Forest Carbon Sequestration: The Impact of Forest Management

  • Felipe BravoEmail author
  • Miren del Río
  • Andrés Bravo-Oviedo
  • Ricardo Ruiz-Peinado
  • Carlos del Peso
  • Gregorio Montero
Part of the Managing Forest Ecosystems book series (MAFE, volume 34)


Regardless of their geographical location , forests play an important role in CO2 fixation. Carbon stored in terrestrial ecosystems is distributed among three compartments: living plant biomass (stem, branches, foliage, roots), plant detritus (fallen branches and cones, forest litter, tree stumps, tree tops, logs) and soil (organic mineral humus, surface and deep mineral soil). Trees acquire energy for their living structures through photosynthesis, which requires CO2 captured by stomata in the leaves. Part of the captured CO2 is used to create living biomass, while the remainder is released back into the atmosphere through autotrophic respiration. When leaves or branches die and decompose, they increase soil carbon and also release a small amount into the atmosphere through heterotrophic respiration.


Forest Management Carbon Sequestration Soil Carbon Carbon Stock Carbon Storage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aponte C, García LV, Marañón T (2013) Tree species effects on nutrient cycling and soil biota: a feedback mechanism favouring species coexistence. For Ecol Manag 309:36–46. doi: 10.1016/j.foreco.2013.05.035 CrossRefGoogle Scholar
  2. Assmann E (1970) The principles of forest yield study. Pergamon Press, OxfordGoogle Scholar
  3. Barbosa P, Hines J, Kaplan I, Martinson H, Szczepaniec A, Szendrei Z (2009) Associational resistance and associational susceptibility: having right or wrong neighbors. Annu Rev Ecol Evol Syst 40:1CrossRefGoogle Scholar
  4. Bellassen V, Luyssaert S (2014) Carbon sequestration: managing forests in uncertain times. Nature 506:153.155. doi: 10.1038/506153a CrossRefGoogle Scholar
  5. Blanco JA, Imbert JB, Castillo FJ (2006) Influence of site characteristics and thinning intensity on litterfall production in two Pinus sylvestris L. forests in the western Pyrenees. For Ecol Manag 237(1–3):342–352CrossRefGoogle Scholar
  6. Bogino SM, Bravo F (2008) Growth response of Pinus pinaster Ait. to climatic variables in central Spanish forests. Ann For Sci 65(506):1–13. doi: 10.1051/forest:2008025 Google Scholar
  7. Bogino SM, Bravo F (2014) Carbon stable isotope-climate association in tree rings of Pinus pinaster and Pinus sylvestris in Mediterranean environments. Bosque 35(2):175–184CrossRefGoogle Scholar
  8. Bogino S, Bravo F, Herrero C (2006) Carbon dioxide accumulation by pure and mixed woodlands of Pinus sylvestris L. and Quercus pyrenaica Willd in Central Mountain Range Spain. In: Bravo F (ed) Proceedings of the IUFRO meeting on managing forest ecosystems: the challenges of climate change, PalenciaGoogle Scholar
  9. Bogino SM, Fernández-Nieto MJ, Bravo F (2009) Drought index and radial growth of Pinus sylvestris L. in its southern and western distribution threshold. Silva Fennica 43(4):609–623CrossRefGoogle Scholar
  10. Bolte A, Ammer C, Löf M, Madsen P, Nabuurs GJ, Schall P, Spathelf P, Rock J (2009) Adaptive forest management in central Europe: climate change impacts, strategies and integrative concept. Scand J For Res 24:473–482CrossRefGoogle Scholar
  11. Brassard BW, Chen HYH, Cavard X, Laganière J, Reich PB, Bergeron Y, Paré D, Yuan Z (2013) Tree species diversity increases fine root productivity through increased soil volume filling. J Ecol 101:210–219CrossRefGoogle Scholar
