Skip to main content

From Data to Uncertainty: An Efficient Integrated Data-Driven Sparse Grid Approach to Propagate Uncertainty

  • Conference paper
  • First Online:
Sparse Grids and Applications - Stuttgart 2014

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 109))

Abstract

We present a novel data-driven approach to propagate uncertainty. It consists of a highly efficient integrated adaptive sparse grid approach. We remove the gap between the subjective assumptions of the input’s uncertainty and the unknown real distribution by applying sparse grid density estimation on given measurements. We link the estimation to the adaptive sparse grid collocation method for the propagation of uncertainty. This integrated approach gives us two main advantages: First, the linkage of the density estimation and the stochastic collocation method is straightforward as they use the same fundamental principles. Second, we can efficiently estimate moments for the quantity of interest without any additional approximation errors. This includes the challenging task of solving higher-dimensional integrals. We applied this new approach to a complex subsurface flow problem and showed that it can compete with state-of-the-art methods. Our sparse grid approach excels by efficiency, accuracy and flexibility and thus can be applied in many fields from financial to environmental sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Alwan, N. Aluru, Improved statistical models for limited datasets in uncertainty quantification using stochastic collocation. J. Comput. Phys. 255, 521–539 (2013)

    Article  MathSciNet  Google Scholar 

  2. I. Babuška, F. Nobile, R. Tempone, A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45(3), 1005–1034 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. H.-J. Bungartz, M. Griebel, Sparse grids. Acta Numer. 13, 147–269 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. T.F. Chan, G.H. Golub, R.J. LeVeque, Algorithms for computing the sample variance: analysis and recommendations. Am. Stat. 37(3), 242–247 (1983)

    MathSciNet  MATH  Google Scholar 

  5. H. Class, A. Ebigbo, R. Helmig, H. Dahle, J. Nordbotten, M. Celia, P. Audigane, M. Darcis, J. Ennis-King, Y. Fan, B. Flemisch, S. Gasda, M. Jin, S. Krug, D. Labregere, A. Naderi Beni, R. Pawar, A. Sbai, S. Thomas, L. Trenty, L. Wei, A benchmark study on problems related to CO2 storage in geologic formations. Comput. Geosci. 13(4), 409–434 (2009)

    Article  MATH  Google Scholar 

  6. M. Eldred, J. Burkardt, Comparison of non-intrusive polynomial chaos and stochastic collocation methods for uncertainty quantification, in Aerospace Sciences Meetings (American Institute of Aeronautics and Astronautics, Reston, 2009)

    Google Scholar 

  7. H.C. Elman, C.W. Miller, Stochastic collocation with kernel density estimation. Comput. Methods Appl. Mech. Eng. 245–246(0), 36–46 (2012)

    Article  MathSciNet  Google Scholar 

  8. F. Franzelin, P. Diehl, D. Pflüger, Non-intrusive uncertainty quantification with sparse grids for multivariate peridynamic simulations, in Meshfree Methods for Partial Differential Equations VII, ed. by M. Griebel, M.A. Schweitzer. Volume 100 of Lecture Notes in Computational Science and Engineering (Springer, Cham, 2015), pp. 115–143

    Google Scholar 

  9. J. Garcke, Maschinelles Lernen durch Funktionsrekonstruktion mit verallgemeinerten dünnen Gittern, Ph.D. thesis, Universität Bonn, Institut für Numerische Simulation, 2004

    Google Scholar 

  10. M. Griebel, M. Hegland. A finite element method for density estimation with gaussian process priors. SIAM J. Numer. Anal. 47(6), 4759–4792 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Hegland, G. Hooker, S. Roberts, Finite element thin plate splines in density estimation. ANZIAM J. 42, 712–734 (2000)

    MathSciNet  MATH  Google Scholar 

  12. J. Jakeman, S. Roberts, Local and dimension adaptive stochastic collocation for uncertainty quantification, in Sparse Grids and Applications, ed. by J. Garcke, M. Griebel. Volume 88 of Lecture Notes in Computational Science and Engineering (Springer, Berlin/Heidelberg, 2013), pp. 181–203

    Google Scholar 

  13. J.D. Jakeman, R. Archibald, D. Xiu, Characterization of discontinuities in high-dimensional stochastic problems on adaptive sparse grids. J. Comput. Phys. 230(10), 3977–3997 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Kopp, H. Class, H. Helmig, Investigations on CO2 storage capacity in saline aquifers – part 1: dimensional analysis of flow processes and reservoir characteristics. Int. J. Greenh. Gas Control 3, 263–276 (2009)

    Article  Google Scholar 

  15. X. Ma, N. Zabaras, An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations. J. Comput. Phys. 228(8), 3084–3113 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. X. Ma, N. Zabaras, An adaptive high-dimensional stochastic model representation technique for the solution of stochastic partial differential equations. J. Comput. Phys. 229(10), 3884–3915 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. O.P.L. Maître, O.M. Knio, Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics. Scientific Computation (Springer, Dordrecht/New York, 2010)

    Book  MATH  Google Scholar 

  18. P. Mills, Efficient statistical classification of satellite measurements. Int. J. Remote Sens. 32(21), 6109–6132 (2011)

    Article  Google Scholar 

  19. M. Navarro, J. Witteveen, J. Blom, Polynomial chaos expansion for general multivariate distributions with correlated variables, Technical report, Centrum Wiskunde & Informatica, June 2014

    Google Scholar 

  20. F. Nobile, R. Tempone, C.G. Webster, A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2309–2345 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. S. Oladyshkin, H. Class, R. Helmig, W. Nowak, A concept for data-driven uncertainty quantification and its application to carbon dioxide storage in geological formations. Adv. Water Resour. 34(11), 1508–1518 (2011)

    Article  Google Scholar 

  22. S. Oladyshkin, H. Class, R. Helmig, W. Nowak, An integrative approach to robust design and probabilistic risk assessment for CO2 storage in geological formations. Comput. Geosci. 15(3), 565–577 (2011)

    Article  Google Scholar 

  23. S. Oladyshkin, W. Nowak, Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion. Reliab. Eng. Syst. Saf. 106(0), 179–190 (2012)

    Article  Google Scholar 

  24. B. Peherstorfer, Model order reduction of parametrized systems with sparse grid learning techniques. Ph.D. thesis, Technical University of Munich, Aug 2013

    Google Scholar 

  25. B. Peherstorfer, C. Kowitz, D. Pflüger, H.-J. Bungartz, Selected recent applications of sparse grids. Numer. Math. Theory Methods Appl. 8(01), 47–77, Feb 2015

    Article  MathSciNet  MATH  Google Scholar 

  26. B. Peherstorfer, D. Pflüger, H.-J. Bungartz, Density estimation with adaptive sparse grids for large data sets, in Proceedings of the 2014 SIAM International Conference on Data Mining, Philadelphia, 2014, pp. 443–451

    Google Scholar 

  27. D. Pflüger, Spatially Adaptive Sparse Grids for High-Dimensional Problems (Verlag Dr. Hut, Munich, 2010)

    MATH  Google Scholar 

  28. D. Pflüger, Spatially adaptive refinement, in Sparse Grids and Applications, ed. by J. Garcke, M. Griebel. Lecture Notes in Computational Science and Engineering (Springer, Berlin/Heidelberg, 2012), pp. 243–262

    Google Scholar 

  29. D. Pflüger, B. Peherstorfer, H.-J. Bungartz, Spatially adaptive sparse grids for high-dimensional data-driven problems. J. Complex. 26(5), 508–522 (2010). Published online Apr 2010

    Google Scholar 

  30. P. Ram, A.G. Gray, Density estimation trees, in Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, 21–24 Aug 2011, pp. 627–635

    Google Scholar 

  31. M. Rosenblatt, Remarks on a multivariate transformation. Ann. Math. Stat. 23(1952), 470–472 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  32. B. Silverman, Density Estimation for Statistics and Data Analysis, 1st edn. (Chapman & Hall, London/New York, 1986)

    Book  MATH  Google Scholar 

  33. W. Walker, P. Harremoes, J. Rotmans, J. van der Sluijs, M. van Asselt, P. Janssen, M.K. von Krauss, Defining uncertainty: a conceptual basis for uncertainty management in model-based decision support. Integr. Assess. 4(1), 5–17 (2005)

    Article  Google Scholar 

  34. X. Wan, E. Karniadakis, Multi-element generalized polynomial chaos for arbitrary probability measures. SIAM J. Sci. Comput. 28(3), 901–928 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. M. Xiang, N. Zabaras, An efficient Bayesian inference approach to inverse problems based on an adaptive sparse grid collocation method. Inverse Probl. 25(3), 035013 (2009)

    Google Scholar 

  36. D. Xiu, J.S. Hesthaven, High-order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput. 27(3), 1118–1139 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. D. Xiu, G. Karniadakis, The Wiener–askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24(2), 619–644 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  38. D. Xiu, G.E. Karniadakis, Modeling uncertainty in flow simulations via generalized polynomial chaos. J. Comput. Phys. 187(1), 137–167 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  39. G. Zhang, D. Lu, M. Ye, M.D. Gunzburger, C.G. Webster, An adaptive sparse-grid high-order stochastic collocation method for Bayesian inference in groundwater reactive transport modeling. Water Resour. Res. 49(10), 6871–6892 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the German Research Foundation (DFG) for its financial support of the project within the Cluster of Excellence in Simulation Technology at the University of Stuttgart.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Franzelin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Franzelin, F., Pflüger, D. (2016). From Data to Uncertainty: An Efficient Integrated Data-Driven Sparse Grid Approach to Propagate Uncertainty. In: Garcke, J., Pflüger, D. (eds) Sparse Grids and Applications - Stuttgart 2014. Lecture Notes in Computational Science and Engineering, vol 109. Springer, Cham. https://doi.org/10.1007/978-3-319-28262-6_2

Download citation

Publish with us

Policies and ethics