The Fractal Geometry of Nature. Macmillan, New York (1983)

    Google Scholar 

  15. Mandelbrot, B.B.: Fractals: Form, Change and Dimension. WH Freemann and Company, San Francisco (1977)

    Google Scholar 

  16. Della-Bosca, D., Patterson, D., Costain, S.: Fractal complexity in built and game environments. In: Pisan, Y., Sgouros, N.M., Marsh, T. (eds.) ICEC 2014. LNCS, vol. 8770, pp. 167–172. Springer, Heidelberg (2014)

    Google Scholar 

  17. Harary, G., Tal, A.: The natural 3D spiral. Comput. Graph. Forum 30(2), 237–246 (2011). Blackwell Publishing Ltd

    Article  Google Scholar 

  18. Weibel, E.R.: Fractal geometry: a design principle for living organisms. Am. J. Physiol. Lung Cell. Mol. Physiol. 261(6), 361–369 (1991)

    Google Scholar 

  19. West, G.B., Brown, J.H., Enquist, B.J.: The fourth dimension of life: fractal geometry and allometric scaling of organisms. Science 284(5420), 1677–1679 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hamon, L., Richard, R., Richard, P., Boumaza, R., Ferrier, J.: RTIL-system: a real-time interactive L-system for 3D interactions with virtual plants. Virtual Reality 16(2), 151–160 (2012)

    Article  Google Scholar 

  21. Pestana, P.: Lindenmayer systems and the harmony of fractals. Chaotic Model. Simul. 1(1), 91–99 (2012)

    MathSciNet  Google Scholar 

  22. Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants. Springer Science & Business Media, Berlin (2012)

    Google Scholar 

  23. Měch, R., Prusinkiewicz, P.: Visual models of plants interacting with their environment. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 397–410. ACM (1996)

    Google Scholar 

  24. Sarkar, N., Chaudhuri, B.B.: An efficient differential box-counting approach to compute fractal dimension of image. IEEE Trans. Syst. Man Cybern. 24(1), 115–120 (1994)

    Article  Google Scholar 

  25. Spehar, B., Clifford, C., Newell, B., Taylor, R.: Universal aesthetic of fractals. Comput. Graph. 27(5), 813–820 (2003)

    Article  Google Scholar 

  26. Aks, D., Sprott, J.: Quantifying aesthetic preference for chaotic patterns. Empirical Stud. Arts 14(1), 1–16 (1996)

    Article  Google Scholar 

  27. Patterson, D.: 3D Space: special project in advanced computer environments, Ph.D., Bond University (2003)

    Google Scholar 

  28. Della-Bosca, D., Patterson, D.: The imperatives of the application of fractal principles applied to compositional strategies for the static and moving image. In: ACUADS 2014 (2015)

    Google Scholar 

  29. Umedachi, T., Idei, R., Ito, K., Ishiguro, A.: A fluid-filled soft robot that exhibits spontaneous switching among versatile spatiotemporal oscillatory patterns inspired by the true slime mold. Artif. Life 19(1), 67–78 (2013)

    Article  Google Scholar 

  30. Patterson, D.: 3D SPACE: using depth and movement for selection tasks. In: Proceedings of the Twelfth International Conference on 3D Web Technology, pp. 147–155. ACM (2007)

    Google Scholar 

  31. Patterson, D.: Using interactive 3D game play to make complex medical knowledge more accessible. Procedia Comput. Sci. 29, 354–363 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dale Patterson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Patterson, D., Della-Bosca, D. (2016). Fractal Dimension - A Spatial and Visual Design Technique for the Creation of Lifelike Artificial Forms. In: Ray, T., Sarker, R., Li, X. (eds) Artificial Life and Computational Intelligence. ACALCI 2016. Lecture Notes in Computer Science(), vol 9592. Springer, Cham. https://doi.org/10.1007/978-3-319-28270-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28270-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28269-5

  • Online ISBN: 978-3-319-28270-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics