Mediterranean Pine Forests: Management Effects on Carbon Stocks

  • Miren del RíoEmail author
  • Ignacio Barbeito
  • Andrés Bravo-Oviedo
  • Rafael Calama
  • Isabel Cañellas
  • Celia Herrero
  • Gregorio Montero
  • Dianel Moreno-Fernández
  • Ricardo Ruiz-Peinado
  • Felipe Bravo
Part of the Managing Forest Ecosystems book series (MAFE, volume 34)


In the Mediterranean area, the role of forest as carbon sinks is particularly significant since usually ecosystem services provided by forests are frequently of greater value than their direct productions. In this chapter, how carbon sequestration changes over time and with different management regimes in Mediterranean pine forests are presented. The information come from a number of sources including: (i) carbon stock estimates under different management plans using a chronosequence trial in Pinus sylvestris forests; (ii) simulations based on the process model 3-PG of the effect of different thinning regimes on Pinus pinaster biomass under a climate change scenario; (iii) a comparison of the effect of different age structures in Pinus pinea forest using the PINEA growth model which includes the biomass allocated in cones and considers the different wood uses; and finally, (iv) a model for estimating coarse woody debris.

The rotation length, thinning intensity, stand composition, as well as age structure influenced carbon stocks and carbon sequestration rates, with different results amongst species. A less intense management regime with the extension of rotation length 20 years increased carbon stocks in Scots pine forests. However, for Mediterranean maritime pine heavy thinning increased carbon sequestration when carbon fixed in removed wood was also considered. This highlights the importance of forest management, because despite unmanaged forests can show a higher amount of carbon on-site, managed stands can fixed more off-site carbon while being in a better condition in relation to climate change effects (droughts, pets or diseases, fires...). Annual carbon fixation during one rotation period in stone pine forests is larger for uneven-aged than even-aged forest structures, although the amount of removed wood of larger dimensions is greater in even-aged structure, resulting in an extension of carbon retention in wood products. Dead wood management (size, amount, density, etc.) is currently one of the most important questions to be resolved for forest management in the context of sustainability and biodiversity conservation. The models presented for coarse woody debris allow quantifying the biomass accumulated in this component, and therefore to furthering our understanding of the carbon cycle in Mediterranean pine forests.


Forest Management Carbon Sequestration Carbon Stock Coarse Woody Debris Dead Wood 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been funded through the following research projects: AGL-2010-15521; AGL2011-29701-C02-01; AGL2011-29701-C02-02; AGL2010-21153-C02; AGL2013-46028R; AT2013-004; RTA-2013-00011-C2.


  1. Álvarez González JG, Castedo Dorado F, Ruiz González AD, López Sánchez CA, von Gadow K (2004) A two-step mortality model for even-aged stands of Pinus radiata D. Don in Galicia (Northwestern Spain). Ann For Sci 61:441–450CrossRefGoogle Scholar
  2. Andreu L, Gutiérrez E, Macias M, Ribas M, Bosch O, Camarero JJ (2007) Climate increases regional tree-growth variability in Iberian pine forests. Global Chang Biol 13:1–12CrossRefGoogle Scholar
  3. Balboa-Murias MA, odríguez-Soalleiro R R, Merino A, Alvarez-González JA (2006) Temporal variations and distribution of carbon stocks in aboveground biomass of radiata pine and maritime pine pure stands under different silvicultural alternatives. For Ecol Manag 237:29–38CrossRefGoogle Scholar
