Effects of Forest Age Structure, Management and Gradual Climate Change on Carbon Sequestration and Timber Production in Finnish Boreal Forests

  • Jordi Garcia-GonzaloEmail author
  • Ane Zubizarreta-Gerendiain
  • Seppo Kellomäki
  • Heli Peltola
Part of the Managing Forest Ecosystems book series (MAFE, volume 34)


In this work, we employed two different ecosystem models in two separate case studies to assess the effects of forest age structure, management and gradual climate change on timber production and carbon sequestration of Finnish boreal forests with Norway spruce as main (dominant) tree species. Our case study examples demonstrated that over the 90 years simulation period the total timber production was from 16 to 30 % lower in southern Finland under the mild (SRES B1) and strong (SRES A2) climate change scenarios . In the northern Finland, the total timber production increased regardless of climate change scenario applied. Furthermore, both total timber production, its economic profitability and carbon stocks of forest ecosystem could be increased simultaneously if higher stocking (growing stock volume) was maintained over the rotation compared to the Finnish baseline forest management. However, timber production and carbon sequestration could not be maximised simultaneously. Thus, any preference of carbon sequestration in forest management would reduce the timber production and would result on opportunity costs.


Forest age structure Timber production Carbon sequestration Forest management Forest ecosystem modelling Gradual climate change 



We thank the Finnish Meteorological Institute, and especially Dr. Kirsti Jylhä and Dr. Kimmo Ruosteenoja, for providing for the ADAPT project (proj. 14907) the ACCLIM climate change scenarios (SRES B1 and SRES A2). This work was partly funded by the UEF foundation (project 930341) and partially supported by Project PTDC/AGR-FOR/4526/2012 Models and Decision Support Systems for Adressing Risk and Uncertainty in Forest Planning (SADRI). Jordi Garcia-Gonzalo was supported by a “Ramon y Cajal” research contract from the MINECO (Ref. RYC-2013-14262) and from CERCA Programme / Generalitat de Catalunya.


  1. Äijälä O, Koistinen A, Sved J, Vanhatalo K, Väisänen P (eds) (2014) Hyvän metsänhoidon suositukset Metsänhoito (Recommendations for good forest management – forest management). Tapio, Forestry Development Centre 264 p. (In Finnish)Google Scholar
  2. Briceño-Elizondo E, Garcia-Gonzalo J, Peltola H, Matala J, Kellomäki S (2006a) Sensitivity of growth of Scots pine, Norway spruce and silver birch to climate change in boreal conditions, with needs for adaptive management. For Ecol Manag 232:152–167CrossRefGoogle Scholar
  3. Briceño-Elizondo E, Garcia-Gonzalo J, Peltola H, Kellomäki S (2006b) Carbon stocks and timber yield in two boreal forest ecosystems under current and changing climatic conditions subjected to varying management regimes. Environ Sci Policy 9:237–252CrossRefGoogle Scholar
  4. Cajander AK (1949) Metsätyypit ja niiden merkitys. Acta Forestalia Fennica 56:5–69 (in Finnish)Google Scholar
  5. Dewar RC, Cannell MGR (1992) Carbon sequestration in the trees, soils and wood products of forest plantations: an analysis using UK examples. Tree Physiol 11:49–71CrossRefPubMedGoogle Scholar
  6. Erhard M, Lindner M, Cramer W (2001) Climate data. In: Kramer K, Mohren GMJ (eds) Long-term effects of climate change on carbon budgets of forests in Europe. ALTERRA Report 194, ALTERRA, Wageningen, The Netherlands, p. 151–161Google Scholar
  7. Finnish Statistical Yearbook of Forestry. 2001. Metsätilastollinen vuosikirja.Google Scholar
  8. Fürstenau C, Badeck FW, Lasch P, Lexer MJ, Lindner M, Mohr P, Suckow F (2006). Multiple-use forest management in consideration of climate change and the interests of stakeholder groups. Euro J of For Res. Volume 126, Issue 2:225–239Google Scholar
  9. Garcia-Gonzalo J, Peltola H, Briceño-Elizondo E, Kellomäki S (2007a) Effects of climate change and management on timber yield in boreal forests, with economic implications: A case study. Ecological Modelling, Volume 209. Issues 2–4:220–234 Google Scholar
  10. Garcia-Gonzalo J, Peltola H, Briceño-Elizondo E, Kellomäki S 2007b Changed thinning regimes may increase carbon stock under climate change: a case study from a Finnish boreal forest. Climatic Change. Volume 81, Issues 3–4, pp 431–454.
  11. Garcia-Gonzalo J, Peltola H, Zubizarreta-Gerendiain A, Kellomäki S (2007c) Impacts of forest landscape structure and management on timber production and carbon stocks in the boreal forest ecosystem under changing climate. Forest Ecology and Management Volume 241. Issues 1–3:243–257 Google Scholar
  12. Garcia-Gonzalo J, Borges JG, Palma JHN, Zuzibarreta-Gerendiain (2014) A decision support system for management planning of Eucalyptus plantations facing climate change. Ann For Sci 71(2):187–199 CrossRefGoogle Scholar
  13. Ge ZM, Kellomäki S, Peltola H, Zhou X, Väisänen H, Strandman H (2013a) Impacts of climate change on primary production and carbon sequestration of boreal Norway spruce forests: Finland as a model. Clim Chang 118(2):259–273CrossRefGoogle Scholar
  14. Ge ZM, Kellomäki S, Peltola H, Zhou X, Väisänen H (2013b) Adaptive management to climate change for Norway spruce forests along a regional gradient in Finland. Clim Chang 118:275–289CrossRefGoogle Scholar
  15. Giardina CP, Ryan MG (2000) Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature 404:858–861CrossRefPubMedGoogle Scholar
  16. Grace J (2001) Carbon cycle. Edinburgh University Press, Cambridge, pp. 609–629Google Scholar
  17. Grace J (2005) Role of forest biomes in the global carbon balance. In: Griffiths H, Jarvis GP (eds) The carbon balance of forest biomes. Bios Scientific, New York, pp. 19–45Google Scholar
  18. Hynynen J, Ojansuu R, Hökkä H, Salminen H, Siipilehto J, Haapala P (2002). Models for predicting stand development in MELA System. Finnish Forest Research Institute. Research Papers 835.116 pGoogle Scholar
  19. Jarvis PG, Linder S (2000) Botany – Constraints to growth of boreal forests. Nature 405:904–905CrossRefPubMedGoogle Scholar
  20. Jarvis PG, Ibrom A, Linder S (2005) Carbon forestry – Managing forests to conserve carbon. In: The Carbon Balance of Forest Biomes (ed) Griffiths H, Jarvis PG. Taylor & Francis Group, UK, pp. 331–349Google Scholar
  21. Jylhä K, Ruosteenoja K, Räisänen J, Venäläinen A, Tuomenvirta H, Ruokolainen L, Saku S, Seitola S (2009). (The changing climate in Finland: estimates for adaptation studies. ACCLIM project report 2009.) Finnish meteorological institute report. 2009: 4, 102 p. In Finnish, extended abstract and captions for figures and tables in English)Google Scholar
  22. Karjalainen T (1996) Model computations on sequestration of carbon in managed forests and wood products under changing climatic conditions in Finland. J Environ Manag 47:311–328CrossRefGoogle Scholar
  23. Karjalainen T, Pussinen A, Kellomäki S, Mäakipää R (1999) Scenarios for the carbon balance of Finnish forests and wood products. Environ Sci Pol 2:165–175CrossRefGoogle Scholar
  24. Karjalainen T, Pussinen A, Liski J, Nabuurs G-J, Eggers T, Lapveteläinen T, Kaipainen T (2003) Scenario analysis of the impacts of forest management and climate change on the European forest sector carbon budget. Forest Policy Econ 5:141–155CrossRefGoogle Scholar
  25. Kellomäki S, Väisänen H, Hänninen H, Kolström T, Lauhanen R, Mattila U, Pajari B (1992a) A simulation model for the succession of the boreal forest ecosystem. Silva Fennica 26:1–18CrossRefGoogle Scholar
  26. Kellomäki S, Väisänen H, Hänninen H, Kolström T, Lauhanen R, Mattila U, Pajari B (1992b) SIMA: a model for forest succession based on the carbon and nitrogen cycles with application to silvicultural management of the forest ecosystem. Silva Carelica 22:85Google Scholar
  27. Kellomäki S, Väisänen H (1997) Modelling the dynamics of the forest ecosystem for climate change studies in the boreal conditions. Ecol Model 97:121–140CrossRefGoogle Scholar
  28. Kellomäki S, Karjalainen T, Väisänen H (1997) More timber from boreal forests under changing climate? For Ecol Manag 94:195–208CrossRefGoogle Scholar
  29. Kellomäki S, Wang K-Y, Lemettinen M (2000) Controlled environment chambers for investigating tree response to elevated CO2 and temperature under boreal conditions. Photosynthetica 38:69–81CrossRefGoogle Scholar
  30. Kellomäki S, Strandman H, Nuutinen T, Peltola H, Korhonen KT, Väisänen H (2005). Adaptation of forest ecosystems, forests and forestry to climate change. FINADAPT working paper 4, Finnish Environment Institute Mimeographs 334, HelsinkiGoogle Scholar
  31. Kellomäki S, Peltola H, Nuutinen T, Korhonen KT, Strandman H (2008) Sensitivity of managed boreal forests in Finland to climate change, with implications for adaptive management. Philosophical Transactions of the Royal Society B: Biological Sciences 363(1501):2341–2351CrossRefGoogle Scholar
  32. Kramer K, Leinonen I, Bartelink HH, Berbigier P, Borghetti M, Bernhofer C, Cienciala E, Dolman AJ, Froer O, Gracia CA, Granier A, Grünwald T, Hari P, Jans W, Kellomäki S, Loustau D, Magnani F, Matteucci G, Mohren GMJ, Moors E, Nissinen A, Peltola H, Sabaté S, Sanchez A, Sontag M, Valentini R, Vesala T (2002) Evaluation of 6 process-based forest growth models based on eddy-covariance measurements of CO2 and H2O fluxes at 6 forest sites in Europe. Glob Chang Biol 8:1–18CrossRefGoogle Scholar
  33. Lindner M (2000) Developing adaptive forest management strategies to cope with climate change. Tree Physiol 20:299–307CrossRefGoogle Scholar
  34. Luo YQ, Wan SQ, Hui DF, Wallace LL (2001) Acclimatization of soil respiration to warming in a tall grass prairie. Nature 413:622–625CrossRefPubMedGoogle Scholar
  35. Lloyd J, Taylor JA (1994) On the temperature dependence of soil respiration. Funct Ecol 8:315–323CrossRefGoogle Scholar
  36. Matala J, Hynynen J, Miina J, Ojansuu R, Peltola H, Sievänen R, Väisänen H, Kellomäki S (2003) Comparison of a physiological model and a statistical model for prediction of growth and yield in boreal forests. Ecol Model 161:95–116CrossRefGoogle Scholar
  37. Matala J, Ojansuu R, Peltola H, Sievanen R, Kellomaki S (2005) Introducing effects of tempera-ture and CO2 elevation on tree growth into a statisticalgrowth and yield model. Ecol Model 181(2–3):173–190CrossRefGoogle Scholar
  38. Meehl GA, Covey C, Taylor KE, Delworth T, Stouffer RJ, Latif M, McAvaney B, Mitchell JFB (2007) THE WCRP CMIP3 Multimodel Dataset: A New Era in Climate Change Research. Bull Am Meteorol Soc 88:1383–1394. doi: 10.1175/BAMS-88-9-1383 CrossRefGoogle Scholar
  39. Melillo JM, McGuire AD, Kicklighter DW, Moore B III, Vorosmarty CJ, Schloss AL (1993) Global climate change and terrestrial net primary production. Nature 363:234–239CrossRefGoogle Scholar
  40. Mäkipää R, Karjalainen T, Pussinen A, Kukkola M, Kellomäki S, Mälkönen E (1998) Applicability of a forest simulation model for estimating effects of nitrogen deposition on a forest ecosystem: Test of the validity of a gap-type model. For Ecol Manag 108(3):239–250CrossRefGoogle Scholar
  41. Mäkipää R, Karjalainen T, Pussinen A, Kellomäki S (1999) Effects of climate change and nitrogen deposition on the carbon sequestration of a forest ecosystem in the boreal zone. Can J For Res 29:1490–1501CrossRefGoogle Scholar
  42. Nohrstedt HÖ (2001) Responses of coniferous forest ecosystems on mineral soils to nutrient additions: A review of Swedish experiences. Scand J For Res 16:555–573CrossRefGoogle Scholar
  43. Olsson P (2006) Effects of Fertilisation on Rhizospheric and Heterotrophic Soil CO2 Efflux in Boreal Norway spruce Stands. Licentiate thesis, Swedish University of Agricultural Sciences, Faculty of Forest Sciences, Department of Forest Ecology, Umeå. Stencilserie No. 113, 29 p ISSN 1104–1870, ISRN SLU-SEKOL-STL-113-SE.Google Scholar
  44. Pukkala T, Kellomäki S (2012) Anticipatory vs adaptive optimization of stand management when tree growth and timber prices are stochastic. Forestry 85(4):463–472CrossRefGoogle Scholar
  45. Pussinen A, Karjalainen T, Mäkipää R, Valsta L, Kellomäki S (2002) Forest carbon sequestration and harvests in Scots pine stand under different climate and nitrogen deposition scenarios. For Ecol Manag 158(1–3):103–115CrossRefGoogle Scholar
  46. Routa J, Kellomäki S, Peltola H, Asikainen A (2011a) Impacts of thinning and fertilization on timber and energy wood production in Norway spruce and Scots pine: scenario analyses based on ecosystem model simulations. Forestry 84:159–175CrossRefGoogle Scholar
  47. Routa J, Kellomäki S, Kilpeläinen A, Peltola H, Strandman H (2011b) Effects of forest management on the carbon dioxide emissions of wood energy in integrated production of timber and energy biomass. Glob Change Biol Bioenerg 3:483–497CrossRefGoogle Scholar
  48. Routa J (2011) Effects of forest management on sustainability of integrated timber and energy wood production—scenario analysis based on ecosystem model simulations Dissertation Forestales:123Google Scholar
  49. Sabaté S, Gracia CA, Sánchez A (2002) Likely effects of climate change on growth of Quercus ilex, Pinus halepensis, Pinus pinaster, Pinus sylvestris and Fagus sylvatica forests in the Mediterranean region. For Ecol Manag 162(1):23–37CrossRefGoogle Scholar
  50. Strömgren M (2001). Soil-surface CO2 flux and growth in a boreal Norway spruce stand. Doctoral thesis. Swedish University of Agricultural Sciences. Acta Universitatis Agriculturae Sueciae, Silvestria 220, 44 p.Google Scholar
  51. Strandman H, Väisänen H, Kellomäki S (1993) A procedure for generating synthetic weather records in conjunction of climatic scenario for modelling of ecological impacts of changing climate in boreal conditions. Ecol Model 70:195–220CrossRefGoogle Scholar
  52. Thornley JHM, Cannell MGR (2000) Managing forests for wood yield and carbon storage: a theoretical study. Tree Physiol 20:477–484CrossRefPubMedGoogle Scholar
  53. Venäläinen A, Tuomenvirta H, Pirinen P, Drebs A (2005) A basic Finnish climate data set 1961-2000-description and illustrations. Finnish Meteorological Institute, Reports 2005:5Google Scholar
  54. Vucetich JA, Reed DD, Breymeyer A, Degórski M, Mroz GD, Solon J, Roo-Zielinska E, Noble R (2000) Carbon pools and ecosystem properties along a latitudinal gradient in northern Scots pine (Pinus sylvestris) forests. For Ecol Manag 136:135–145CrossRefGoogle Scholar
  55. Zubizarreta-Gerendiain A, Pukkala T, Kellomäki S, Garcia-Gonzalo J, Ikonen V-P, Peltola H (2014) Effects of climate change on optimised stand management in the boreal forests of central Finland. European Jorunal of forest research. Volume 134, Issue 2, Page 273–280. doi: 10.1007/s10342-014-0849-8 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Jordi Garcia-Gonzalo
    • 1
    • 2
    Email author
  • Ane Zubizarreta-Gerendiain
    • 3
    • 4
  • Seppo Kellomäki
    • 3
  • Heli Peltola
    • 3
  1. 1.Forest Research Centre, School of AgricutureUniversity of LisbonLisbonPortugal
  2. 2.Forest Sciences Centre of Catalonia (CTFC)SolsonaSpain
  3. 3.School of Forest SciencesUniversity of Eastern FinlandJoensuuFinland
  4. 4.Basque Centre for Climate Change (BC3)Scientific Campus of the University of the Basque CountryBilbaoSpain

Personalised recommendations