  12. Bravo F, Díaz-Balteiro L (2004) Evaluation of new silvicultural alternatives for Scots pine stands in northern Spain. Ann For Sci 61(2):163–169CrossRefGoogle Scholar
  13. Bravo F, Herrero C, Ordóñez C, Segur M, Gómez C, Menéndez M, Cámara A (2007) Cuantificación de la fijación de CO2 en la biomasa arbórea de los sistemas forestales españoles. In: Bravo (coord) El papel de los bosques españoles en la mitigación del cambio climático, pp 143–196Google Scholar
  14. Bravo F, Bravo-Oviedo A, Díaz-Balteiro L (2008) Carbon sequestration in Spanish Mediterranean forests under two management alternatives: a modeling approach. Eur J For Res 127:225–234CrossRefGoogle Scholar
  15. Bravo F, Osorio LF, Pando V, del Peso C (2010) Long-term implications of traditional forest regulation methods applied to Maritime pine (Pinus pinaster Ait.) forests in central Spain: a century of management plans. iForest 3:33–38. doi: 10.3832/ifor0526-003
  16. Bravo-Oviedo A, Ruiz-Peinado R, Modrego P, Alonso R, Montero G (2015) Forest thinning impact on carbon stock and soil condition in Southern European populations of P. sylvestris L. For Ecol Manag 357:259–267. doi: 10.1016/j.foreco.2015.08.005 CrossRefGoogle Scholar
  17. Castaño J, Bravo F (2012) Variation in carbon concentration and basic density along stems of sessile oak (Quercus petraea (Matt.) Liebl.) and Pyrenean oak (Quercus pyrenaica Willd.) in the Cantabrian Range (NW Spain). Ann For Sci 69(6):663–672.
  18. Chatterjee A, Vance GF, Tinker DB (2009) Carbon pools of managed and unmanaged stands of ponderosa and lodgepole pine forests in Wyoming. Can J For Res 39(10):1893–1900. doi: 10.1139/X09-112 CrossRefGoogle Scholar
  19. Chauvat M, Titsch D, Zaytsev AS, Wolters V (2011) Changes in soil faunal assemblages during conversion from pure to mixed forest stands. For Ecol Manag 262:317–324. doi: 10.1016/j.foreco.2011.03.037 CrossRefGoogle Scholar
  20. Chiti T, Publisi A, Certini G, Sanesi G, Buresti E (2003) Sequestro del carbonio in suoli su discarich minerarie riforestate con specie azotofissatrici e non. SISEF atti 4:53–57Google Scholar
  21. Ciais Ph, Reichstein M, Viovy N, Granier, A, Ogee, J, Allard V, Aubinet M, Buchmann N, Bernhofer Chr, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Gruenwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437(7058):529–533Google Scholar
  22. Condés S, del Rio M, Sterba H (2013) Mixing effect on volume growth of Fagus sylvatica and Pinus sylvestris is modulated by stand density. Forest Ecol Manag 292:86–95CrossRefGoogle Scholar
  23. D’Amato AW, Bradford JB, Fraver S, Palik BJ (2011) Forest management for mitigation and adaptation to climate change: Insights from long-term silviculture experiments. For Ecol Manag 262(5):803–816. doi: 10.1016/j.foreco.2011.05.014 CrossRefGoogle Scholar
  24. de las Heras J, Moya D, López-Serrano FR, Rubio E (2013) Carbon sequestration of naturally regenerated Aleppo pine stands in response to early thinning. New For 44(3):457–470. doi: 10.1007/s11056-012-9356-2 CrossRefGoogle Scholar
  25. del Río M (1999) Régimen de claras y modelos de producción para Pinus sylvestris L. en los sistemas Central e Ibérico. Tesis Doctoral, INIA, 257 pGoogle Scholar
  26. del Río M, Sterba H (2009) Comparing volume growth in pure and mixed stands of Pinus sylvestris and Quercus pyrenaica. Ann For Sci 66:502CrossRefGoogle Scholar
  27. Fang J, Chen A, Peng C, Zhao S, Ci L (2001) Changes in Forest Biomass carbon storage in China between 1949 and 1998. Science 292:2320–2322CrossRefPubMedGoogle Scholar