  4. Bauhus J, Puettmann K, Messier C (2009) Silviculture for old-growth attributes. For Ecol Manag 258:525–537CrossRefGoogle Scholar
  5. Bogino SM, Bravo Oviedo F, Herrero de Aza C (2006) Carbon dioxide accumulation by pure and mixed woodlands of Pinus sylvestris L. and Quercus pyrenaica Willd. in Central Mountain Range (Spain). In: Oviedo FB (ed) Proceedings of the IUFRO Div. 4 international meeting “Managing Forest Ecosystems: the Challenges of Climate Change”. Ed. Cuatroelementos, Valladolid, 98 pGoogle Scholar
  6. Bravo F, Montero G (2003) High-grading effects on Scots pine volume and basal area in pure stands in northern Spain. Ann For Sci 60:11–18Google Scholar
  7. Bravo F, Pando V, Ordóñez C, Lizarralde I (2008) Modelling ingrowth in Mediterranean pine forests: a case study from Scots pine (Pinus sylvestris L.) and Mediterranean Maritime pine (Pinus pinaster Ait.) stands in Spain. Investigación Agraria: Sistemas y Recursos Forestales 17(3):250–260Google Scholar
  8. Bravo-Oviedo A, Tomé M, Río M, Montero G (2011) Calibración del modelo 3-PG para repoblaciones de pino negral sometidas a diferente tratamiento de claras. III Forest Model group meeting. Spanish Society of Forest Science, Lugo, Spain. Oral presentation, Unpublished, 4–6 May 2011Google Scholar
  9. Cairns MA, Brown S, Helmer EH, Baumgardner GA (1997) Root biomass allocation in the world’s upland forests. Oecologia 111:1–11CrossRefPubMedGoogle Scholar
  10. Calama R, Montero G (2007) Cone and seed production from Stone Pine (Pinus pinea L.) stands in Central Range (Spain). Eur J For Res 1256(1):23–35Google Scholar
  11. Calama R, Finat L, Gordo FJ, Bachiller A, Ruíz-Peinado R, Montero G (2005) Estudio comparativo de la producción de madera y piña en masas regulares e irregulares de Pinus pinea en la provincia de Valladolid. IV Congreso Forestal Español. Mesa 3. SECF y Diputación General de Aragón. ZaragozaGoogle Scholar
  12. Calama R, Sánchez-González M, Montero G (2007) Management oriented growth models for multifunctional Mediterranean forests: the case of stone pine (Pinus pinea L.). EFI Proceedings 56: 57–70Google Scholar
  13. Calama R, Barbeito I, Pardos M, Río M, Montero G (2008a) Adapting a model for even-aged Pinus pinea L. stands of complex multi-aged structures. For Ecol Manag 256:1390–1399CrossRefGoogle Scholar
  14. Calama R, Mutke S, Gordo JM, Montero G (2008b) An empirical ecological-type model for predicting stone pine (Pinus pinea L.) cone production in the Northern Plateau (Spain). For Ecol Manag 255(3/4):660–673CrossRefGoogle Scholar
  15. Campbell J, Alberti G, Martin J, Law BE (2009) Carbon dynamics of a ponderosa pine plantation following a thinning treatment in the northern Sierra Nevada. For Ecol Manag 257:453–463CrossRefGoogle Scholar
  16. Castedo-Dorado F, Gómez-García E, Diéguez-Aranda U, Barrio-Anta M, Crecente-Campo F (2012) Aboveground stand-level biomass estimation: a comparison of two methods for major forest species in northwest Spain. Ann For Sci 69:735–746CrossRefGoogle Scholar
  17. Christensen M, Hahn K, Mountford EP, Standova P, Rozenbergar S, Diaci J, Wijdeven S, Meyer P, Winter S, Vrska T (2005) Dead wood in European beech (Fagus sylvatica) forest reserves. For Ecol Manag 210:267–282CrossRefGoogle Scholar
  18. D’Amato AW, Bradford JB, Fraver S, Palik BJ (2011) Forest management for mitigation and adaptation to climate change: Insights from long-term silviculture experiments. For Ecol Manag 262(5):803–816CrossRefGoogle Scholar
  19. DeBell DS, Curtis RC, Harrington CA, Tappeiner JC (1997) Shaping stand development through silvicultural practices. In: Lathryn A, Kohm, Franklin JF (eds) Creating forestry for the 21st century. The science of ecosystem management. Island Press, pp 141–151Google Scholar
  20. Durbán M, Harezlak J, Wand MP, Carroll RJ (2005) Simple fitting of subject-specific curves for longitudinal data. Stat Med 24:1153–1167CrossRefPubMedGoogle Scholar
  21. Eilers PHC, Marx BD (1996) Flexible smoothing with B-splines and penalties. Stat Sci 11:89–121CrossRefGoogle Scholar
  22. Esseen PA, Ehnström B, Ericson L, Sjöberg K (1992) Boreal forest-The focal habitats of Fennoscandinavia. In: Hansson L (ed) Ecological principles of nature conservation. Applications in temperate and boreal environments, London, pp. 252–325Google Scholar
  23. Fang J, Guo Z, Hu H, Kato T, Muraoka H, Son Y (2014) Forest biomass carbon sinks in East Asia, with special reference to the relative contributions of forest expansion and forest growth. Glob Chang Biol 20:2019–2030CrossRefPubMedGoogle Scholar
  24. Fernández de Uña L, Cañellas I, Gea-Izquierdo G (2015) Stand competition determines how different tree species will cope with a warming climate. PLoS ONE 10(3):e0122255CrossRefPubMedPubMedCentralGoogle Scholar
  25. Finat L, Campana V, Seseña A (2000) La ordenación por entresaca en las masas de piñonero de la provincia de Valladolid. In: I Simposio del pino piñonero (Pinus pinea L.), Valladolid. Junta de Castilla y León, pp 147–157Google Scholar
  26. Fontes L, Bontemps J-D, Bugmann H, Van Oijen M, Gracia C, Kramer K, Lindner M, Rötzer T, Skovsgaard JP (2010) Models for supporting forest management in a changing environment. For Syst 19(SI):8–29Google Scholar
  27. Gracia CA, Burriel JA, Mata T, Vayreda J (2000) Inventari Ecológic i Forestal de Catalunya. Centre de Recerca Ecológica i Aplicacions ForestalsGoogle Scholar
  28. Hamilton GJ (1981) The effects of highest intensity thinning on yield. Forestry 54(1)Google Scholar
  29. Hansen AJ, Spies TA, Swanson FJ, Ohmann JL (1991) Conserving biodiversity in managed forests. Lessons from natural forests. BioScience 41:292–382CrossRefGoogle Scholar
  30. Harmon ME, Hua C (1991) Coarse woody debris in two oldgrowth ecosystems. Comparing a deciduous forest in China and a conifer forests in Oregon. BioScience 41:604–610CrossRefGoogle Scholar
  31. Harmon ME, Franklin JF, Swanson FJ, Sollins P, Gregory SV, Lattin JD, Anderson NH, Cline SP, Aumen NG, Sedell JR, Lienkaemper GW, Cromack K Jr, Cummins KW (1986) Ecology of coarse woody debris in temperate ecosystems. Adv Ecol Res 15:133–302CrossRefGoogle Scholar
  32. Hart SC (1999) Long-term decomposition of forest detritus in a Mediterranean type climate. In: Abstract presentations book of the Blodgett Forest Symposium, Center for Forestry, Berkeley, California, USAGoogle Scholar
  33. Hosmer DW, Lemeshow S (1989) Applied logistic regression. Wiley, New YorkGoogle Scholar
  34. Huang S, Yang Y, Wang Y (2003) A critical look at procedures for validating growth and yield models. In: Amaro A, Reed D, Soares P (eds) Modelling forest systems. CABI Publishing, Wallingford, pp. 271–293Google Scholar
  35. Hunter ML Jr (1990) Wildlife, forest, and forestry: Principles for managing forests for biological diversity. Prentice-Hall, Englewood CliffsGoogle Scholar
  36. Ibañez JJ, Vayreda J, Gracia C (2002) Metodología complementaria al Inventario Forestal Nacional en Catalunya. In: Bravo F, Río M, Peso C (eds) El Inventario Forestal Nacional: Elemento clave para la gestión forestal sostenible. Fundación General de la Universidad de Valladolid, pp. 67–77Google Scholar
  37. Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F, Johnson DW, Minkkinen K, Byrne KA (2007) How strongly can forest management influence soil carbon sequestration? Geoderma 137:253–268CrossRefGoogle Scholar
  38. Jordan L, Clark A III, Schimleck LR, Hall DB, Daniels RF (2008) Regional variation in wood specific gravity of planted loblolly pine in the United States. Can J For Res 38:698–710CrossRefGoogle Scholar
