Skip to main content

A Mechanistic View of the Capacity of Forests to Cope with Climate Change

  • Chapter
  • First Online:
Managing Forest Ecosystems: The Challenge of Climate Change

Part of the book series: Managing Forest Ecosystems ((MAFE,volume 34))

Abstract

From an evolutionary point of view, trees have at least one intriguing feature: they tend to have high levels of genetic diversity, but at the same time, they are known for their low evolutionary rates. Thus, trees are characterized by a counterintuitive combination of rapid micro-evolutionary change and a low macro-evolutionary change (Petit and Hampe 2006). Trees experience highly heterogeneous environmental conditions and are exposed to extreme climatic events within their lifetime, which could contribute to the maintenance of their typically high genetic diversity (Gutschick and BassiriRad 2003; Petit and Hampe 2006). Trees are not only highly diverse but also highly fecund over their extended lifetime, allowing them to respond to high selection intensity and to adapt quickly to local conditions (Petit and Hampe 2006). Mean antiquity of tree species is one order of magnitude higher than for herbs, which implies low rates of extinction to compensate for their low rates of speciation . However, forest species are more vulnerable to environmental change than this combination of evolutionary features may suggest (Jump and Peñuelas 2005). Recent studies of Spanish populations of beech (Fagus sylvatica) are showing that the fragmentation of the forests that took place several centuries ago has led to a high genetic divergence of the populations and a reduced genetic diversity despite the fact that the species is wind-pollinated and the fragments are very near to each other (Jump and Peñuelas 2006). These studies show the negative genetic impact of forest fragmentation , demonstrating that trees are not at reduced risk from environmental change (Fig. 2.1). This rather unexpected sensitivity of trees to forest management is particularly important under the current climate change since it can exacerbate the impact of human activities on forest dynamics and natural regeneration (Castro et al. 2004a).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alcamo, J., Moreno JM, Nováky B, Bindi M, Corobov R, Devoy RJN et al (2007) Europe: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ Hanson CE (eds) Climate change 2007. Cambridge University Press, Cambridge, pp 541–580

    Google Scholar 

  • Alonso A, Valladares F (2007) International efforts on global change research. In: Chuvieco E (ed) Earth observation of global change. Springer, Dordrecht, pp 1–22.

    Google Scholar 

  • Araujo MB, Guisan A (2006) Five (or so) challenges for species distribution modelling. J Biogeogr 33:1677–1688

    Article  Google Scholar 

  • Atkin OK, Tjoelker MG (2003) Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci 8:343–361

    Article  CAS  PubMed  Google Scholar 

  • Atkin OK, Loveys BR, Atkinson LJ, Pons TL (2006) Phenotypic plasticity and growth temperature: understanding interspecific variability. J Exp Bot 57(2):267–281

    Article  CAS  PubMed  Google Scholar 

  • Balaguer L, Martínez-Ferri E, Valladares F, Pérez-Corona ME, Baquedano FJ, Castillo FJ et al (2001) Population divergence in the plasticity of the response of Quercus coccifera to the light environment. Funct Ecol 15:124–135

    Article  Google Scholar 

  • Ball MC, Hodges VS, Laughlin GP (1991) Cold-induced photoinhibition limits regeneration of snow gum at tree-line. Funct Ecol 5:663–668

    Article  Google Scholar 

  • Barker T, Bashmakov I, Bernstein L, Bogner JE, Bosch PR, Dave R et al. (2007) Mitigation of climate change. Technical summary. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In: Metz B, Davidson OR, Bosch PR, Dave R Meyer LA (eds) Climate change 2007. Cambridge University Press, Cambridge/New York, pp 1–103

    Google Scholar 

  • Bascompte J, Jordano P, Olesen JM (2006) Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 312:431–433

    Article  CAS  PubMed  Google Scholar 

  • Beerling DJ, Heath J, Woodward FI, Mansfield TA (1996) Drought-Co2 interactions in trees - observations and mechanisms. New Phytol 134(2):235–242