  28. FAO (1995) Forest resources assessment 1990. Global synthesis. Available online at:
  29. FAO (2006) Global forest resources assesment 2005. Progress towards sustainable forest management. FAO Forestry Paper 147 320 pp. FAO, Rome Available online at on Last accessed 30 Sept 2007
  30. FAO (2010) Global forest resources assesment 2010. Main Report FAO Forestry Paper 163 340 pp. Available online at
  31. FAO (2015) Global forest resources assessment 2015. FAO-Forestry Paper 1. Available online at
  32. Forrester DI, Pretzsch H (2015) Tamm review: on the strength of evidence when comparing ecosystem functions of mixtures with monocultures. For Ecol Manag (in press). doi: 10.1016/j.foreco.2015.08.016
  33. Franklin J, Berg D, Thomburgh D, Tappeiner J (1997) Alternative silvicultural approaches to timber harvesting: variable retention. In: Kohm D, Franklin J (eds) Creating a forestry for the 21st century. Island Press, Washington, DC, pp 111–139Google Scholar
  34. Fuhrer J, Benitson M, Fischlin A, Frei C, Goyette S, Jasper K, Pfister C (2006) Climate risks and their impact on agriculture and forestry in Switzerland. Clim Chang 79:79–102CrossRefGoogle Scholar
  35. Fujimori T (2001). Ecological and silvicultural strategies for sustainable forest management. Elsevier. Amsterdam 398 pagesGoogle Scholar
  36. Goodman RC, Philips OL, Baker TR (2014) The importance of crown dimensions to improve tropical tree biomass estiamtes. Ecol Appl 24:680–698CrossRefPubMedGoogle Scholar
  37. Gracia C, Sabaté S, López B, Sánchez A (2001) Presente y futuro del bosque mediterráneo: balance de carbono, gestión forestal y cambio global. In: Zamora Ry Puignaire FI (eds) Aspectos funcionales de los ecosistemas mediterráneos CSIC-AEET, Granada, pp 351–372Google Scholar
  38. Gracia C, Gil L, Montero G (2005) Impactos sobre el sector forestal. In: Moreeeno Rodríguez JM (ed) Evaluación preliminar de los impactos en España por efecto del cambio climático. Ministerio de Medio Ambiente, pp 399–436Google Scholar
  39. Granda E, Rossatto DR, Camarero JJ, Voltas J, Valladares F (2014) Growth and carbon isotopes of Mediterranean trees reveal contrasting responses to increased carbon dioxide and drought. Oecologia 174:307–317CrossRefPubMedGoogle Scholar
  40. Han S-K, Han H-S, Page-Dumroese DS, Johnson LR (2009) Soil compaction associated with cut-to-length and whole-tree harvesting of a coniferous forest. Can J For Res 39(5):976–989. doi: 10.1139/x09-027 CrossRefGoogle Scholar
  41. Helms JA (ed) (1998) The dictionary of forestry. Society of American Forestry, Bethesda, 210 ppGoogle Scholar
  42. Henderson GS (1995) Soil organic matter: a link between forest management and productivity. In: Bigham JM, Bartels JM (eds) Carbon forms and functions in forest soils, vol W1. Soils Science Society of America, Madison, pp. 419–435Google Scholar
  43. Hennon PE, Wittwer DT, D’Amore DV, Lamb M (2009) Yellow-cedar decline: key landscape features and snow modeling of a climate-induced forest decline on a dormant volcano. Phytopathology 99:S52Google Scholar
  44. Herrero C, Pando V, Bravo F (2010) Modelling coarse woody debris in Pinus spp. plantations. A case study in Northern Spain. Ann For Sci 67:708. doi: 10.1051/forest/2010033 CrossRefGoogle Scholar
  45. Herrero C, Turrión B, Pando V, Bravo F (2011) Carbon in heartwood, sapwood and bark along stem profile in three Mediterranean Pinus species. Ann For Sci 68(6):1067–1076.
  46. Herrero C, Krankina O, Monleon VJ, Bravo F (2014a) Amount and distribution of coarse woody debris in pine ecosystems of north-western Spain, Russia/United States. iForest 7:53–60. doi: 10.3832/ifor0644-006 CrossRefGoogle Scholar
  47. Herrero C, Juez L, Tejedor C, Pando V, Bravo F (2014b) Importance of root system in total biomass for Eucalyptus globulus in northern Spain. Biomass Bioenergy 67:212–222. doi: 10.1016/j.biombioe.2014.04.023 CrossRefGoogle Scholar
  48. Hoover C, Stout S (2007) The carbon consequences of thinning techniques: stand structure makes a difference. J For 105(5):266–270Google Scholar
  49. Hoover CM (2011) Management impacts on forest floor and soil organic carbon in northern temperate forests of the US. Carbon Balance and Management 6:17. doi: 10.1186/1750-0680-6-17 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Houghton RA, Hackler JL, Lawrence KT (1999) The U.S. Carbon Budget : contributions from Land-use change. Science 285:574–578CrossRefPubMedGoogle Scholar
  51. Ibáñez JJ, Vayreda J, Gracia C (2002) Metodología complementaria al Inventario Forestal Nacional en Catalunya. In: Bravo F, del Río M, del Peso C (eds) El Inventario Forestal Nacional. Elemento clave para la. Gestión Forestal Sostenible, pp 67–77Google Scholar
  52. IPCC (2001) Tercer Informe de Evaluación. Cambio climático 2001. Mitigación. Resumen para responsables de políticas y resumen técnicoGoogle Scholar
  53. IPCC (2007) Summary for policymakers. In: Climate change 2007: mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Available online on
  54. IPCC (2014) Climate change 2014: Synthesis report. contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on climate change [Core Writing Team, Pachauri RK, Meyer LA (eds)]. IPCC. Geneva, 151 ppGoogle Scholar
  55. Jactel H, Brockerhoff EG (2007) Tree diversity reduces herbivory by forest insects. Ecol Lett 10:835–848CrossRefPubMedGoogle Scholar
  56. Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F, Johnson DW, Minkkinen K, Byrne KA (2007) How strongly can forest management influence soil carbon sequestration? Geoderma 137(3–4):253–268. doi: 10.1016/j.geoderma.2006.09.003 CrossRefGoogle Scholar
  57. Jiménez E, Vega JA, Fernández C, Fonturbel T (2011) Is pre-commercial thinning compatible with carbon sequestration? A case study in a maritime pine stand in northwestern Spain. Forestry 84(2):149–157. doi: 10.1093/forestry/cpr002 CrossRefGoogle Scholar
  58. Johnson DW, Curtis PS (2001) Effects of forest management on soil C and N storage: meta analysis. For Ecol Manag 140(2–3):227–238. doi: 10.1016/S0378-1127(00)00282-6 CrossRefGoogle Scholar
  59. Jonard M, Misson L, Ponette Q (2006) Long-term thinning effects on the forest floor and the foliar nutrient status of Norway spruce stands in the Belgian Ardennes. Can J For Res 36(10):2684–2695. doi: 10.1139/x06-153 CrossRefGoogle Scholar
  60. Jurgensen M, Tarpey R, Pickens J, Kolka R, Palik B (2012) Long-term effect of silvicultural thinnings on soil carbon and nitrogen pools. Soil Sci Soc Am J 76(4):1418–1425. doi: 10.2136/sssaj2011.0257 CrossRefGoogle Scholar
  61. Kaipainen T, Liski J, Pussinen A, Karjalainen T (2004) Managing carbon sinks by changing rotation length in European forests. Environ Sci Pol 7:205–219CrossRefGoogle Scholar
