Skip to main content

Estimating Carbon Stocks and Stock Changes in Forests: Linking Models and Data Across Scales

  • Chapter
  • First Online:
Managing Forest Ecosystems: The Challenge of Climate Change

Part of the book series: Managing Forest Ecosystems ((MAFE,volume 34))

Abstract

The increasing amount of atmospheric carbon has been linked with changes in climate, prompting efforts to reduce the amount of carbon emissions. Estimates of forest carbon stocks and stock changes are needed, along with how these change over time, and how sequestration might be increased through forest management activities such as afforestation, reforestation, stand management, and forest protection. Carbon is accrued through increased live biomass and/or increased dead organic matter and soil carbon, whereas carbon is released to the atmosphere through respiration, decomposition, and burning. For large land areas, estimating the amount of carbon sequestration into and out of a forest system involves integrating a number of data sources and models at a variety of spatial and temporal scales. The methods used to integrate data and models across time and spatial scales vary. In this paper, we present a discussion of methods used to obtain information on carbon stocks for very large land areas, using reported analyses as examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.unfccc.de; accessed February 14, 2006.

  2. 2.

    Thematic mapper.

  3. 3.

    Light detection and ranging.

  4. 4.

    Airborne interferometric X and P-band synthetic aperture radar.

References

  • Akindele SO, LeMay VM (2006) Development of tree volume equations for common timber species in tropical rain forest areas of Nigeria. For Ecol Manag 226:41–48

    Article  Google Scholar 

  • Beets PN, Robertson KA, Ford-Robertson JB, Gordon J, MacLaren JP (1999) Description and validation of C_change: a model for simulating carbon content in managed Pinus radiata stands. N Z J For Sci 19(3):409–427

    Google Scholar 

  • Bi H, Turner J, Lambert MJ (2004) Additive biomass equations for native eucalypt forest trees of temperate Australia. Trees 18:467–479

    Article  Google Scholar 

  • Binkley CS, Brand D, Harkin Z, Bull G, Ravindranath NH, Obersteiner M, Nilsson S, Yamagata Y, Krott M (2002) Carbon sink by the forest sector—options and needs for implementation. Forest Policy Econ 4:65–77

    Article  Google Scholar 

  • Cairns MA, Brown S, Helmer EH, Baumgardner GA (1997) Root biomass allocation in the world’s upland forests. Oecologia 111(1):1–11

    Article  PubMed  Google Scholar 

  • Cao MK, Woodward FI (1998) Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature 393:249–252

    Article  CAS  Google Scholar 

  • Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Fölster H, Fromard F, Higuchi N, Kira T, Lescure J-P, Nelson BW, Ogawa H, Puig H, Riéra B, Yamakura T (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–99

    Article  CAS  PubMed  Google Scholar 

  • Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon W-T, Laprise R, Magaña Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambrige

    Google Scholar 

  • Cochran WG (1977) Sampling techniques, 3rd edn. Wiley, Toronto

    Google Scholar 

  • Coops NC, Waring RH (2001) The use of multi-scale remote sensing imagery to derive regional estimates of forest growth capacity using 3-PGS. Remote Sens Environ 75(3):324–334

    Article  Google Scholar 

  • Fang J, Chen A, Peng C, Zhao S, Ci L (2001) Changes in forest biomass carbon storage in China between 1949 and 1998. Science 292:2320–2322

    Article  CAS  PubMed  Google Scholar 

  • Franklin SE, Lavigne MB, Wulder MA, Stenhouse GB (2002) Change detection and landscape structure mapping using remote sensing. For Chron 78(5):618–625

    Article  Google Scholar 

  • Ganjegunte GK, Condron LM, Clinton PW, Davis MR, Mahieu N (2004) Decomposition and nutrient release from radiata pine (Pinus radiata) coarse woody debris. For Ecol Manag 187:197–211

    Article  Google Scholar 

  • Gertner G (2003) Assessment of computationally intensive spatial statistical methods for generating inputs for spatially explicit error budgets. For Biometry Modelling Inform Sci 1:27–34 Retrieved March 2006, http://www.fbmis.info

    Google Scholar 

  • Gower ST, McMurtrie RE, Murty D (1996) Aboveground net primary production decline with stand age: potential causes. Trends Ecol Evol 11(9):378–382

    Article  CAS  PubMed  Google Scholar 

  • Halme M, Tomppo E (2001) Improving the accuracy of multisource forest inventory estimates by reducing plot location error – a multicriteria approach. Remote Sens Environ 78(3):321–327

    Article  Google Scholar 

  • Heikkinen JEP, Virtanen T, Huttunen JT, Elsakov V, Martikainen PJ (2004) Carbon balance in East European tundra. Glob Biogeochem Cycles 18:14 GB1023

    Article  Google Scholar 

  • Iles K, Smith N (2006) A new type of sample plot that is particularly useful for sampling small clusters of objects. For Sci 52(2):148–154

