Skip to main content

Introduction

  • Chapter
  • First Online:
  • 493 Accesses

Part of the book series: Heat and Mass Transfer ((HMT))

Abstract

The column apparatuses are the main devices for separation and chemical processes realization in chemical, power, biotechnological and other industries (Rousseau in Handbook of Separation Process Technology. Wiley, New York; Perry and Green, Perry’s Chemical Engineers’ Handbook. McGraw Hill, New York). They are different types as plate columns, packed bed columns, bubble columns, trickle columns, catalyst bed columns etc.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rousseau RW (1987) Handbook of separation process technology. Wiley, New York

    Google Scholar 

  2. Perry R, Green DW (1999) Perry’s chemical engineers’ handbook. McGraw Hill, New York

    Google Scholar 

  3. Towler G, Sinnott R (2008) Chemical engineering design: principles, practice and economics of plant and process design. Elsevier, USA

    Google Scholar 

  4. Amundson WR, Pontinen AJ (1958) Ind Eng Chem 50:730

    Article  Google Scholar 

  5. Boyadjiev C (2010) Theoretical Chemical Engineering. Modeling and simulation. Springer, Berlin

    Google Scholar 

  6. Schlichting H, Gerstein K (2000) Boundary layer theory, 8th revised and enlarged. Springer, Berlin

    Book  Google Scholar 

  7. Nernst W (1904) Z Phys Chem 47:52

    Google Scholar 

  8. Boyadjiev C, Beshkov V (1988) Mass transfer in following liquid films. Mir, Moscow (in Russian)

    Google Scholar 

  9. Boyadjiev Chr, Beshkov V (1984) Mass transfer in liquid film flows. Bulgarian Academy of Sciences, Sofia

    Google Scholar 

  10. Langmuir I (1912) Phys Rev 34:321

    Google Scholar 

  11. Lewis WK, Whitman WG (1924) Ind Eng Chem 16:1215

    Article  Google Scholar 

  12. Higbie R (1935) Trans Am Inst Chem Eng 31:365

    Google Scholar 

  13. Boyadjiev Chr, Levich VG, Krylov VS (1968) The effect of surface active materials on mass transfer in laminar film flow. I. Improvement of the theory of the convective diffusion. Int Chem Eng 8(3):393–396

    Google Scholar 

  14. Boyadjiev Chr (1971) Mass transfer during the simultaneous motion of a laminar liquid film and a laminar gas stream. Int Chem Eng 11(3):459–464

    Google Scholar 

  15. Prandtl L (1910) Z Phys 2:1072

    Google Scholar 

  16. Taylor GJ (1916) British advisory communications for aeronautics. R and M No 272

    Google Scholar 

  17. Kishinevsky MK, Pamfilov AV (1949) J Appl Chem (Russia) 22:1173

    Google Scholar 

  18. Kishinevsky MK (1951) J Appl Chem (Russia) 24:542

    Google Scholar 

  19. Danckwerts PV (1951) Ind Eng Chem 43:1960

    Article  Google Scholar 

  20. Toor HL, Marchello JM (1958) AIChEJ 4:97

    Article  Google Scholar 

  21. Ruckenstein E (1958) Chem Eng Sci 7:265

    Article  Google Scholar 

  22. Ruckenstein E (1963) Chem Eng Sci 18:233

    Article  Google Scholar 

  23. Ruckenstein E (1967) Chem Eng Sci 22:474

    Article  Google Scholar 

  24. Kishinevsky M MK (1965) Int Heat Mass Transfer 8:1181

    Article  MATH  Google Scholar 

  25. Reichardt H, Angew Z (1951) Math Mech 7:31

    Google Scholar 

  26. Elrod HG (1957) J Aeronaut Sci 24:468

    MATH  Google Scholar 

  27. Wasan DT, Tien CL, Wilke CR (1963) AIChEJ 4:4

    Google Scholar 

  28. Dilman VV (1967) Theor Fundam Chem Technol (Russia) 1:438

    Google Scholar 

  29. Deissler RG (1955) NACA, report no 1210

    Google Scholar 

  30. Levich VG (1962) Physicochemical hydrodynamics. Prentice-Hall, New York

    Google Scholar 

  31. Son JS, Hanratty TJ (1967) AIChEJ 13:689

    Article  Google Scholar 

  32. Van Driest ER (1956) J Aeronaut Sci 23:1007

    Article  MATH  Google Scholar 

  33. Loytsiansky LG (1960) Apll Math Mech (Russia) 4:24

    Google Scholar 

  34. Reichardt H (1957) Natl Advisory Comm Aeronaut. Technical note 1408

    Google Scholar 

  35. Boyadjiev C, Toshev E (1989) Asymptotic theory of nonlinear transport phenomena in boundary layers. 1. Mass transfer. Hung J Ind Chem 17:457–463