    Article  Google Scholar 

  • Benito-Garzon M, Sanchez-de-Dios R, Sainz-Ollero H (2007) Predictive modelling of tree species distributions on the Iberian Peninsula during the Last Glacial Maximum and Mid-Holocene. Ecography 30:120–134

    Article  Google Scholar 

  • Bertness MD, Callaway RM (1994) Positive interactions in communities. Trends Ecol Evol 9:191–193

    Article  CAS  PubMed  Google Scholar 

  • Billington HL, Pelham J (1991) Genetic variation in the date of budburst in Scottish birch populations – implications for climate change. Funct Ecol 5:403–409

    Article  Google Scholar 

  • Brooker RW (2006) Plant-plant interactions and environmental change. New Phytol 171(2):271–284

    Article  PubMed  Google Scholar 

  • Buchmann N (2002) Plant ecophysiology and forest response to global change. Tree Physiol 22:1177–1184

    Article  CAS  PubMed  Google Scholar 

  • Camarero JJ, Gutiérrez E (2004) Pace and pattern of recent treeline dynamics: response of ecotones to climatic variability in the Spanish Pyrenees. Clim Chang 63:181–200

    Article  Google Scholar 

  • Cannell MGR, Thornley JH (2000) Modelling the components of plant respiration: some guiding principles. Ann Bot 85:45–54

    Article  CAS  Google Scholar 

  • Cannell MGR, Grace J, Booth A (1989) Possible impacts of climatic warming on trees and forests in the united kingdom: a review. Forestry 62:337–364

    Article  Google Scholar 

  • Carrión JS, Yll EI, Walker MJ, Legaz A, Chaín C, López A (2003) Glacial refugia of temperate, Mediterranean and Ibero-North African flora in southeastern Spain: new evidence from cave pollen at two Neanderthal man sites. Glob Ecol Biogeogr 12:119–129

    Article  Google Scholar 

  • Castro J, Zamora R, Hodar JA, Gomez JM (2004a) Seedling establishment of a boreal tree species (Pinus sylvestris) at its southernmost distribution limit: consequences of being in a marginal Mediterranean habitat. J Ecol 92(2):266–277

    Article  Google Scholar 

  • Castro M, Martín-Vide S, Alonso S (2004b) El clima de España: pasado, presente y escenarios de clima para el siglo XXI. In: Moreno JM (ed) Evaluación de los impactos del cambio climático en España. Ministerio de Medio Ambiente, Madrid, pp 3–64.

    Google Scholar 

  • Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I et al (2007) Regional climate projections. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In:Solomon S, D Qin, Manning M, Chen Z Marquis M Averyt KB Tignor M Miller HL (eds) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge/New York, pp 847–943

    Google Scholar 

  • Diamond J (2005) Collapse: How societies choose to fail or succeed. Viking, New York

    Google Scholar 

  • Dullinger S, Dirnbock T, Grabherr G (2004) Modelling climate change-driven treeline shifts: relative effects of temperature increase, dispersal and invasibility. J Ecol 92(2):241–252

    Article  Google Scholar 

  • Etterson JR (2004) Evolutionary potential of Chamaecrista fasciculata in relation to climate change. II Genet architecture three popul reciprocally plan along environ gradient great plain Evol 58(7):1459–1471

    Google Scholar 

  • Flores JLF, Jurado E (2003) Are nurse-protégé interactions more common among plants from arid environments? J Veg Sci 14:911–916

    Article  Google Scholar 

  • Franks SJ, Sim S, Weis AE (2007) Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. Proc Natl Acad Sci USA 104:1278–1282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gedney N, Cox PM, Betts RA, Boucher O, Huntingford C, Stott PA (2006) Detection of a direct carbon dioxide effect in continental river runoff records. Nature 439:835–838

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Aparicio L, Valladares F, Zamora R (2006) Differential light responses of Mediterranean tree saplings: linking ecophysiology with regeneration niche in four co-occurring species. Tree Physiol 26:947–958

    Article  PubMed  Google Scholar 

  • Grace J (2004) Understanding and managing the global carbon cycle. J Ecol 92(2):189–202

    Article  CAS  Google Scholar 

  • Grace J, Zhang R (2006) Predicting the effect of climate change on global plant productivity and the carbon cycle. In: Morison JIL, Morecroft MD (eds) Plant growth and climate change. Blackwell, Kundli, pp 187–207.

    Google Scholar 

  • Gravel D, Canham CD, Beaudet M, Messier C (2006) Reconciling niche and neutrality: the continuum hypothesis. Ecol Lett 9:399–409

    Article  PubMed  Google Scholar 

  • Greenland D, Goodin DG, Smith RC (eds) (2003) Climate variability and ecosystem response in long-term ecological research sites. Oxford University Press, New York

    Google Scholar 

  • Gutschick VP, BassiriRad H (2003) Extreme events as shaping physiology, ecology, and evolution of plants: toward a unified definition and evaluation of their consequences. New Phytol 160(1):21–42

    Article  Google Scholar 

  • Hampe A (2004) Bioclimate envelope models: what they detect and what they hide. Glob Ecol Biogeogr Lett 13:469–476

    Article  Google Scholar 

  • Hampe A (2005) Fecundity limits in Frangula alnus (Rhamnaceae) relict populations at the species’ southern range margin. Oecologia 143:377–386

    Article  PubMed  Google Scholar 

  • Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8:461–467

    Article  PubMed  Google Scholar 

  • Harvell CD, Mitchell CE, Ward JR, Altizer S, Dobson AP, Ostfeld RS et al (2002) Climate warming and disease risks for terrestrial and marine biota. Science 296:2158–2162

    Article  CAS  PubMed  Google Scholar 

  • Howe GT, Aitken SN, Neale DB, Jermstad KD, Wheeler NC, Chen TH (2003) From genotype to phenotype: unraveling the complexities of cold adaptation in forest trees. Can J For Res 81:1247–1266

    CAS  Google Scholar 

  • Inouye DW (2000) The ecological and evolutionary significance of frost in the context of climate change. Ecol Lett 3:457–463

    Article  Google Scholar 

  • Jackson ST (2006) Forest genetics in space and time. New Phytol 171(1):1–3

    Article  CAS  PubMed  Google Scholar 

  • Joffre R, Rambal S, Winkel T (2001) Respuestas de las plantas mediterráneas a la limitación de agua: desde la hoja hasta el dosel. In: Zamora R, Pugnaire FI (eds) Aspectos funcionales de los ecosistemas mediterráneos. CSIC-AEET, Granada, pp 37–85.

    Google Scholar 

  • Jump AS, Peñuelas J (2005) Running to stand still: adaptation and the response of plants to rapid climate change. Ecol Lett 8:1010–1020

    Article  Google Scholar 

  • Jump AS, Peñuelas J (2006) Genetic effects of chronic habitat fragmentation in a wind-pollinated tree. Proc Natl Acad Sci U S A 103:8096–8100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jump AS, Hunt JM, Peñuelas J (2006) Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Glob Chang Biol 12:1–12

    Article  Google Scholar 

  • Körner C (2003a) Carbon limitation in trees. J Ecol 91:4–17

    Article  Google Scholar 

  • Körner C (2003b) Limitation and stress – always or never? J Veg Sci 14:141–143

    Google Scholar 

  • Körner C (2006) Significance of temperature in plant life. In: Morison JIL, Morecroft MD (eds) Plant growth and climate change. Blackwell, Kundli, pp. 48–69

    Chapter  Google Scholar 

  • Körner C, Paulsen J (2004) A world-wide study of high altitude treeline temperatures. J Biogeogr 31:713–732

    Article  Google Scholar 

  • Kullman L (2002) Rapid recent range-margin rise of tree and shrub species in the Swedish Scandes. J Ecol 90:68–77

    Article  Google Scholar 

  • Lambers H, Chapin FS III, Pons TL (1998) Plant physiological ecology. Springer, York

    Book  Google Scholar 

  • Larcher W (1995) Physiological plant ecology: ecophysiology and stress physiology of functional groups. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  • Lloret F, Peñuelas J, Estiarte M (2004) Experimental evidence of reduced diversity of seedlings due to climate modification in a Mediterranean-type community. Glob Chang Biol 10(2):248–258

    Article  Google Scholar 

  • Lloyd AH, Fastie CL (2003) Recent changes in treeline forest distribution and structure in interior Alaska. Ecoscience 10:176–185

    Article  Google Scholar 

  • Maestre FT, Cortina J (2004) Do positive interactions increase with abiotic stress? A test from a semi-arid steppe. Proc Royal Soc London Ser B Biol Sci 271:S331–S333

    Article  Google Scholar 

  • Maestre FT, Valladares F, Reynolds JF (2005) Is the change of plant-plant interactions with abiotic stress predictable? A meta-analysis of field results in arid environments. J Ecol 93:748–757

    Article  Google Scholar 

  • Maestre FT, Valladares F, Reynolds JF (2006) The stress-gradient hypothesis does not fit all relationships between plant–plant interactions and abiotic stress: further insights from arid environments. J Ecol 94:17–22

    Article  Google Scholar 

  • Martínez-Alonso C, Valladares F, Camarero JJ, López Arias M, Serrano M, Rodríguez JA (2007) The uncoupling of secondary growth, cone and litter production by intradecadal climatic variability in a Mediterranean Scots Pine Forest. For Ecol Manag 253:19–29

    Article  Google Scholar 

  • Matesanz S, Brooker RW, Valladares F, Klotz S (2009) Temporal dynamics of marginal steppic vegetation over a 26-year period of substantial environmental change. J Veg Sci 20:299–310

    Article  Google Scholar 

  • Meehl GA, StockerTF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM. et al (2007) Global climate projections. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M Miller HL (eds) Climate change 2007: The physical science basis. Cambridge University Press, Cambridge/New York, pp 747–847

    Google Scholar 

  • Mejías JA, Arroyo J, Ojeda F (2002) Reproductive ecology of Rhododendron ponticum (Ericaceae) in relict Mediterranean populations. Bot J Linn Soc 140:297–311

    Article  Google Scholar 

  • Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R et al (2006) European phenological response to climate change matches the warming pattern. Glob Chang Biol 12:1969–1976

    Article  Google Scholar 

  • Miriti MN (2006) Ontogenetic shift from facilitation to competition in a desert shrub. J Ecol 94:973–979

    Article  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    Article  CAS  PubMed  Google Scholar 

  • Mooney HA, Winner WE, Pell EJ (eds) (1991) Response of plants to multiple stresses. Academic, San Diego

    Google Scholar 

  • Morales P, Sykes MT, Prentice IC, Smith P, Smith B, Bugmann H et al (2005) Comparing and evaluating process-based ecosystem model predictions of carbon and water fluxes in major European forest biomes. Glob Chang Biol 11:2211–2233

    Article  Google Scholar 

  • Nabuurs GJ, Masera O, Andrasko K, Benitez-Ponce P, Boer R, Dutschke M et al (2007) Forests. Impacts, adaptation and vulnerability. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ Hanson CE (eds) Climate change 2007. Cambridge University Press, Cambridge, pp 1–73

    Google Scholar 

  • Niinemets Ü (2006) The controversy over traits conferring shade-tolerance in trees: ontogenetic changes revisited. J Ecol 94:464–470

    Article  Google Scholar 

  • Niinemets U, Valladares F (2006) Tolerance to shade, drought and waterlogging of temperate, Northern hemisphere trees and shrubs. Ecol Monogr 76:521–547