  62. Keenan RJ, Reams GA, Achard F, de Freitas JV, Grainger A, Lindquist E (2015) Dynamics of global forest area: results from the FAO global Forest Resources Assessment 2015. For Ecol Manag 352:9–20. doi: 10.1016/j.foreco.2015.06.014 CrossRefGoogle Scholar
  63. Keyser TL, Zarnoch SJ (2012) Thinning, age, and site quality influence live tree carbon stocks in upland hardwood forests of the Southern Appalachians. For Sci 58(5):407–418Google Scholar
  64. Kolström M, Lindner M, Vilén T, Maroschek M, Seidl R, Lexer MJ, Netherer S, Kremer A, Delzon S, Barbati A, Marchetti M, Corona P (2011) Reviewing the science and implementation of climate change adaptation measures in European forestry. Forests 2:961–982CrossRefGoogle Scholar
  65. Kurz WA, Apps MJ (1999) A 70-year retrospective analysis of carbon fluxes in the Canadian forest sector. Ecol Appl 9:526–547CrossRefGoogle Scholar
  66. Kurz WA, Beukema SJ, Apps MJ (1998) Carbon budget implications of the transition from natural to managed disturbance regimes in forest landscapes. Mitig Adapt Strateg Glob Chang 2:405–421Google Scholar
  67. Lindner M, Karjalainen T (2007) Carbon inventory methods and carbon mitigation potentials of forests in Europe: a short review of recent progress. Eur J Forest Res 126:149–156CrossRefGoogle Scholar
  68. Liski J, Perruchoud D, Karjalainen T (2002) Increasing carbon stocks in forest soils of western Europe. For Ecol Manag 169:159–175CrossRefGoogle Scholar
  69. Liu J, Peng C, Apps M, Dang Q, Banfield E, Kurz W (2002) Historic carbon budgets of Ontario’s forest ecosystems. For Ecol Manag 169:103–114CrossRefGoogle Scholar
  70. Martin E (2005) Revisión de la ordenación del M.U.P. n° 50 “Pinar del Llano” del término municipal de Portillo (Valladolid). Proyecto Fin de Carrera, Ingeniería Técnica Forestal. E,T.S. de Ingenierías Agrarias de Palencia. University of Valladolid, SpainGoogle Scholar
  71. McCarl BA, Schneider UA (2001) Greenhouse gas mitigation in U.S. agriculture and forestry. Science 294:2481–2482CrossRefPubMedGoogle Scholar
  72. Melillo J, Prentice IC, Farquhar CD, Schulze ED, Sala OE (1996) Terrestrial biotic responses to environmental change and feedbacks to climate. In: Houghton JT, . Meira Filho LG, Callander BA, Harris N, Kattenberg A, Maskell K (eds) Climate change 1995-The sciencie of climate change. Cambridge University Press, Cambridge, pp. 445–481Google Scholar
  73. Metsaranta JM, Kurz WA, Neilson ET, Stinson G (2010) Implications of future disturbance regimes on the carbon balance of Canada’s managed forest (2010–2100). Tellus B 62(5):719–728. doi: 10.1111/j.1600-0889.2010.00487.x CrossRefGoogle Scholar
  74. Montero G, Muñoz M, Donés J, Rojo A (2004) Fijación de CO2 por Pinus sylvestris L. y Quercus pyrenaica Willd. En los montes “Pinar de Valsaín” y “Matas de Valsaín”. Investigación Agraria: Sistemas y Recursos Forestales 13(2):399–416Google Scholar
  75. Montero G, Ruiz-Peinado R, Muñoz M (2005) Producción de biomasa y fijación de CO2 por los bosques españoles. Monografías INIA Serie Forestal, Madrid, 270 ppGoogle Scholar