    Google Scholar 

  36. Pohlhausen E (1921) ZAMM 1:115

    Article  MATH  Google Scholar 

  37. Boyadjiev Chr, Piperova M (1971) The hydrodynamics of certain two-phase flow. 4. Evaluation of some special functions. Int Chem Eng 11(3):479–487

    Google Scholar 

  38. Boyadjiev Chr, Mitev Pl (1977) On the concentration boundary layer theory at a moving interface. Chem Eng J 14:225–228

    Article  Google Scholar 

  39. Boyadjiev Chr (1971) The hydrodynamics of certain two-phase flows. 1. The laminar boundary layer at a flat gas-liguid interface. Int Chem Eng 11(3):465–469

    Google Scholar 

  40. Boyadjiev Chr, Vulchanov N (1988) Non linear mass transfer in boundary layers-1. Asymptotic theory. Int J Heat Mass Transfer 31(4):795–800

    Article  MATH  Google Scholar 

  41. Boyadjiev Chr, Mitev Pl, Tsv Sapundjiev (1976) Laminar boundary layers of co-current gas-liquid stratified flows-1. Theory. Int J Multiphase Flow 3(1):51–55

    Article  Google Scholar 

  42. Mitev Pl, Boyadjiev Chr (1976) Laminar boundary layers of co-current gas-liquid stratified flows. 2. Velocity measurements. Int J Multiphase Flow 3:57–60

    Article  Google Scholar 

  43. Mitev Pl, Boyadjiev Chr (1978) Mass transfer by co-current gas-liquid stratified flow. Lett Heat Mass Transfer 5:349–354

    Article  Google Scholar 

  44. Boyadjiev Chr, Mitev Pl, Beschkov V (1976) Laminar boundary layers at a moving interface generated by counter-current gas-liquid stratified flow. Int J Multiphase Flow 3:61–66

    Article  Google Scholar 

  45. Boyadjiev Chr, Doichinova M (2000) Opposite-current flows in gas-liquid boundary layers-I. Velocity distribution. Int J Heat Mass Transfer 43:2701–2706

    Article  MATH  Google Scholar 

  46. Boyadjiev Chr, Vabishchevich P (1992) Numerical simulation of opposite currents. J Theor Appl Mech (Bulgaria) 23:114

    MATH  Google Scholar 

  47. Tersenov SA (1985) Parabolic equations with changing direction of time. Science, Novosibirsk (in Russian)

    Google Scholar 

  48. Larkin IA, Novikov VA, Ianenko NN (1983) Nonlinear equations from changed type. Science, Novosibirsk (in Russian)

    Google Scholar 

  49. Doichinova M, Boyadjiev Chr (2000) Opposite-current flows in gas-liquid boundary layers-II. Mass transfer kinetics. Int J Heat Mass Transfer 43:2707–2710

    Article  Google Scholar 

  50. Boyadjiev BC, Babak VN (2000) Non-linear mass transfer and hydrodynamic stability. Elsevier, Amsterdam

    Google Scholar 

  51. Krylov VS, Bogoslovsky VE, Mihnev NN (1976) J Appl Chem (Russia) 49:1769

    Google Scholar 

  52. Bird RB, Stewart WE, Lightfoot EN (1960) Transport phenomena. Willey, New York

    Google Scholar 

  53. Brounstain BI, Fishbain GA, Hydrodynamics (1977) Mass and heat transfer in disperse systems. Himia, Leningrad (in Russian)