    Article  Google Scholar 

  • Ogaya R, Peñuelas J (2003) Comparative field study of Quercus ilex and Phillyrea latifolia: photosynthetic response to experimental drought conditions. Environ Exp Bot 50:137–148

    Article  Google Scholar 

  • Parmesan C (1996) Climate and species range. Nature 382:765–766

    Article  CAS  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Peñuelas J, Boada M (2003) A global change-induced biome shift in the Montseny mountains (NE Spain). Glob Chang Biol 9:131–140

    Article  Google Scholar 

  • Peñuelas J, Filella I (2001) Phenology: responses to a warming world. Science 294:793–795

    Article  PubMed  Google Scholar 

  • Petit RJ, Hampe A (2006) Some evolutionary consequences of being a tree. Annu Rev Ecol Evol Syst 37:187–214

    Article  Google Scholar 

  • Petit RJ, Hampe A, Cheddadi R (2005) Climate changes and tree phylogeography in the Mediterranean. Taxon 54(4):877–885

    Article  Google Scholar 

  • Piersma T, Drent J (2003) Phenotypic flexibility and the evolution of organismal design. Trends Ecol Evol 18:228–233

    Article  Google Scholar 

  • Pinker RT, Zhang B, Dutton EG (2005) Do satellites detect trends in surface solar radiation? Science 308:850–853

    Article  CAS  PubMed  Google Scholar 

  • Pulido F, Valladares F, Calleja JA, Moreno G, González-Bornay G (2008) Tertiary relict trees under Mediterranean climate: abiotic constraints on persistence of Prunus lusitanica at the eroding edge of its range. J Biogeogr. doi:10.1111/j.1365-2699.2008.01898.x

    Google Scholar 

  • Rambal S, Joffre R, Ourcival JM, Cavender-Bares J, Rocheteau A (2004) The growth respiration component in eddy CO2 flux from a Quercus ilex Mediterranean forest. Glob Chang Biol 10(9):1460–1469

    Article  Google Scholar 

  • Rehfeldt G, Wykoff WR, Ying CC (2001) Physiological plasticity, evolution, and impacts of a changing climate on Pinus contorta. Clim Chang 50:355–376

    Article  Google Scholar 

  • Reichstein M, Tenhunen JD, Roupsard O, Ourcival JM, Rambal S, Miglietta F et al (2002) Severe drought effects on ecosystem CO2 and H2O fluxes at three Mediterranean evergreen sites: revision of current hypotheses? Glob Chang Biol 8(10):999–1017

    Article  Google Scholar 

  • Richardson AD, Bailey AS, Denny EG, Martin CW, O’Keefe J (2006) Phenology of a northern hardwood forest canopy. Glob Chang Biol 12(7):1174–1188

    Article  Google Scholar 

  • Roderick ML, Farquhar GD (2005) Changes in New Zealand pan evaporation since the 1970s. Int J Climatol 25:2031–2039

    Article  Google Scholar 

  • Roderick ML, Farquhar GD, Berry SL, Noble IR (2001) On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation. Oecologia 129:21–30

    Article  Google Scholar 

  • Sánchez-Gómez D, Valladares F, Zavala MA (2006a) Performance of seedlings of Mediterranean woody species under experimental gradients of irradiance and water availability: trade-offs and evidence for niche differentiation. New Phytol 170:795–806

    Article  PubMed  Google Scholar 

  • Sánchez-Gómez D, Zavala MA, Valladares F (2006b) Seedling survival responses to irradiance are differentially influenced by low-water availability in four tree species of the Iberian cool temperate–Mediterranean ecotone. Acta Oecol 30:322–332

    Article  Google Scholar 

  • Sanz-Perez V, Castro-Diez P, Valladares F (2008) Differential and interactive effects of temperature and photoperiod on budburst of two co-occurring Mediterranean oaks. Tree Physiol (in press)

    Google Scholar 

  • Savolainen O, Bokma F, Garcia-Gil R, Komulainen P, Repo T (2004) Genetic variation in cessation of growth and frost hardiness and consequences for adaptation of Pinus sylvestris to climatic changes. For Ecol Manag 197:79–89

    Article  Google Scholar 

  • Saxe H, Cannell MGR, Johnsen O, Ryan MG, Vourlitis G (2001) Tree and forest functioning in response to global warming. New Phytol 149:369–400

    Article  CAS  Google Scholar 

  • Stanhill G, Cohen S (2001) Global dimming: a review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences. Agr For Meterorol 107:255–278

    Article  Google Scholar 

  • Sturm M, Racine C, Tape K (2001) Climate change: increasing shrub abundance in the arctic. Nature 411:546–547

    Article  CAS  PubMed  Google Scholar 

  • Suc JP (1984) Origin and evolution of the mediterranean vegetation and climate in Europe. Nature 307:429–432

    Article  Google Scholar 

  • Taschler, D., Neuner, G. (2004). Summer frost resistance and freezing patterns measured in situ in leaves of major alpine plant growth forms in relation to their upper distribution boundary. Plant Cell Environ, 737–746.

    Google Scholar 

  • Thuiller W, Lavorel S, Araujo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. PNAS 102:8245–8250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tielborger K, Kadmon R (2000) Temporal environmental variation tips the balance between facilitation and interference in desert plants. Ecology 81(6):1544–1553

    Article  Google Scholar 

  • Valiente-Banuet A, Vital-Rumebe A, Verdu M, Callaway RM (2006) Modern Quaternary plant lineages promote diversity through facilitation of ancient tertiary lineages. Proc Natl Acad Sci USA 103:16812–16817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valladares F (2003) Light heterogeneity and plants: from ecophysiology to species coexistence and biodiversity. In: Esser K, Lüttge U, Beyschlag W, Hellwig F (eds) Progress in botany, vol 64. Springer, Heidelberg, pp. 439–471

    Chapter  Google Scholar 

  • Valladares F (2004a) Global change and radiation in Mediterranean forest ecosystems: a meeting point for ecology and management. In: Arianoutsou M, Papanastasis V (eds) Ecology, conservation and sustainable management of mediterranean type ecosystems of the world. Millpress, Rotterdam, pp 1–4.

    Google Scholar 

  • Valladares F (ed) (2004b) Ecología del bosque mediterraneo en un mundo cambiante. Organismo Autónomo de Parques Nacionales, Ministerio de Medio Ambiente, Madrid

    Google Scholar 

  • Valladares F, Gianoli E (2007) How much ecology do we need to know to restore Mediterranean ecosystems? Restor Ecol 15:363–368

    Article  Google Scholar 

  • Valladares F, Niinemets Ü (2008) Shade tolerance, a key plant trait of complex nature and consequences. Annu Rev Ecol Evol Syst 39:343–366

    Article  Google Scholar 

  • Valladares F, Pearcy RW (1997) Interactions between water stress, sun-shade acclimation, heat tolerance and photoinhibition in the sclerophyll Heteromeles arbutifolia. Plant Cell Environ 20:25–36

    Article  Google Scholar 

  • Valladares F, Pearcy RW (2002) Drought can be more critical in the shade than in the sun: a field study of carbon gain and photoinhibition in a Californian shrub during a dry El Niño year. Plant Cell Environ 25:749–759

    Article  Google Scholar 

  • Valladares F, Sánchez-Gómez D (2006) Ecophysiological traits associated with drought in Mediterranean tree seedlings: individual responses versus interspecific trends in eleven species. Plant Biol 8:688–697

    Article  CAS  PubMed  Google Scholar 

  • Valladares F, Balaguer L, Martinez-Ferri E, Perez-Corona E, Manrique E (2002) Plasticity, instability and canalization: is the phenotypic variation in seedlings of sclerophyll oaks consistent with the environmental unpredictability of Mediterranean ecosystems? New Phytol 156:457–467