  39. Jurgensen M, Tarpey R, Pickens J, Kolka R, Palik B (2012) Long-term effect of silvicultural thinnings on soil carbon and nitrogen pools. Soil Sci Soc Am J 76Google Scholar
  40. Kaipainen T, Liski J, Pussinen A, Karjalainen T (2004) Managing carbon sinks by changing rotation length in European forests. Environ Sci Pol 7:205–219CrossRefGoogle Scholar
  41. Keeton WS, Franklin JF (2005) Do remnant old-growth trees accelerate rates of succession in mature Douglas-Fir forests? Ecol Monogr 75:103–118CrossRefGoogle Scholar
  42. Kimmins H, Blanco JA, Seely B, Welham C, Scoullar K (2010) Forecasting forest futures. A hybrid modelling approach to the assessment of sustainability of forest ecosystems and their values. Earthscan Ltd, London 281 ppGoogle Scholar
  43. Kolari P, Pumpanen J, Rannik U, Ilvesniemi H, Hari P, Berninger F (2004) Carbon balance of different aged Scots pine forests in Southern Finland. Glob Chang Biol 10:1106–1119CrossRefGoogle Scholar
  44. Landsberg J, Sands P (2011) Physiological ecology of forest production, Principles, processess and models, 1st edn. Elsevier Inc., London/Amsterdam/Burlington/San Diego, 331 pGoogle Scholar
  45. Landsberg JJ, Waring RH (1997) A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. For Ecol Manag 95(3):209–228CrossRefGoogle Scholar
  46. Linares JC, Delgado-Huertas A, Camarero JJ, Merino J, Carreira JA (2009) Competition and drought limit the response of water-use efficiency to rising atmospheric carbon dioxide in the Mediterranean fir Abies pinsapo. Oecologia 161:611–624CrossRefPubMedGoogle Scholar
  47. Liski J, Pussinen A, Pingoud K, Mäkipää R, Karjalainen T (2004) Which rotation length is favourable to carbon sequestration? Can J For Res 31:2004–2013CrossRefGoogle Scholar
  48. MAGRAMA (2013) Cambio climatic: Bases físicas. Guía resumida del quinto informe de evalaución del IPCC. Grupo de Trabajo I. Ministerio de Agricultura, Alimentación y Medio Ambiente, Fundación Biodiversidad y Oficina Española de Cambio Climático, Madrid, 44 pGoogle Scholar
  49. Martín-Benito D, Río M, Cañellas I (2010a) Black pine (Pinus nigra Arn.) growth divergence along a latitudinal gradient in Western Mediterranean mountains. Ann For Sci 67:401CrossRefGoogle Scholar
  50. Martín-Benito D, Río M, Heinrich H, Helle G, Cañellas I (2010b) Response of climate-growth relationships and water use efficiency to thinning in a Pinus nigra afforestation. For Ecol Manag 259:967–975CrossRefGoogle Scholar
  51. McComn W, Lindenmayer D (1999) Dying, dead, and down trees. In: Malcon L, Hunter JR (eds) Maintaining biodiversity in forest ecosystems. Cambridge University Press, Cambridge, pp. 335–372CrossRefGoogle Scholar
  52. Mokany K, Raison RJ, Prokushkin AS (2006) Critical analysis of root: shoot ratios in terrestrial biomes. Glob Chang Biol 12:84–96CrossRefGoogle Scholar
  53. Montero G, Serrada R (2013) La situación de los bosques y el sector forestal en España – ISFE 2013. Edit. Sociedad Española de Ciencias Forestales. Lourizán (Pontevedra)Google Scholar
  54. Montero G, Cañadas N, Yagüe S, Bachiller A, Calama R, Garriga E, Cañellas I (2003) Aportaciones al conocimiento de las masas de Pinus pinea L. en los Montes de Hoyo de Pinares (Ávila – España). Revista Montes 73:30–40Google Scholar
  55. Montero G, Ruiz-Peinado R, Muñoz M (2005) Producción de Biomasa y fijación de CO2 por los bosques españoles. Monografías INIA: Serie Forestal, n°13: 270 ppGoogle Scholar
  56. Montes F, Cañellas I (2006) Modelling coarse woody debris dynamics in even-aged Scots pine forests. For Ecol Manag 221:220–232CrossRefGoogle Scholar
  57. Moreno-Fernández D, Díaz-Pinés E, Barbeito I, Sánchez-González M, Montes F, Rubio A, Cañellas I (2015) Temporal carbon dynamics over the rotation period of two alternative management systems in Mediterranean mountain Scots pine forests. For Ecol Manag 348:186–195CrossRefGoogle Scholar
  58. Nave LE, Vance ED, Swanston CW, Curtis PS (2010) Harvest impacts on soil carbon storage in temperate forests. For Ecol Manag 259:857–866CrossRefGoogle Scholar
  59. Ninyerola M, Pons X, Rour JM (2005) Atlas climático digital de la Península Ibérica, Metodología y aplicaciones en bioclimatología o geobotánica. Universidad Autónoma de Barcelona, BellaterraGoogle Scholar
  60. Oria de Rueda JA, Díez J, Rodríguez M (1996) Guía de las plantas silvestres de Palencia. Ed. Cálamo, Palencia, 335 ppGoogle Scholar
  61. Pohjola J, Valsta L (2006) Carbon credits and management of Scots pine and Norway spruce stands in Finland. Forest Policy Econ 9(7):789–798CrossRefGoogle Scholar
  62. Powers MD, Kolka RK, Bradford JB, Palik BJ, Fraver S, Jurgensen MF (2012) Carbon stocks across a chronosequence of thinned and unmanaged red pine (Pinus resinosa) stands. Ecol Appl 22:1297–1307CrossRefPubMedGoogle Scholar
  63. Prestzsch H (2002) Grundlagen der Waldwachstumsforschung. Parey Verlag, MünchenGoogle Scholar
  64. Pretzsch H, Biber P, Schutze G, Uhl E, Rotzer T (2014) Forest stand growth dynamics in Central Europe have accelerated since 1870. Nat Commun 5:1–10CrossRefGoogle Scholar
  65. Río M, Calama R, Montes F, Montero G (2003) Influence of competition and structural diversity on basal area growth in uneven-aged stands of stone pine (Pinus pinea L.) in Spain. In: Uneven-aged forest management: Alternative forms, practices and constraints. IUFRO- Congress. Helsinki (Finlandia), June 2003Google Scholar
  66. Río M, Calama R, Cañellas I, Roig I, Montero G (2008) Thinning intensity and growth response in SW-European Scots pine stands. Ann For Sci 65:308–398CrossRefGoogle Scholar
  67. Río M, Rodríguez-Alonso J, Bravo-Oviedo A, Ruiz-Peinado R, Cañellas I, Gutiérrez E (2014) Aleppo pine vulnerability to climate stress is independent of site productivity of forest stands in southeastern Spain. Trees 28(4):1209–1224CrossRefGoogle Scholar
  68. Roig S, Río M, Cañellas I, Montero G (2005) Litter fall in Mediterranean Pinus pinaster Ait. stands under different thinning regimes. For Ecol Manag 206:179–190CrossRefGoogle Scholar
  69. Ruíz-Peinado R, Río M, Montero G (2011) New models for estimating the carbon sink capacity of Spanish softwood species. For Syst 20(1):176–188Google Scholar
  70. Ruiz-Peinado R, Montero G, Río M (2012) Biomass models to estimate carbon stocks for hardwood tree species. For Syst 21:42–52Google Scholar
  71. Ruíz-Peinado R, Bravo-Oviedo A, López-Senespleda E, Montero G, Río M (2013) Do thinnings influence biomass and soil carbon stocks in Mediterranean maritime pinewoods? Eur J For Res 132:253–262CrossRefGoogle Scholar
  72. Ruíz-Peinado R, Bravo-Oviedo A, Montero G, Río M (2014) Carbon stocks in a Scots pine afforestation under different thinning intensities management. Mitig Adapt Strateg Glob Chang. doi: 10.1007/s11027-014-9585-0 Google Scholar
  73. Sands PJ (2004) Adaptation of 3PG to novel species: guidelines for data collection and parameter assignment. Hobart, AustraliaGoogle Scholar
  74. SAS, Sas Institute Inc. (2001) SAS/STATTM user’s guide. Relase 8.2, Cary, NC, USAGoogle Scholar
  75. Scarascia-Mugnozza G, Oswald H, Piussi P, Radoglou K (2000) Forest of the Mediterranean region: gaps in knowledge and research needs. For Ecol Manag 132:97–109CrossRefGoogle Scholar
  76. Schroeder P, Brown S, Mo J, Birdsey R, Cieszewski C (1997) Biomass estimation for temperate broadleaf forests of the United States using inventory data. For Sci 43:424–434Google Scholar
  77. Siitonen J, Martikainen P, Punttila P, Rauh J (2000) Coarse woody debris and stand characteristics in mature managed and old-growth boreal mesic forests in southern Finland. For Ecol Manag 128:211–225CrossRefGoogle Scholar
  78. Smith DM, Larsen BC, Kelty MJ, Ashton PMS (1997) The practice of silviculture: applied forest ecology, 9th edn. Wiley, New York, 537 pGoogle Scholar
  79. Sollins P (1982) Input and decay of coarse woody debris in coniferous stands in western Oregon and Washington. Can J For Res 12:18–28CrossRefGoogle Scholar
  80. Somogyi Z, Cienciala E, Mäkipää R, Muukkonen P, Lehtonen A, Weiss P (2007) Indirect methods of large-scale forest biomass estimation. Eur J For Res 126:197–207CrossRefGoogle Scholar
  81. Spies TA, Franklin JF, Thomas TB (1988) Coarse woody debris in douglas-fir forests of western Oregon and Washington. Ecology 69:1689–1702CrossRefGoogle Scholar
  82. Stephens SL, Moghaddas JJ (2005) Fuel treatment effects on snags and coarse woody debris in a Sierra Nevada mixed conifer forest. For Ecol Manag 214:53–64CrossRefGoogle Scholar
  83. Teobaldelli M, Somogyi Z, Migliavacca M, Usoltsev VA (2009) Generalized functions of biomass expansion factors for conifers and broadleaved by stand age, growing stock and site index. For Ecol Manag 257:1004–1013CrossRefGoogle Scholar
  84. Vayreda J, Martínez-Vilalta J, Gracia M, Retana J (2012) Recent climate changes interact with stand structure and management to determine changes in tree carbon stocks in Spanish forests. Glob Chang Biol 18:1028–1041CrossRefGoogle Scholar
  85. Vesterdal L, Clarke N, Sigurdsson BD, Gundersen P (2013) Do tree species influence soil carbon stocks in temperate and boreal forests? For Ecol Manag 309:4–18CrossRefGoogle Scholar
  86. Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC et al (2011) The representative concentration pathways: an overview. Clim Chang 109(1–2):5–31CrossRefGoogle Scholar
  87. Wagner CE (1968) The line-intersect method in forest fuel sampling. For Sci 14:20–26Google Scholar
  88. Warren WG, Olsen PF (1964) A line-intersect technique for assessing logging waste. For Sci 10:267–276Google Scholar
  89. Woldendorp G, Keenan RJ, Barry S, Spencer RD (2004) Analysis of samplig methods for coarse woody debris. For Ecol Manag 198:133–148CrossRefGoogle Scholar
  90. Woodall CW, Heath LS, Smith JE (2008) National inventories of down and dead woody material forest carbon stocks in the United States: challenges and opportunities. For Ecol Manag 256:221–228CrossRefGoogle Scholar
  91. Woollons RC (1998) Even-aged stand mortality estimation through a two-step regression process. For Ecol Manag 105:189–195CrossRefGoogle Scholar
  92. Wright L (2006) Worldwide commercial development of bioenergy with a focus on energy crop-based projects. Biomass Bioenergy 30:706–714CrossRefGoogle Scholar
  93. Zhang S, Amateis RL, Burkhart HE (1997) Constraining individual tree diameter increment and survival models for loblolly pine plantations. For Sci 43:414–423Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Miren del Río
    • 1
    Email author
  • Ignacio Barbeito
    • 2
  • Andrés Bravo-Oviedo
    • 1
  • Rafael Calama
    • 1
  • Isabel Cañellas
    • 3
  • Celia Herrero
    • 4
  • Gregorio Montero
    • 1
  • Dianel Moreno-Fernández
    • 1
  • Ricardo Ruiz-Peinado
    • 1
  • Felipe Bravo
    • 5
  1. 1.Department of Sylviculture and Management of Forest Systems, INIA-Forest Research Centre and Sustainable Forest Management Research InstituteUniversidad de Valladolid & INIAMadridSpain
  2. 2.Laboratoire d’Etude des Ressources Forêt Bois (LERFoB)INRA centre of NancyChampenouxFrance
  3. 3.Joint Research Unit INIA-UVa, Department of Forest Systems and ResourcesCIFOR-INIAMadridSpain
  4. 4.Joint Research Unit INIA-UVa, Department of Forest ResourcesUniversidad de ValladolidPalenciaSpain
  5. 5.ETS de Ingenierías Agrarias - Universidad de Valladolid & iuFOR - Sustainable Forest Management Research InstituteUniversidad de Valladolid - INIAPalenciaSpain

Personalised recommendations