Skip to main content

Forest Eco-Physiological Models: Water Use and Carbon Sequestration

  • Chapter
  • First Online:
Managing Forest Ecosystems: The Challenge of Climate Change

Part of the book series: Managing Forest Ecosystems ((MAFE,volume 34))

Abstract

Modeling and monitoring the processes involved in terrestrial carbon sequestration are often thought to be independent events. In fact, rigorously validated modern modeling techniques are very useful tools in the monitoring of the carbon sequestration potential of an ecosystem through simulation , by highlighting key areas for study of what is a complex dynamical system. This is ever more important in the light of climate change, where it becomes essential to have an understanding of the future role of terrestrial ecosystems as potential sinks or sources in the global carbon cycle, as well as the feedback and trade-off mechanisms between climate change and ecosystem carbon balances .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bonan G (2002) Ecological climatology – concepts and applications. Cambridge University Press, New York

    Google Scholar 

  • Box G (1979) Robustness in the strategy of scientific model building. In Launer RL and Wilkinson GN (eds), Robustness in Statistics, Academic Press New York, pp. 201–236

    Google Scholar 

  • Campbell GS (1986) Extinction coefficients for radiation in plan canopies calculated using an ellipsoidal inclination angle distribution. Agric For Meteorol 36:317–321

    Article  Google Scholar 

  • Cox PM (2000) Acceleration of global warming due to carbon cycle feedbacks in a coupled climate model. Nature 408:184–187

    Article  CAS  PubMed  Google Scholar 

  • Fang C, Smith P, Moncrieff J, Smith J (2005) Similar responses of labile and resistant organic matter pools to changes in temperature. Nature 433:57–58

    Article  CAS  PubMed  Google Scholar 

  • Farquhar GD, Von Caemmerer S (1982) Modeling of photosynthetic response to environment. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology: physiological plant ecology II, water relations and carbon assimilation, vol 12B. Springer, Berlin, pp. 549–587

    Chapter  Google Scholar 

  • Fontes L, Bontemps J-D, Bugmann H, Van Oijen M, Gracia C, Kramer K, Lindner M, Rötzer T, Skovsgaard JP (2010) Models for supporting forest management in a changing environment. For Syst 19:8–29

    Google Scholar 

  • Gates DM (1962) Leaf temperature and energy exchange. Theor Appl Climatol 12:321–336

    Google Scholar 

  • Gates DM (1980) Biophysical Ecology. Springer, New York

    Book  Google Scholar 

  • Gracia CA, Tello E, Sabate S, Bellot J (1999) GOTILWA+: an integrated model of water dynamics and forest growth. Eecology of mediterranean evergreen Oak forests. In: Rodà F, Retana J, Bellot J, CA G (eds) Ecology of mediterranean evergreen oak forests. Springer, Berlin, pp. 163–178

    Chapter  Google Scholar 

  • IPCC (2007) Fourth assessment report of the intergovernmental panel in climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC. (2013). Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds). Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Janssens IA, Freibauer A, Schlamadinger B, Ceulemans R, Ciais P, Dolman AJ, Heimann M, Nabuurs GJ, Smith P, Valentini R, Schultz ED (2005) The carbon budget of terrestrial ecosystems at the country scale – a European case study. Biogeosciences 2:15–26

    Article  CAS  Google Scholar 

  • Jarvis PG, McNaughton KG (1986) Stomatal control of transpiration: scaling up from leaf to region. Adv Ecol Res 15:1–49

    Article  Google Scholar 

  • Kellomaki T, Valmari A (2005) Method for analysing the performance of certain testing techniques for concurrent systems. Fifth international conference on the application of concurrency to system design, proceedings, pp 154–163

    Google Scholar 

  • Keenan T, Niinemets Ãœ, Sabate S et al (2009a) Process based inventory of isoprenoid emissions: current knowledge, future prospects and uncertainties. Atmos Chem Phys 9:4053–4076

    Article  CAS  Google Scholar 

  • Keenan T, Niinemets Ãœ, Sabate S et al (2009b) Seasonality of monoterpene emission potentials in Quercus ilex and Pinus pinea: implications for regional VOC emissions modeling. J Geophys Res 114:D22202. doi:10.1029/2009JD011904

    Article  Google Scholar 

  • Keenan T, Sabaté S, Gracia C (2010) Soil water stress and coupled photosynthesis–conductance models: bridging the gap between conflicting reports on the relative roles of stomatal, mesophyll conductance and biochemical limitations to photosynthesis. Agric For Meteorol 150:443–453

    Article  Google Scholar 

  • Keenan T, Maria SJ, Lloret F, Ninyerola M, Sabate S (2011) Predicting the future of forests in the mediterranean under climate change, with niche and process-based models: CO2 matters! Glob Chang Biol 1:565–579

    Article  Google Scholar 

  • Koppen, W. (1936). Das geographische System der Klimate. In: Koppen w and Geiger R (eds) Handbuch der Klimatologie, 5, Gedbruder Borntrager, 110–152

    Google Scholar 

  • Kramer K, Leinonen I, Bartelink HH, Berbigier P, Borghetti M, Bernhofer CH, Cienciala E, Dolman AJ, Froer O, Gracia CA, Granier A, Grunwald T, Hari P, Jans W, Kellomaki S, Loustau D, Magnani F, Matteucci G, Mohren GMJ, Moors E, Nissinen A, Peltola H, Sabate S, Sanchez A, Sontag M, Valentini R, Vesala T (2002) Evaluation of 6 process-based forest growth models using eddy-covariance measurements of CO2 and H2O fluxes at six forest sites in Europe. Glob Chang Biol 8:1–18

    Article  Google Scholar 

  • Leuning R (1995) A critical appraisal of a combined stomatal–photosynthesis model for C3 plants. Plant Cell Environ 18:339–355

    Article  CAS  Google Scholar 

  • Monteith JL (1965) Evaporation and environment. Symp Soc Exp Biol 19:205–234

    CAS  PubMed  Google Scholar 

  • Morales P, Sykes MT, Prentice IC, Smith P, Smith B, Bugmann H, Zierl B, Friedlingstein P, Viovy N, Sabaté S, Sánchez A, Pla E, Gracia CA, Sitch S, Arneth A, Ogee J (2005) Comparing and evaluating process-based ecosystem model predictions of carbon and water fluxes in major European forest biomes. Glob Chang Biol 11:2211–2233

    Article  Google Scholar 

  • Nadal-Sala D, Sabaté S, Gracia C (2014) Gotilwa+: Un modelo que evalúa los efectos del cambio climático en los bosques y explora alternativas de gestión para su mitigación. Ecosistemas 22:29–36

    Article  Google Scholar 

  • Ninyerola M, Pons X, Roure JM (2007a) Objective air temperature mapping for the Iberian Peninsula using spatial interpolation and GIS. Int J Climatol 27:1231–1242

    Article  Google Scholar 

  • Ninyerola M, Pons X, Roure JM (2007b) Monthly precipitation mapping of the Iberian Peninsula using spatial interpolation tools implemented in a Geographic Information System. Theor Appl Climatol 89:195–209

    Article  Google Scholar 

  • Ovington JD (1961) Some aspects of energy flow in plantations of Pinus sylvestris L. Ann Bot 25:12–20

    Article  Google Scholar 

  • Pan Y et al (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993

    Article  CAS  PubMed  Google Scholar 

  • Schröter D, Cramer W, Leemans R, Prentice C et al (2005) Ecosystem service supply and vulnerability to global change in Europe. Science 310:1333–1337

    Article  PubMed  Google Scholar 

  • Serra-Diaz JM, Keenan TF, Ninyerola M, Sabaté S, Gracia C, Lloret F (2013) Geographical patterns of congruence and incongruence between correlative species distribution models and a process-based ecophysiological growth model. J Biogeogr 40:1928–1938

    Google Scholar 

  • Shinozaki K, Yoda K, Hozumi H, Kira T (1964) A quantitative analysis of plant form – the pipe model theory. I Basic Anal Jpn J Ecol 14:97–105

    Google Scholar 

Download references

Acknowledgment

This study was funded by the European Commission via a Marie Curie Excellence Grant through GREENCYCLES, the Marie-Curie Biogeochemistry and Climate Change Research and Training Network (MRTN-CT-2004-512464) supported by the European Commissions Sixth Framework program for Earth System Science, by the Spanish Ministerio de Economía y Competitividad via a FP1 grant through MEDSOUL project (CGL2014-59977-C3-1-R). This research was also funded by the Spanish Ministerio de Economía y Competitividad MED-FORESTREAM (CGL2011-30590). Data was supplied by the ALARM project (Assessing LArge-scale environmental Risks for biodiversity with tested Methods, GOCE-CT-2003-506675), from the EU Fifth Framework for Energy, environment and sustainable development. Invaluable assistance was also provided by Eduard Pla, and Jordi Vayreda.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Nadal-Sala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nadal-Sala, D., Keenan, T.F., Sabaté, S., Gracia, C. (2017). Forest Eco-Physiological Models: Water Use and Carbon Sequestration. In: Bravo, F., LeMay, V., Jandl, R. (eds) Managing Forest Ecosystems: The Challenge of Climate Change. Managing Forest Ecosystems, vol 34. Springer, Cham. https://doi.org/10.1007/978-3-319-28250-3_5

Download citation

Publish with us

Policies and ethics