    Google Scholar 

  54. Chang WS (1973) Int J Heat Mass Transfer 16:811

    Article  MATH  Google Scholar 

  55. Duda JL, Vrentas JS (1971) Int J Heat Mass Transfer 14:395

    Article  Google Scholar 

  56. Parlange JY (1973) Acta Mech 18:157

    Article  Google Scholar 

  57. Ranz WE, Dickinson PF (1965) Ind Eng Chem Funds 4:345

    Article  Google Scholar 

  58. Golovin AM, Rubinina NM, Hohrin VM (1971) Theor Fundam Chem Technol (Russia) 5:651

    Google Scholar 

  59. Emanuel AS, Olander DR (1964) Int J Heat Mass Transfer 7:539

    Article  Google Scholar 

  60. Nienow AW, Unahabhokha R, Mullin JW (1968) Chem Eng Sci 24:1655

    Article  Google Scholar 

  61. Olander DR (1962) Int J Heat Mass Transfer 5:765

    Article  Google Scholar 

  62. Unahabhokha R, Nienow AW, Mullin JW (1972) Chem Eng Sci 26:357

    Google Scholar 

  63. Uan SU, Lic Czja-Czjao (eds) (1963) Cooling by means of liquid films—turbulence flows and heat transfer. Inostrannaja Literatura, Moscow (in Russian)

    Google Scholar 

  64. Olander DR (1962) J Heat Transfer Trans ASME Ser C 84:185

    Article  Google Scholar 

  65. Ross SM (1974) J Fluid Mech 63:157

    Article  MATH  Google Scholar 

  66. Sparrow EW, Gregg JL (1960) J Heat Transfer Trans ASME Ser C 82:294

    Article  Google Scholar 

  67. Yuan SW, Finkelstein AB (1956) J Heat Transfer, Trans, ASME Ser C 78:719

    Google Scholar 

  68. Hirshfelder J, Kertis E, Berd R (1961) Molecular theory of gases and liquids. Inostrannaja Literatura, Moscow (in Russian)

    Google Scholar 

  69. Franc-Kamenetskii VA (1969) Diffusion and heat transfer in chemical kinetics. Plenum Press, New York

    Google Scholar 

  70. Krylov VS, Davidov AD (1972) Proceedings of the advanced methods in electrochemical machining. Shtiinca, Kishinev, vol 13 (in Russian)

    Google Scholar 

  71. Krylov VS, Malienko VN (1972) Thermodynamics of irreversible processes and its applications. In: Proceedings of the 1st USSR Conference, vol 69, Chernovcy (in Russian)

    Google Scholar 

  72. Krylov VS, Malienko VN (1973) Electrochemistry (Russia) 9:3

    Google Scholar 

  73. Boyadjiev Chr, Vulchanov N (1987) Effect of the direction of the interphase mass transfer on the rate of mass transfer. C r Acad Bulg Sci 40(11):35–38

    Google Scholar 

  74. Boyadjiev Chr, Vulchanov N (1990) Influence of the interphase mass transfer on the rate of mass transfer-1. The system ‘solid–fluid (gas)’. Int J Heat Mass Transfer 33(9):2039–2044

    Article  Google Scholar 

  75. Vulchanov N, Boyadjiev Chr (1988) The influence of nonlinear mass transfer on the laminar boundary layer. Theor Appl Mech (Bulgaria) 19(4):74–78

    Google Scholar 

  76. Boyadjiev Chr (1991) Asymptotic theory of the non-linear mass transfer. J Eng Phys (Russia) 60(5):845–862

    Google Scholar 

  77. Boyadjiev Chr (1972) On the absorption theory. Theor Fundam Chem Technol (Russia) 6(1):118–121

    Google Scholar 

  78. Boyadjiev Chr, Velchev L (1971) Gas absorption in horizontal channel. Theor Fundam Chem Technol (Russia) 5(6):912–915

    Google Scholar 

  79. Boyadjiev Chr (1971) The hydrodynamics of certain two-phase flows. 2. Simultaneous motion of a gas and a liguid flow. Int Chem Eng 11(3):470–474

    Google Scholar 

  80. Boyadjiev C, Elenkov D (1971) The hydrodynamics of certain two-phase flows. 3. The effect of surface-active materials. Int Chem Eng 11(3):474–476

    Google Scholar 

  81. Krylov VS, Boyadjiev C, Levich VG (1967) On the convection-diffusion theory in liquid film flow. C r USSR Acad Sci (Russia) 175(1):156–159