  76. Nabuurs GJ, Masera O, Andrasko K, Benítez-Ponce P, Boer R, Dutsckhe M, Elsiddig E, Ford-Robertson J, Frumhoff P, Karjalainen T, Krankina O, Kurz WA, Natsumoto M, Oyhantcabal W, Ravindranath NH, Sanz Sánchez MJ, Zhang X (2007) Forestry. In: Metz B, Davidson OR, P.R. B, Dave R, Meyer LA (eds) Climate change 2007: mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  77. Nabuurs G-J, Schelhass M-J, Mohren MJ, Field CB (2003) Temporal evolution of the European forest sector carbon sink from 1950–1999. Glob Chang Biol 9:152–160CrossRefGoogle Scholar
  78. Nave LE, Vance ED, Swanston CW, Curtis PS (2010) Harvest impacts on soil carbon storage in temperate forests. For Ecol Manag 259(5):857–866. doi: 10.1016/j.foreco.2009.12.009 CrossRefGoogle Scholar
  79. Novák J, Slodicák M (2004) Structure and accumulation of litterfall under Norway spruce stands in connection with thinnings. J For Sci 50(3):101–108Google Scholar
  80. Nyberg JB (1998) Statistics and the practice of adaptive management. In: Sit V, Taylor B (eds) Statistical methods for adaptive management studies/Res. Br., B.C. Min. For., Res.Br., Land Manage. Hand 42:1–7Google Scholar
  81. Olivar J, Bogino S, Rathegeber C, Bonnesoeur V, Bravo F (2014) Thinning has a positive effect on growth dynamics and growth-climate relationships in Aleppo pine (Pinus halepensis L.) trees of different crown classes. Ann For Sci 71(3):395–404CrossRefGoogle Scholar
  82. Olivar J, Bogino S, Spiecker H, Bravo F (2012) Climate impact on growth dynamic and intra-annual density fluctuations in Aleppo pine (Pinus halepensis) trees of different crown classes. Dendrochronologia 30:35–47. doi: 10.1016/j.dendro.2011.06.001 CrossRefGoogle Scholar
  83. Pacala SW, Hurtt GC, Baker D, Peylin P, Houghton RA, Birdsey RA, Heath L, Sundquist ET, Stallard RF, Ciais P, Moorcroft P, Caspersen JP, Shevliakova E, Moore B, Kohlmaier G, Holland E, Gloor M, Harmon ME, Fan S-M, Sarmiento JL, Goodale CL, Schimel D, Field CB (2001) Consistent land- and atmosphere-based U.S. carbon sink estimates. Science 292:2316–2320CrossRefPubMedGoogle Scholar
  84. Paquette A, Messier C (2011) The effect of biodiversity on tree productivity: from temperate to boreal forests. Glob Ecol Biogeogr 20:170–180CrossRefGoogle Scholar
  85. Paul KI, Polglase PJ, Nyakuengama JG, Khanna PK (2002) Change in soil carbon following afforestation. For Ecol Manag 168:241–257CrossRefGoogle Scholar
  86. Powers MD, Kolka R, Palik B, McDonald R, Jurgensen M (2011) Long-term management impacts on carbon storage in Lake States forests. For Ecol Manag 262(3):424–431. doi: 10.1016/j.foreco.2011.04.008 CrossRefGoogle Scholar
  87. Powers MD, Kolka RK, Bradford JB, Palik BJ, Fraver S, Jurgensen MF (2012) Carbon stocks across a chronosequence of thinned and unmanaged red pine (Pinus resinosa) stands. Ecol Appl 22(4):1297–1307. doi: 10.1890/11-0411.1 CrossRefPubMedGoogle Scholar
  88. Prescott CE, Vesterdal L (2013) Tree species effects on soils in temperate and boreal forests: emerging themes and research needs. For Ecol Manag 309:1–3. doi: 10.1016/j.foreco.2013.06.042 CrossRefGoogle Scholar