    Google Scholar 

  • IPCC (2007) Summary for policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jenkins JC, Chojnacky DC, Heath LS, Birdsey RA (2003) National-scale biomass equations for United States tree species. For Sci 49(1):12–35

    Google Scholar 

  • Johnson DS, Williams MS, Czaplewski RL (2003) Comparison of estimators for rolling samples using forest inventory and analysis data. For Sci 49(1):50–63

    Google Scholar 

  • Katila M (2004) Controlling the estimation errors in the Finnish multisource National Forest Inventory, Research Papers (dissertation) 910. Finish Forest Research Institute, Vantaa

    Google Scholar 

  • Katila M, Heikkinen J, Tomppo E (2000) Calibration of small-area estimates for map errors in mulitsource forest inventory. Can J For Res 30:1329–1339

    Article  Google Scholar 

  • Kauppi PE (2003) New, low estimate for carbon stock in global forest vegetation based on inventory data. Silva Fennica 37(4):451–457

    Article  Google Scholar 

  • Kurz WA, Apps MJ (1999) A 70-year retrospective analysis of carbon fluxes in the Canadian forest sector. Ecol Appl 9(1):526–547

    Article  Google Scholar 

  • Kurz WA, Beukema SJ, Apps MJ (1998) Carbon budget implications of the transition from natural to managed disturbance regimes in forest landscapes. Mitig Adapt Strateg Glob Chang 2:405–421

    Google Scholar 

  • Kurz WA, Apps M, Banfield E, Stinson G (2002) Forest carbon accounting at the operational scale. For Chron 78(5):672–679

    Article  Google Scholar 

  • Lambert M-C, Ung C-H, Raulier F (2005) Canadian national tree aboveground biomass. Can J For Res 35:1996–2018

    Article  Google Scholar 

  • LeMay V, Temesgen H (2005a) Comparison of nearest neighbor methods for estimating basal area and stems per ha using aerial auxiliary variables. For Sci 51(2):109–119

    Google Scholar 

  • LeMay V, Temesgen H (2005b) Connecting inventory information sources for landscape level analyses. For Biometry Modelling Inform Sci 1:37–49 Retrieved March 2006, http://www.fbmis.info

    Google Scholar 

  • Li Z, Apps MJ, Banfield E, Kurz WA (2002) Estimating net primary production of forests in the Canadian Prairie Provinces using an inventory-based carbon budget model. Can J For Res 32(1):161–169

    Article  Google Scholar 

  • Li Z, Kurz WA, Apps MJ, Beukema SJ (2003a) Belowground biomass dynamics in the carbon budget model of the Canadian Forest Sector: recent improvements and implications of the estimation of NPP and NEP. Can J For Res 33:126–136

    Article  Google Scholar 

  • Li Z, Apps MJ, Kurz WA, Banfield E (2003b) Temporal changes of forest net primary production and net ecosystem production in west central Canada associated with natural and anthropogenic disturbances. Can J For Res 33:2340–2351

    Article  Google Scholar 

  • Lim KS, Treitz PM (2004) Estimation of above ground forest biomass from Airborne Discrete Return Laser scanner data using canopy-based quantile estimators. Scand J For Res 29:558–570

    Article  Google Scholar 

  • Luken JO, Hinton AC, Baker DG (1991) Forest edges associated with power-line corridors and implications for corridor siting. Landsc Urban Plan 20(4):315–324

    Article  Google Scholar 

  • Mäkelä A (2003) Process-based modelling of tree and stand growth: towards a hierarchical treatment of multiscale processes. Can J For Res 33(3):398–409

    Article  Google Scholar 

  • Maltamo M, Kangas A (1998) Methods based on k-nearest neighbor regression in the prediction of basal area diameter distribution. Can J For Res 28:1107–1115

    Article  Google Scholar 

  • McRoberts RE, Nelson MD, Wendt DG (2002) Stratified estimation of forest area using satellite imagery, inventory data, and the k-Nearest Neighbors technique. Remote Sens Environ 82:457–468

    Article  Google Scholar 

  • Moeur M (2000) Extending stand exam data with most similar neighbor inference. Proceedings of the Society of American Foresters National Convention, September 11–15, 1999. Portland, pp. 99–107.

    Google Scholar 

  • Mouillet F, Field CB (2005) Fire history and the global carbon budget: a 1° × 1° fire history reconstruction for the 20th century. Glob Chang Biol 11:398–420

    Article  Google Scholar 

  • Mueller TG, Pierce FJ (2003) Soil carbon maps: enhancing spatial estimates with simple terrain attributes at multiple scales. Soil Sci Soc Am J 67:258–267

    Article  CAS  Google Scholar 

  • Myneni RB, Dong J, Tucker CJ, Kaufmann RK, Kauppi PE, Liski J, Zhou L, Alexeyev V (2001) A large carbon sink in the woody biomass of northern forests. Proc Natl Acad Sci 98(26):14784–14789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nabuurs GJ, Masera O, Andrasko K, Benitez-Ponce P, Boer R, Dutschke M, Elsiddig E, Ford-Robertson J, Frumhoff P, Karjalainen T, Krankina O, Kurz W, Matsumoto M, Oyhantcabal W, Ravindranath NH, Sanz Sanchez MJ, Zhang X (2007) Forestry. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate change 2007: mitigation. Contribution of Working group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Neeff T, Dutra LV, dos Santos JR, da Costa Freitas C, Araujo LS (2005) Tropical forest measurement by interferometric height modeling and P-band radar backscatter. For Sci 51(6):585–594