    Article  Google Scholar 

  • Valladares F, Arrieta S, Aranda I, Lorenzo D, Tena D, Sánchez-Gómez D et al (2005a) Shade tolerance, photoinhibition sensitivity and phenotypic plasticity of Ilex aquifolium in continental-Mediterranean sites. Tree Physiol 25:1041–1052

    Article  CAS  PubMed  Google Scholar 

  • Valladares F, Dobarro I, Sánchez-Gómez D, Pearcy RW (2005b) Photoinhibition and drought in Mediterranean woody saplings: scaling effects and interactions in sun and shade phenotypes. J Exp Bot 56:483–494

    Article  CAS  PubMed  Google Scholar 

  • Valladares F, Sanchez D, Zavala MA (2006) Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications. J Ecol 94:1103–1116

    Article  Google Scholar 

  • Valladares F, Gianoli E, Gómez JM (2007) Ecological limits to plant phenotypic plasticity. Tansley review. New Phytol 146:749–763

    Article  Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC et al (2002) Ecological responses to recent climate change. Nature 426:389–395

    Article  CAS  Google Scholar 

  • Wild M, Gilgen H, Roesch A, Ohmura A, Long CN, Dutton EG et al (2005) From dimming to brightening: decadal changes in solar radiation at Earth’s surface. Science 308:847–850

    Article  CAS  PubMed  Google Scholar 

  • Wilson R, Gutierrez D, Gutierrez J, Martínez D, Agudo R, Monserrat VJ (2005) Changes to the elevational limits and extent of species ranges associated with climate change. Ecol Lett 8:1138–1146

    Article  PubMed  Google Scholar 

  • Woodward FI (1987) Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels. Nature 327:617–618

    Article  Google Scholar 

  • Zaragoza-Castells J, Sánchez-Gómez D, Hartley IP, Matesanz S, Valladares F, Lloyd J et al (2007a) Climate-dependent variations in leaf respiration in a dry-land, low productivity Mediterranean forest: the importance of thermal acclimation in both high-light and shaded habitats. Funct Ecol 22(1):172–184

    Google Scholar 

  • Zaragoza-Castells J, Sánchez-Gómez D, Valladares F, Hurry V, Atkin OK (2007b) Does growth irradiance affect temperature-dependence and thermal acclimation of leaf respiration? Insights from a Mediterranean tree with long-lived leaves. Plant Cell Environ 30:820–833

    Article  CAS  PubMed  Google Scholar 

  • Zavaleta ES, Thomas BD, Chiariello NR, Asner GP, Shaw MR, Field CB (2003) Plants reverse warming effect on ecosystem water balance. Proc Natl Acad Sci USA 100:9892–9893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziska LH, Bunce JA (2006) Plant responses to rising atmospheric carbon dioxide. In Morison JIL, Morecroft MD (eds) Plant growth and climate change. Blackwell, Kundli, pp 17–47

    Google Scholar 

Download references

Acknowledgements

Thanks are due to the members of the Spanish thematic network GLOBIMED (www.globimed.net) for inspiring discussions on forests and global change. One anonymous referee helped to improve the text. Financial support was provided by the Spanish Ministry of Education and Science (ECOCLIM, CGL2007–66066-C04–02/BOS) and by the Programa de Actividades de I + D de la Comunidad de Madrid (Consejería de Educación) REMEDINAL-CM (S-0505/AMB/000335).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Valladares .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Valladares, F. (2017). A Mechanistic View of the Capacity of Forests to Cope with Climate Change. In: Bravo, F., LeMay, V., Jandl, R. (eds) Managing Forest Ecosystems: The Challenge of Climate Change. Managing Forest Ecosystems, vol 34. Springer, Cham. https://doi.org/10.1007/978-3-319-28250-3_2

Download citation

Publish with us

Policies and ethics