Advertisement

Greenhouse Gas Emissions from Temperate European Mountain Forests

  • Robert JandlEmail author
  • Mirco Rodeghiero
  • Andreas Schindlbacher
  • Frank Hagedorn
Chapter
Part of the Managing Forest Ecosystems book series (MAFE, volume 34)

Abstract

Forests are covering a substantial part of European mountains. The elongation of the growing season due to climate change and warmer summers are increasing the rate of soil respiration. However, the effect is at some sites partially compensated by droughts. Temperate mountain forests ecosystems are mostly releasing carbon dioxide whereas nitrogen oxides are of lesser importance. Societal changes are also affecting the greenhouse gas emissions from forests. The structural change in agriculture causes an increase of the forest area. The change in land use from grassland to forest, leads to the formation of an organic litter layer on the soil surface but to a reduction of the carbon input by decaying roots to the mineral layers. Moreover, the effect of the increased carbon sequestration in the biomass of more productive forests is partially offset by losses of carbon dioxide from the soil. Climate change also calls for an adaptation of the strategy of forest management. The economical feasibility of timber production in remote high-elevation forests will not be significantly increased. Nevertheless, even marginally productive mountain forests need to be managed in order to ensure the provision of ecosystem services such as protection against natural hazards. Mountain forests with a stable stand structure can better cope with disturbances such as storms and biotic pressures, thereby reducing the risk of carbon losses to the atmosphere.

Keywords

Soil Organic Matter Carbon Stock Soil Organic Carbon Stock Mountain Forest Forest Expansion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Agren GI, Bosatta E (1988) Nitrogen saturation of terrestrial ecosystems. Environ Pollut 54(3–4):185–97Google Scholar
  2. Alberti G, Peressotti A, Piussi P, Zerbi G (2008) Forest ecosystem carbon accumulation during a secondary succession in the Eastern Prealps of Italy. Forestry 81(1):1–11CrossRefGoogle Scholar
  3. Bolliger J, Hagedorn F, Leifeld J, Böhl J, Zimmermann S, Soliva R, Kienast F (2008) Effects of land-use change on carbon stocks in Switzerland. Ecosystems 11:895–907CrossRefGoogle Scholar
  4. Bowden WB (1986) Gaseous nitrogen emissions from undisturbed terrestrial ecosystems: an assessment of their impacts on local and global nitrogen budgets. Biogeochemistry 2:249–279CrossRefGoogle Scholar
  5. Bradford MA, Davies CA, Frey SD, Maddox TR, Melillo JM, Mohan JE, Reynolds JF, Treseder KK, Wallenstein MD (2008) Thermal adaptation of soil microbial respiration to elevated temperature. Ecol Lett 11:1316–1327CrossRefPubMedGoogle Scholar
  6. Brändli U-B (2010) Schweizerisches Landesforstinventar. Ergebnisse der dritten Erhebung 2004–2006. Birmensdorf, Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft WSL. Bern, Bundesamt für Umwelt, BAFU. p 312Google Scholar
  7. Broggi MF (2002) Alpine space: a social challenge for research. Centralblatt für das gesamte Forstwesen 119(3/4):247–254Google Scholar
  8. Brooks PD, McKnight D, Elder K (2004) Carbon limitation of soil respiration under winter snowpacks: potential feedbacks between growing season and winter carbon fluxes. Glob Chang Biol 11:231–238CrossRefGoogle Scholar
  9. Brumme R, Borken W (2009) N2O emission from temperate beech forest soils (Chapter 18 ). In: Brumme R, Khanna PK (eds) Functioning and management of European beech. Ecosystems. Springer, Berlin, pp 353–367Google Scholar
  10. Büntgen U, Tegel W, Kaplan JO, Schaub M, Hagedorn F, Bürgi M, Brázdil R, Helle G, Carrer M, Heussner K-U, Hofmann J, Kontic R, Kyncl T, Kyncl J, Camarero JJ, Tinner W, Esper J, Liebhold A (2014) Placing unprecedented recent fir growth in a European-wide and Holocene-long context. Front Ecol Environ 12:100–106. doi: 10.1890/130089 CrossRefGoogle Scholar
  11. Butterbach-Bahl K, Gundersen P (2011) Nitrogen processes in terrestrial ecosystems. Chapter 6. The European Nitrogen Assessment, Cambridge University Press, pp 99–125Google Scholar
  12. Cerbu G, Hanewinkel M, Gerosa G, Jandl R (2013) Management strategies to adapt Alpine Space forests to climate change risks. InTech, RijekaGoogle Scholar
  13. Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173CrossRefPubMedGoogle Scholar
  14. Davidson EA, Keller M, Erickson HE, Verchot LV, Veldkamp E (2000) Testing a conceptual model of soil emissions of nitrous and nitric oxides. Bioscience 50(8):667–680CrossRefGoogle Scholar
  15. Dullinger S, Dirnböck T, Grabherr G (2004) Modelling climate change-driven treeline shifts: relative effects of temperature increase, dispersal and invasibility. J Ecol 92:241–252CrossRefGoogle Scholar
  16. Eickenscheidt N, Brumme R (2012) NOx and N2O fluxes in a nitrogen-enriched European spruce forest soil under experimental long-term reduction of nitrogen depositions. Atmos Environ 60:51–58Google Scholar
  17. Field C, Raupach MR, Victoria MR (2004) The global carbon cycle: integrating humans, climate, and the natural world. In: Field C, Raupach MR (eds) The global C cycle, Scope Series 62. Island Press, WashingtonGoogle Scholar
  18. Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309(5734):570–574CrossRefPubMedGoogle Scholar
  19. Führer E (2000) Forest functions, ecosystem stability and management. For Ecol Manag 132:29–38CrossRefGoogle Scholar
  20. Gehrig-Fasel J, Guisan A, Zimmermann NE (2007) Tree line shifts in the Swiss Alps: climate change or land abandonment? J Veg Sci 18:571–582CrossRefGoogle Scholar
  21. Grabherr G, Pauli MGH (1994) Climate effects on mountain plants. Nature 369:448CrossRefPubMedGoogle Scholar
  22. Groffman PM, Driscoll CT, Fahey TJ, Hardy JP, Fitzhugh JP, Tierney GL (2001) Colder soils in a warmer world: a snow manipulation study in a northern hardwood forest ecosystem. Biogeochemistry 56:135–150CrossRefGoogle Scholar
  23. Guidi C, Vesterdal C, Gianelle D, Rodeghiero M (2014) Changes in soil organic carbon and nitrogen following forest expansion on grasslands in the Southern Alps. For Ecol Manag 328:103–116CrossRefGoogle Scholar
  24. Hagedorn F, Joos O (2014) Experimental summer drought reduces soil CO2 effluxes and DOC leaching in Swiss grassland soils along an elevational gradient. Biogeochemistry 117:395–412. doi: 10.1007/s10533-013-9881-x CrossRefGoogle Scholar
  25. Hagedorn F, Martin M, Rixen C, Rusch S, Bebi P, Zürcher A, Siegwolf RTW, Wipf S, Escape C, Roy J, Hättenschwiler S (2010) Short-term responses of ecosystem carbon fluxes to experimental warming at the Swiss alpine treeline. Biogeochemistry 97:7–19CrossRefGoogle Scholar
  26. Hagedorn F, Shiyatov SG, Mazepa VS, Devi NM, Grigor’ev A, Bartish AA, Fomin VV, Kapralov DS, Terent’ev M, Bugmann H, Rigling A, Moiseev PA (2014) Treeline advances along the Ural mountain range – driven by improved winter conditions? Glob Chang Biol 20:3530. doi: 10.1111/gcb.12613 CrossRefPubMedGoogle Scholar
  27. Hanewinkel M, Cullmann DA, Schelhaas M-J, Nabuurs G-J, Zimmermann NE (2012) Climate change may cause severe loss in the economic value of European forest land. Nat Clim Chang 3:203–207CrossRefGoogle Scholar
  28. Harsch MA, Hulme PE, McGlone MS, Duncan RP (2009) Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol Lett 12:1040–1049CrossRefPubMedGoogle Scholar
  29. Härtel E, Zechmeister-Boltenstern S, Gerzabek M (2002) Gaseous nitrogen losses from a forest site in the North Tyrolean Limestone Alps. Environ Sci Pollut Res Special Issue 9(2):23–30CrossRefGoogle Scholar
  30. Hiltbrunner D, Zimmermann S, Hagedorn F (2013) Afforestation with Norway spruce on a subalpine pasture alters carbon dynamics but only moderately affects soil carbon storage. Biogeochemistry 115:251–266CrossRefGoogle Scholar
  31. Huber C, Baumgarten M, Göttlein A, Rotter V (2004) Nitrogen turnover and nitrate leaching after bark beetle attack in mountainous spruce stands of the Bavarian forest national park. Water Air Soil Pollution: Focus 4:391–414CrossRefGoogle Scholar
  32. IPCC (2006) Revised IPCC guidelines for national greenhouse gas inventories (intergovernmental Panel of Climate Change Publication). Cambridge University Press, CambridgeGoogle Scholar
  33. IPCC (2013) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the IntergovernmentalPanel on Climate Change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Cambridge University Press, Cambridge/New York, pp 1535Google Scholar
  34. IUSS Working Group WRB (2014) World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps, World Soil Resources Reports No. 106. FAO, RomeGoogle Scholar
  35. Jackson RB, Banner JL, Jobbagy EG, Pockman WT, Wall DH (2002) Ecosystem carbon loss with woody plant invasion of grasslands. Nature 418(6898):623–626CrossRefPubMedGoogle Scholar
  36. Jandl R, Schindlbacher A, Schüler S, Stöhr D (2012) Wald- und Waldgrenzenforschung in Obergurgl – Vergangenheit und Zukunft. In Koch E-M, Erschbamer B (eds) Chapter 5, vol 2. Innsbruck University Press, pp 125–145Google Scholar
  37. Jandl R, Schüler S, Schindlbacher A, Tomiczek C (2013) Forests, carbon pool, and timber production, chapter 6. In: Lal R, Lorenz K, Hüttl RF, Schneider BU, von Braun J (eds) Ecosystem services and carbon sequestration in the biosphere. Springer Verlag, Dordrecht, pp 101–130Google Scholar
  38. Kullman L (2002) Rapid recent range-margin rise of tree and shrub species in the Swedish Scandes. J Ecol 90:68–77Google Scholar
  39. Kammer A, Hagedorn F, Shevchenko I, Leifeld J, Guggenberger G, Goryacheva T, Rigling A, Moiseev P (2009) Treeline shifts in the Ural mountains affect soil organic matter dynamics. Glob Chang Biol 15:1570–1583CrossRefGoogle Scholar
  40. Kesik M, Ambus P, Baritz R, Brüggemann N, Butterbach-Bahl K, Damm M, Duyzer J, Horváth L, Kiese R, Kitzler B, Leip A, Li C, Pihlatie M, Pilegaard K, Seufert S, Simpson D, Skiba U, Smiatek G, Vesala T, Zechmeister-Boltenstern S (2005) Inventories of N2O and NO emissions from European forest soils. Biogeosciences 2:353–375CrossRefGoogle Scholar
  41. Kim YS, Imori M, Watanabe M, Hatano R, Yi MJ, Koike T (2012) Simulated nitrogen inputs influence methane and nitrous oxide fluxes from a young larch plantation in northern Japan. Atmos Environ 46:36–44CrossRefGoogle Scholar
  42. Kindermann G (2010) Eine klimasensitive Weiterentwicklung des Kreisflächenzuwachsmodells aus PrognAus. Centralblatt für das gesamte Forstwesen 127:147–178Google Scholar
  43. Kirschbaum MUF (2004) Soil respiration under prolonged soil warming: are rate reductions caused by acclimation or substrate loss? Glob Chang Biol 10:1870–1877CrossRefGoogle Scholar
  44. Kitzler B, Zechmeister-Boltenstern S, Holtermann C, Skiba U, Butterbach-Bahl K (2006) Controls over N2O, NOx and CO2 fluxes in a calcareous mountain forest. Biogeosciences 3:293–310CrossRefGoogle Scholar
  45. Krause K, Niklaus PA, Schleppi P (2013) Soil-athmosphere fluxes of the greenhouse gases CO2, CH4 and N2 in a mountain spruce forest subjected to long term N addition and to tree girdling. Agric For Meteorol 181:61–68CrossRefGoogle Scholar
  46. Kreyling J, Henry HAL (2011) Vanishing winters in Germany: soil frost dynamics and snow cover trends, and ecological implications. Clim Res 46:269–276CrossRefGoogle Scholar
  47. Lévesque M, Siegwolf R, Saurer M, Eilmann B, Rigling A (2014) Increased water-use efficiency does not lead to enhanced tree growth under xeric and mesic conditions. New Phytol 203:94–109Google Scholar
  48. Liptzin D, Williams MW, Helmig D, Seok B, Filippa G, Chowansky K, Hueber J (2009) Process-level controls on CO2 fluxes from a seasonally snow-covered subalpine meadow soil, Niwot Ridge, Colorado. Biogeochemistry 95:151–166CrossRefGoogle Scholar
  49. Luyssaert S, Jammet M, Stoy PC, Estel S, Pongratz J, Ceschia E, Churkina G, Don A, Erb K, Ferlicoq M, Gielen B, Grünwald T, Houghton RA, Klumpp K, Knohl A, Kolb T, Kuemmerle T, Laurila T, Lohila A, Loustau D, McGrath MJ, Meyfroidt P, Moors EJ, Naudts K, Novick K, Otto J, Pilegaard K, Pio CA, Rambal S, Rebmann C, Ryder J, Suyker AE, Varlagin A, Wattenbach M, Dolman AJ (2014) Land management and land-cover change have impacts of similar magnitude on surface temperature. Nat Clim Chang 4:389–393CrossRefGoogle Scholar
  50. MacDonald D, Crabtree JR, Wiesinger G, Dax T, Stamou N, Fleury P, Lazpita JG, Gibon A (2000) Agricultural abandonment in mountain areas of Europe: Environmental consequences and policy response. J Environ Manag 59(1):47–69CrossRefGoogle Scholar
  51. MacDonald JA, Dise NB, Matzner E, Armbruster M, Gundersen P, Forsius M (2002) Nitrogen input together with ecosystem nitrogen enrichment predict nitrate leaching from European forests. Glob Chang Biol 8:1028–1033CrossRefGoogle Scholar
  52. Matulla C, Schöner W, Alexandersson H, von Storch H, Wang XL (2008) European storminess: late nineteenth century to present. Clim Dyn 31:125–130CrossRefGoogle Scholar
  53. Melillo JM, Steudler PA, Aber JD, Newkirk K, Lux H, Bowles FP, Catricala C, Magill A, Ahrens T, Morrisseau S (2002) Soil warming and carbon-cycle. Feedbacks to the climate system. Science 298:2173–2176CrossRefPubMedGoogle Scholar
  54. Meyer S, Leifeld J, Bahn M, Fuhrer J (2012) Free and protected soil organic carbon dynamics respond differently to abandonment of mountain grassland. Biogeosciences 9(2):853–865CrossRefGoogle Scholar
  55. Mohn J, Schurmann A, Hagedorn F, Schleppi P, Bachofen R (2000) Increased rates of denitrification in nitrogen-treated forest soils. For Ecol Manag 137:113–119CrossRefGoogle Scholar
  56. Monson RK, Turnipseed AA, Sparks JP, Harley PC, Scott-Detton LE, Sparks K, Huxman TE (2002) Carbon sequestration in a high-elevation, subalpine forest. Glob Chang Biol 8:459–478CrossRefGoogle Scholar
  57. Monson RK, Lipson DL, Burns SP, Turnipseed AA, Delany AC, Williams MW, Schmidt SK (2006) Winter forest soil respiration controlled by climate and microbial community composition. Nature 439:711–714CrossRefPubMedGoogle Scholar
  58. Montane F, Rovira P, Casals P (2007) Shrub encroachment into mesic mountain grasslands in the Iberian peninsula: effects of plant quality and temperature on soil C and N stocks. Glob Biogeochem Cycles 21(4). doi: 10.1029/2006GB002853
  59. Mosier A, Duxbury JM, Freney JR, Heinemeyer O, Minami K (1998) Assessing and mitigating N2O emissions from agricultural soils. Clim Chang 40:7–38CrossRefGoogle Scholar
  60. Myhre G, Shindell D, Bréon F-M, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque J-F, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H (2013) Anthropogenic and natural radiative forcing. In: Stocker TF et al (eds) Climate Change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New YorkGoogle Scholar
  61. Paulsen J, Weber UM, Körner C (2000) Tree growth near treeline: abrupt or gradual reduction with altitude? Arct Antarct Alp Res 32:14–20CrossRefGoogle Scholar
  62. Pepin N, Bradley RS, Diaz HF, Baraer M, Caceres EB, Forsythe N, Fowler H, Greenwood G, Hashmi MZ, Liu XD et al (2015) Elevation-dependent warming in mountain regions of the world. Nat Clim Chang 5:424–430CrossRefGoogle Scholar
  63. Perakis SS, Hedin LO (2002) Nitrogen loss from unpolluted South American forests mainly via dissolved organic compounds. Nature 415:416–419CrossRefPubMedGoogle Scholar
  64. Pilegaard K (2001) Air-soil exchange of NO, NO2 and O3 in forests. Water, Air, and Soil Pollution Focus 1:79–88CrossRefGoogle Scholar
  65. Poeplau C, Don A, Vesterdal L, Leifeld J, Van Wesemael B, Schumacher J, Gensior A (2011) Temporal dynamics of soil organic carbon after land-use change in the temperate zone – carbon response functions as a model approach. Glob Chang Biol 17(7):2415–2427CrossRefGoogle Scholar
  66. Price M (2010) Europe’s ecological backbone: recognising the true value of our mountains, vol 6. European Environment Agency(EEA), CopenhagenGoogle Scholar
  67. Rebetez M, Reinhard M (2007) Monthly air temperature trends in Switzerland 1901 – 2000 and 1975 – 2004. Theor Appl Climatol 91:27–34CrossRefGoogle Scholar
  68. Risch AC, Jurgensen MF, Page-Dumroese DS, Wildi O, Schutz M (2008) Long-term development of above- and below-ground carbon stocks following land-use change in subalpine ecosystems of the Swiss National Park. Can J For Res 38(6):1590–1602CrossRefGoogle Scholar
  69. Russ W (2011) Mehr Wald in Österreich. BFW-Praxisinformation 24:3–5Google Scholar
  70. Sjögersten S, Wookey PA (2009) The impact of climate change on ecosystem carbon dynamics at the Scandinavian mountain birch forest–tundra heath ecotone. Ambio 38:2–10Google Scholar
  71. Schadt CW, Martin AP, Lipson DA, Schmidt SK (2003) Seasonal dynamics of previously unknown fungal lineages in tundra soils. Science 301:1359–1361CrossRefPubMedGoogle Scholar
  72. Schimel DS, House JI, Hibbard KA, Bousquet P, Ciais P, Peylin P, Braswell BH, Apps MJ, Baker D, Bondeau A, Canadell J, Churkina G, Cramer W, Denning AS, Field CB, Friedlingstein P, Goodale C, Heimann M, Houghton RA, Melillo JM, Moore B, Murdiyarso D, Noble I, Pacala SW, Prentice IC, Raupach MR, Rayner PJ, Scholes RJ, Steffen WL, Wirth C (2001) Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414(6860):169–172CrossRefPubMedGoogle Scholar
  73. Schindlbacher A, Zechmeister-Boltenstern S (2004) Effects of soil moisture and temperature on NO, NO2, and N2O emissions from European forest soils. J Geophys Res 109(D17):302. doi: 10.1029/2004JD0s04590 CrossRefGoogle Scholar
  74. Schindlbacher A, Zechmeister-Boltenstern S, Kitzler B, Jandl R (2008) Experimental forest soil warming: response of autotrophic and heterotrophic soil respiration to a short-term 10 °C temperature rise. Plant Soil 303:323–330CrossRefGoogle Scholar
  75. Schindlbacher A, Wunderlich S, Borken W, Kitzler B, Zechmeister-Boltenstern S, Jandl R (2012) Soil respiration under climate change: prolonged summer drought offsets soil warming effects. Glob Chang Biol 18:2270–2279CrossRefPubMedCentralGoogle Scholar
  76. Schindlbacher A, Jandl R, Schindlbacher S (2014) Natural variations in snow cover do not affect the annual soil CO2 efflux from a mid-elevation temperate forest. Glob Chang Biol 20:622–632CrossRefPubMedGoogle Scholar
  77. Schlesinger WH, Andrews JA (2000) Soil respiration and the global carbon cycle. Biogeochemistry 48:7–20CrossRefGoogle Scholar
  78. Seidl R, Schelhaas M-J, Lindner M, Lexer M (2009) Modelling bark beetle disturbances in a large scale forest scenario model to assess climate change impacts and evaluate adaptive management strategies. Reg Environ Chang 9:101–119CrossRefGoogle Scholar
  79. Shaver G, Canadell J, Chapin F, Gurevitch J, Harte J, Henry G, Ineson P, Jonasson S, Melillo J, Pitelka L, Rustad L (2000) Global warming and terrestrial ecosystems: a conceptual framework for analysis. Bioscience 50:871–882CrossRefGoogle Scholar
  80. Skiba U, Sheppard LJ, Pitcairn CER, van Dijk S, Rossall M (1999) The effect of N deposition on nitrous oxide and nitric oxide emissions from temperate forest soils. Water Air Soil Pollut 116:89–98CrossRefGoogle Scholar
  81. Solly E, Schöning I, Boch S, Müller JM, Socher SA, Trumbore SE, Schrumpf M (2014) Mean age of carbon in fine roots from temperate forests and grasslands with different management. Biogeosciences 10:4833–4843CrossRefGoogle Scholar
  82. Spiecker H, Mielikäinen K, Köhl M, Skovsgaard JP (1996) Growth trends in Europe – studies from 12 countries, EFI Research Reports 5. Springer, HeidelbergCrossRefGoogle Scholar
  83. Streit K, Hagedorn F, Hiltbrunner D, Portmann M, Saurer M, Buchmann N, Wild B, Richter A, Wipf S, Siegwolf RTW (2014) Soil warming alters microbial substrate use in alpine soils. Glob Chang Biol 20:1327–1338CrossRefPubMedGoogle Scholar
  84. Strömgren M, Linder S (2002) Effects of nutrition and soil warming on stemwood production in a boreal Norway spruce stand. Glob Chang Biol 8:1195–1204CrossRefGoogle Scholar
  85. Tappeiner U, Tasser E, Leitinger G, Cernusca A, Tappeiner G (2008) Effects of historical and likely future scenarios of land use on above- and belowground vegetation carbon stocks of an Alpine valley. Ecosystems 11(8):1383–1400CrossRefGoogle Scholar
  86. Tasser E, Tappeiner U (2002) Impact of land use changes on mountain vegetation. Appl Veg Sci 5(2):173–184CrossRefGoogle Scholar
  87. Thuille A, Schulze ED (2006) Carbon dynamics in successional and afforested spruce stands in Thuringia and the Alps. Glob Chang Biol 12(2):325–342CrossRefGoogle Scholar
  88. Thuille A, Buchmann N, Schulze ED (2000) Carbon stocks and soil respiration rates during deforestation, grassland use and subsequent Norway spruce afforestation in the Southern Alps, Italy. Tree Physiol 20(13):849–857CrossRefPubMedGoogle Scholar
  89. Usbeck T, Wohlgemuth T, Dobbertin M, Pfister C, Bürgi A, Rebetez M (2010) Increasing storm damage to forests in Switzerland from 1858 to 2007. Agric For Meteorol 150:47–55CrossRefGoogle Scholar
  90. Venterea RT, Groffman PM, Verchot LV, Magill AH, Aber JD, Streudler PA (2003) Nitrogen oxide gas emissions from temperate forest soils receiving long-term nitrogen inputs. Glob Chang Biol 9:346–357CrossRefGoogle Scholar
  91. Vesterdal L, Leifeld J, Popleau C, Don A, van Wesemael B (2011) Land-use change effects on soil carbon stocks in temperate regions – development of carbon response functions. In: Jandl R, Rodeghiero M, Olsson M (eds) Soil carbon in sensitive European ecosystems: from science to land management. Wiley-Blackwell, Chichester, p 284Google Scholar
  92. Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750Google Scholar
  93. Wermelinger B (2004) Ecology and management of the spruce bark beetle Ips typographus - a review of recent research. For Ecol Manag 202:67–82CrossRefGoogle Scholar
  94. Williams EJ, Hutchinson GL, Fehsenfeld FC (1992) Nitrogen oxides and nitrous oxide emissions from soil. Glob Biogeochem Cycles 6:351–388. doi: 10.1029/92GB02124 CrossRefGoogle Scholar
  95. Winston GC, Sundquist ET, Stephens BB, Trumbore SE (1997) Winter CO2 fluxes in a boreal forest. J Geophys Res 102(D24):28795–28804CrossRefGoogle Scholar
  96. Zechmeister-Boltenstern S, Hahn M, Meger S, Jandl R (2002) Nitrous oxide emissions and nitrate leaching in relation to microbial biomass dynamics in a beech forest soil. Soil Biol Biochem 34:823–832CrossRefGoogle Scholar
  97. Zimmermann M, Meir P, Silman MR, Fedders A, Gibbon A, Malhi Y, Urrego DH, Bush MB, Feeley KJ, Garcia KC, Dargie GC, Farfan WR, Goetz BP, Johnson WT, Kline KM, Modi AT, Rurau NMQ, Staudt BT, Zamora F (2010a) No differences in soil carbon stocks across the tree line in the Peruvian Andes. Ecosystems 13:62–74. doi: 10.1007/s10021-009-9300-2 CrossRefGoogle Scholar
  98. Zimmermann P, Tasser E, Leitinger G, Tappeiner U (2010b) Effects of land-use and land-cover pattern on landscape-scale biodiversity in the European Alps. Agric Ecosyst Environ 139(1–2):13–22CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Robert Jandl
    • 1
    Email author
  • Mirco Rodeghiero
    • 2
  • Andreas Schindlbacher
    • 1
  • Frank Hagedorn
    • 3
  1. 1.Austrian Research Centre for Forests (BFW)ViennaAustria
  2. 2.Department of Sustainable Agro-Ecosystems and BioresourcesResearch and Innovation Centre, Fondazione Edmund MachSan Michele all’AdigeItaly
  3. 3.Swiss Federal Institute for Forest, Snow and Landscape ResearchBirmensdorfSwitzerland

Personalised recommendations