    Google Scholar 

  • Nelson J (2003) Forest-level models and challenges for their successful application. Can J For Res 33(3):422–429

    Article  Google Scholar 

  • Nuutinen T, Kellomäki S (2001) A comparison of three modelling approaches for large-scale forest scenario analysis in Finland. Silva Fennica 35(3):299–308

    Article  Google Scholar 

  • Oliver GR, Beets PN, Garrett LG, Pearce SH, Kimberly MO, Ford-Robertson JB, Robertson KA (2004) Variation in soil carbon in pine plantations and implications for monitoring soil carbon stocks in relation to land-use change and forest site management in New Zealand. For Ecol Manag 203:283–295

    Article  Google Scholar 

  • Penman J, Gytarsky M, Hiraishi T, Kurg T, Kruger D, Pipatti R, Buendia L, Miwa K, Ngara T, Tanabe K, Wagner F (eds) (2003) Good practice guidance for land use, land-use change and forestry. Intergovernmental Panel on Climate Change (IPCC/IGES), Japan

    Google Scholar 

  • Richards GP (2002) The FULLCAM carbon accounting model: development, calibration and implementation for the National Carbon Accounting System, NCAS Technical Report No. 28. Australian Greenhouse Office, Canberra

    Google Scholar 

  • Robinson A, Wykoff WR (2004) Imputing missing height measure using a mixed-effects modeling strategy. Can J For Res 34:2492–2500

    Article  Google Scholar 

  • Roesch FA, Realms GA (1999) Analytical alternatives for an annual inventory system. J For 97:33–37

    Google Scholar 

  • Rohner M, Böswald K (2001) Forestry development scenarios: timber production, carbon dynamics in tree biomass and forest values in Germany. Silva Fennica 35(3):277–297

    Article  Google Scholar 

  • Schimel D, Melillo J, Tian H, McGuire AD, Kicklighter D, Kittel T, Rosenbloom N, Running S, Thornton P, Ojima D, Parton W, Kelly R, Sykes M, Neilson R, Rizzo B (2000) Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States. Science 287:2004–2006

    Article  CAS  PubMed  Google Scholar 

  • Smith JE, Heath LS (2002) A model of forest floor carbon mass for United States forest types, Research Paper NE-722. USDA Forest Service, Newtown Square

    Book  Google Scholar 

  • Suratman MN, Bull GQ, Leckie DG, LeMay V, Marshall PL, Mispan MR (2004) Prediction models for estimating volume, age, predicting area of rubber (Hevea brasiliensis) plantations in Malaysia using Landsat TM data. Int For Rev 6(1):1–12

    Article  Google Scholar 

  • Temesgen H, LeMay VM, Froese KL, Marshall PL (2003) Imputing tree-lists from aerial attributes for complex stands of south-eastern British Columbia. For Ecol Manag 177:277–285

    Article  Google Scholar 

  • Tomppo E, Nilsson M, Rosengren M, Aalto P, Kennedy P (2002) Simultaneous use of Landsat-TM and IRS-1C WiFS data in estimating large area tree stem volume and above-ground biomass. Remote Sens Environ 82(1):156–177

    Article  Google Scholar 

  • VÃ¥gen TG, Lal R, Singh BR (2005) Soil carbon sequestration in Sub-Saharan Africa: a review. Land Degrad Dev 16:53–71

    Article  Google Scholar 

  • White TM, Kurz WA (2005) Afforestation on private land in Canada from 1990 to 2002 estimated from historical records. For Chron 81(4):491–497

    Article  Google Scholar 

  • Wulder MA, Kurz WA, Gillis M (2003) National level forest monitoring and modeling in Canada. Prog Plan 61:365–381

    Article  Google Scholar 

  • Yang YS, Guo J, Chen G, Xie J, Gao R, Li Z, Jin Z (2005) Carbon and nitrogen pools in Chinese fir and evergreen broadleaved forests and changes associated with felling and burning in mid-subtropical China. For Ecol Manag 216:216–226

    Article  Google Scholar 

  • Zeide B (2003) The U-approach to forest modeling. Can J For Res 33(3):480–489

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. LeMay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

LeMay, V., Kurz, W.A. (2017). Estimating Carbon Stocks and Stock Changes in Forests: Linking Models and Data Across Scales. In: Bravo, F., LeMay, V., Jandl, R. (eds) Managing Forest Ecosystems: The Challenge of Climate Change. Managing Forest Ecosystems, vol 34. Springer, Cham. https://doi.org/10.1007/978-3-319-28250-3_4

Download citation

Publish with us

Policies and ethics