    Google Scholar 

  82. Boyadjiev Chr (1992) On the kinetics of the intensive interphase mass transfer. Russ J Eng Thermophys 2(4):289–297

    MathSciNet  Google Scholar 

  83. Vulchanov N, Boyadjiev Chr (1988) Non-linear mass transfer in boundary layers-2. Numerical investigation. Int J Heat Mass Transfer 31(4):801–805

    Article  MATH  Google Scholar 

  84. Vulchanov N, Boyadjiev Chr (1990) Influence of the interphase mass transfer on the rate of mass transfer-2. The system ‘gas-liquid’. Int J Heat Mass Transfer 33(9):2045–2049

    Article  Google Scholar 

  85. Boyadjiev Chr (1998) Non-linear mass transfer in gas-liquid systems. Hung J Ind Chem 26:181–187

    Google Scholar 

  86. Boyadjiev Chr (1998) Non-linear interphase mass transfer in multi-component gas-liquid systems. Hung J Ind Chem 26:245–249

    Google Scholar 

  87. Sternling CV, Scriven LE (1959) AIChEJ 5:514

    Article  Google Scholar 

  88. Linde H, Schwarz E, Groger K (1967) Chem Eng Sci 22:823

    Article  Google Scholar 

  89. Ruckenstein E, Berbente C (1964) Chem Eng Sci 19:329

    Article  Google Scholar 

  90. Thomas WJ, Nicholl EMK (1969) Trans Inst Chem Eng 47(10):325

    Google Scholar 

  91. Dilman VV, Kulov NN, Lothov VA, Kaminski VA, Najdenov VI (1998) Theor Fundam Chem Technol (Russia) 32:377

    Google Scholar 

  92. Porter KE, Cantwell ADC, Dermott CM (1971) AIChEJ 17:536

    Google Scholar 

  93. Hennenberg M, Bisch PM, Vignes-Adler M, Sanfeld A (1979) Interfacial instability and longitudinal waves in liquid-liquid systems lecture note in physics. Springer, Berlin, vol 105, p 229

    Google Scholar 

  94. Linde H, Schwartz P, Wilke H (1979) Dissipative structures and nonlinear kinetics of the marangoni—instability, lecture note in physics. Springer, Berlin, vol 105, p 75

    Google Scholar 

  95. Sanfeld A, Steinchen A, Hennenberg M, Bisch PM, Lamswerde-Galle D Van, Dall-Vedove W (1979) Mechanical and electrical constraints and hydrodynamic interfacial instability, lecture note in physics. Springer, Berlin, vol 105, p 168

    Google Scholar 

  96. Savistowski H (1981) Interfacial Convection Ber Bunsenges Phys Chem 85:905

    Article  Google Scholar 

  97. Sorensen T S, Hennenberg M (1979) Instability of a spherical drop with surface chemical reaction and transfer of surfactants, lecture note in physics. Springer, Berlin, vol 105, p 276

    Google Scholar 

  98. Scriven LE, Sterling CV (1960) Nature (London) 127(4733):186

    Google Scholar 

  99. Velarde J, Gastillo L, Zierep J, Oertel H (eds) (1981) Transport and reactive phenomena leading to interfacial instability, convective transport and instability phenomena. Verlag G Braun, Kalsruhe

    Google Scholar 

  100. Boyadjiev Chr, Halatchev I (1998) Non-linear mass transfer and Marangoni effect in gas-liquid systems. Int J Heat Mass Transfer 41(1):197–202

    Article  MATH  Google Scholar 

  101. Boyadjiev Chr, Doichinova M (1999) Non-linear mass transfer and Marangoni effect. Hungarian J Ind Chem 27:215–219

    Google Scholar 

  102. Boyadjiev C, Doichinova M, Boyadjiev B (2013) Some problems in the column apparatuses modeling. Private communication

    Google Scholar 

  103. Boyadjiev Chr (2011) Mechanism of gas absorption with two-phase absorbents. Int J Heat Mass Transfer 54:3004–3008

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christo Boyadjiev .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Boyadjiev, C., Doichinova, M., Boyadjiev, B., Popova-Krumova, P. (2016). Introduction. In: Modeling of Column Apparatus Processes. Heat and Mass Transfer. Springer, Cham. https://doi.org/10.1007/978-3-319-28259-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28259-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28257-2

  • Online ISBN: 978-3-319-28259-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics