Skip to main content

Hierarchical Gradient-Based Optimization with B-Splines on Sparse Grids

  • Conference paper
  • First Online:
Book cover Sparse Grids and Applications - Stuttgart 2014

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 109))

Abstract

Optimization algorithms typically perform a series of function evaluations to find an approximation of an optimal point of the objective function. Evaluations can be expensive, e.g., if they depend on the results of a complex simulation. When dealing with higher-dimensional functions, the curse of dimensionality increases the difficulty of the problem rapidly and prohibits a regular sampling. Instead of directly optimizing the objective function, we replace it with a sparse grid interpolant, saving valuable function evaluations. We generalize the standard piecewise linear basis to hierarchical B-splines, making the sparse grid surrogate smooth enough to enable gradient-based optimization methods. Also, we use an uncommon refinement criterion due to Novak and Ritter to generate an appropriate sparse grid adaptively. Finally, we evaluate the new method for various artificial and real-world examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We used Gmm++ ([31], GMRES) and UMFPACK ([6], LU factorization) for sparse systems and Armadillo ([33], LU factorization) and Eigen ([13], QR Householder factorization) for full systems.

References

  1. H. Bachau, E. Cormier, P. Decleva, J.E. Hansen, F. Martín, Applications of B-splines in atomic and molecular physics. Rep. Prog. Phys. 64(12), 1815–1942 (2001)

    Article  Google Scholar 

  2. M.P. Bendsøe, N. Kikuchi, Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71(2) 197–224 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. H.-J. Bungartz, Finite elements of higher order on sparse grids, Habilitationsschrift, Institut für Informatik, TU München, 1998

    Google Scholar 

  4. E. Cohen, R.F. Riesenfeld, G. Elber, Geometric Modeling with Splines: An Introduction (A K Peters, Natick, 2001)

    MATH  Google Scholar 

  5. M.G. Cox, The numerical evaluation of B-splines. IMA J. Appl. Math. 10(2), 134–149 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  6. T.A. Davis, Algorithm 832: UMFPACK V4.3-an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw. 30(2), 196–199 (2004)

    Google Scholar 

  7. C. de Boor, On calculating with B-splines. J. Approx. Theory 6(1), 50–62 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  8. C. de Boor, Splines as linear combinations of B-splines. A survey, in Approximation Theory II, ed. by G.G. Lorentz, C.K. Chui, L.L. Schumaker (Academic, New York, 1976), pp. 1–47

    Google Scholar 

  9. F. Delbos, L. Dumas, E. Echagüe, Global optimization based on sparse grid surrogate models for black-box expensive functions, http://dumas.perso.math.cnrs.fr/JOGO.pdf, (2016)

  10. M.M. Donahue, G.T. Buzzard, A.E. Rundell, Parameter identification with adaptive sparse grid-based optimization for models of cellular processes, in Methods in Bioengineering: Systems Analysis of Biological Networks, ed. by A. Jayaraman, J. Hahn (Artech House, Boston/London, 2009), pp. 211–232

    Google Scholar 

  11. I. Ferenczi, Globale Optimierung unter Nebenbedingungen mit dünnen Gittern, Diploma thesis, Department of Mathematics, TU München, 2005

    Google Scholar 

  12. P.E. Gill, W. Murray, M.A. Saunders, SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM J. Optim. 12(4), 979–1006 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. G. Guennebaud, B. Jacob et al., Eigen, http://eigen.tuxfamily.org/, (2016)

  14. K. Höllig, Finite Element Methods with B-Splines (SIAM, Philadelphia, 2003)

    Book  MATH  Google Scholar 

  15. K. Höllig, J. Hörner, Approximation and Modeling with B-Splines (SIAM, Philadelphia, 2013)

    MATH  Google Scholar 

  16. Y.-K. Hu, Y.P. Hu, Global optimization in clustering using hyperbolic cross points. Pattern Recognit. 40(6), 1722–1733 (2007)

    Article  MATH  Google Scholar 

  17. D. Hübner, Mehrdimensionale Parametrisierung der Mikrozellen in der Zwei-Skalen-Optimierung, Master’s thesis, Department of Mathematics, FAU Erlangen-Nürnberg, 2014

    Google Scholar 

  18. M. Jamil, X.-S. Yang, A literature survey of benchmark functions for global optimisation problems. Int. J. Math. Model. Numer. Optim. 4(2), 150–194 (2013)

    MATH  Google Scholar 

  19. Y. Jiang, Y. Xu, B-spline quasi-interpolation on sparse grids. J. Complex. 27(5), 466–488 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Kaltenbacher, Advanced simulation tool for the design of sensors and actuators, in Proceedings of Eurosensors XXIV, Linz, vol. 5, 2010, pp. 597–600

    Google Scholar 

  21. F. Lekien, J. Marsden, Tricubic interpolation in three dimensions. Int. J. Numer. Methods Eng. 63(3), 455–471 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. L. Ljung, System Identification: Theory for the User, 2nd edn. (Prentice Hall, Upper Saddle River, 1999)

    MATH  Google Scholar 

  23. C.W. McCurdy, F. Martín, Implementation of exterior complex scaling in B-splines to solve atomic and molecular collision problems. J. Phys. B: At. Mol. Opt. Phys. 37(4), 917–936 (2004)

    Article  Google Scholar 

  24. J.A. Nelder, R. Mead, A simplex method for function minimization. Comput. J. 7(4), 308–313 (1965)

    Article  MATH  Google Scholar 

  25. J. Nocedal, S.J. Wright, Numerical Optimization (Springer, New York, 1999)

    Book  MATH  Google Scholar 

  26. E. Novak, K. Ritter, Global optimization using hyperbolic cross points, in State of the Art in Global Optimization, ed. by C.A. Floudas, P.M. Pardalos (Springer, Boston, 1996), pp. 19–33

    Chapter  Google Scholar 

  27. D. Pandey, Regression with spatially adaptive sparse grids in financial applications, Master’s thesis, Department of Informatics, TU München, 2008

    Google Scholar 

  28. D. Pflüger, Spatially Adaptive Sparse Grids for High-Dimensional Problems (Verlag Dr. Hut, München, 2010)

    MATH  Google Scholar 

  29. D. Pflüger, Spatially adaptive refinement, in Sparse Grids and Applications, ed. by J. Garcke, M. Griebel. Lecture Notes in Computational Science and Engineering (Springer, Berlin/Heidelberg, 2012), pp. 243–262

    Google Scholar 

  30. E. Polak, G. Ribière, Note sur la convergence de méthodes de directions conjuguées. Rev. Fr. Inf. Rech. Oper. 3(1), 35–43 (1969)

    MATH  Google Scholar 

  31. Y. Renard, J. Pommier, Gmm++, http://download.gna.org/getfem/html/homepage/gmm/index.html, (2016)

  32. M. Riedmiller, H. Braun, A direct adaptive method for faster backpropagation learning: the RPROP algorithm, in Proceedings of 1993 IEEE International Conference on Neural Networks, San Francisco, CA, vol. 1, 1993, pp. 586–591

    Google Scholar 

  33. C. Sanderson, Armadillo: an open source C++ linear algebra library for fast prototyping and computationally intensive experiments, Technical report, NICTA, 2010

    Google Scholar 

  34. I.J. Schoenberg, Contributions to the problem of approximation of equidistant data by analytic functions. Q. Appl. Math. 4, 45–99, 112–141 (1946)

    MathSciNet  Google Scholar 

  35. R. Storn, K. Price, Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  36. J. Valentin, Hierarchische Optimierung mit Gradientenverfahren auf Dünngitterfunktionen, Master’s thesis, IPVS, Universität Stuttgart, 2014

    Google Scholar 

  37. D. Whitley, S. Rana, J. Dzubera, K.E. Mathias, Evaluating evolutionary algorithms. Artif. Intel. 85(1–2), 245–276 (1996)

    Article  Google Scholar 

  38. X.-S. Yang, Engineering Optimization (Wiley, Hoboken, 2010)

    Book  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Juniorprofessurenprogramm of the Landesstiftung Baden-Württemberg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Valentin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Valentin, J., Pflüger, D. (2016). Hierarchical Gradient-Based Optimization with B-Splines on Sparse Grids. In: Garcke, J., Pflüger, D. (eds) Sparse Grids and Applications - Stuttgart 2014. Lecture Notes in Computational Science and Engineering, vol 109. Springer, Cham. https://doi.org/10.1007/978-3-319-28262-6_13

Download citation

Publish with us

Policies and ethics