  89. Pretzsch H, Biber P, Schütze G, Uhl E, Rötzer T (2014) Forest stand growth dynamics in Central Europe have accelerated since 1870. Nat Commun 5:4967. doi: 10.1038/ncomms5967 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Pretzsch H, del Río M, Ammer C, Avdagic A, Barbeito I, Bielak K, Brazaitis G, Coll L, Dirnberger G, Drössler L, Fabrika M, Forrester DI, Godvod K, Heym M, Hurt V, Kurylyak V, Löf M, Lombardi F, Matović B, Mohren F, Motta R, den Ouden J, Pach M, Ponette Q, Schütze G, Schweig J, Skrzyszewski J, Sramek V, Sterba H, Stojanović D, Svoboda M, Vanhellemont M, Verheyen K, Wellhausen K, Zlatanov T, Bravo-Oviedo A (2015) Growth and yield of mixed versus pure stands of Scots pine (Pinus sylvestris L) and European beech (Fagus sylvatica L) analysed along a productivity gradient through Europe. Eur J Forest Res 134(5):927–947CrossRefGoogle Scholar
  91. Prieto-Recio C, Martin-García J, Diez JJ, Bravo F (2015) Unravelling the associations between climate, soil properties and forest management in Pinus pinaster decline in the Iberian Peninsula. For Ecol Manag (in press). doi: 10.1016/j.foreco.2015.07.033
  92. Reichstein M, Tenhunen JD, Roupsard O Ourcival JM, Rambal S, Miglietta F, Peressotti A, Pecchiari M, Tirone G,Valentini R (2002) Severe drought effects on ecosystem CO2 and H2O fluxes at three Mediterranean evergreen sites: revision of current hypothesis? Glob Chang Biol 8:999–1017Google Scholar
  93. Ruano I, Manso R, Fortin R Bravo F (2015) Extreme climate conditions limit seed availability to successfully attain natural regeneration of Pinus pinaster in sandy areas of Central Spain. Can J For Res (in press). doi: 10.1139/cjfr-2015-0257
  94. Ruano I, Pando V, Bravo F (2009) How do light and water influence Pinus pinaster Ait. germination and early seedling development? For Ecol Manag 258:2647–2653. doi: 10.1016/j.foreco.2009.09.027 CrossRefGoogle Scholar
  95. Ruano I, Rodríguez E, Bravo F (2013) Effects of pre-commercial thinning on growth and reproduction in post fire regeneration of Pinus halepensis Mill. Ann For Sci 70(4):357–366. doi: 10.1007/s13595-013-0271-2 CrossRefGoogle Scholar
  96. Ruiz-Peinado R, Bravo-Oviedo A, López-Senespleda E, Montero G, Río M (2013) Do thinnings influence biomass and soil carbon stocks in Mediterranean maritime pinewoods? Eur J For Res 132:253–262Google Scholar
  97. Ruiz-Peinado R, Bravo-Oviedo A, Montero G, Río M (2016) Carbon stocks in a Scots pine afforestation under different thinning intensities management. Mitig Adapt Strat Glob Chang 21:1059–1072Google Scholar
  98. Sabaté S, Gracia CA, Sanchez A (2002) Likely effects of climate change on growth of Quercus ilez, Pinus halepensis, Pinus pinaster, Pinus sylvetris and Fagus sylvatica forest in the Mediterranean region. For Ecol Manag 162(1):23–37CrossRefGoogle Scholar
  99. Scarascia-Mugnozza G, Matteucci G, Montagnani L, Masci A (2001) Gestione forestale sostenibile e carbonio organico nei suoli in ambiente mediterraneo: inquadramento del problema e aspetti metodologici per una ricerca nel territorio del Parco Nazionale della Calabria. L’Italia Forestale e Montana 5:333–343Google Scholar
  100. Schmid, S., Thürig, E., Kaufmann, E.,Lischke, H., Bugmann,H. (2006) Effect of forest management on futer carbon pools and fluxes: a model comparison. For Ecol Manag 237:65–82Google Scholar
  101. Skovsgaard JP, Stupak I, Vesterdal L (2006) Distribution of biomass and carbon in even-aged stands of Norway spruce (Picea abies ( L.) Karst.): a case study on spacing and thinning effects in northern Denmark. Scand J For Res 21(6):470–488. doi: 10.1080/02827580601056268 CrossRefGoogle Scholar
  102. Sohngen S, Andrasko K, Gytarsky M, Korovin G, Laestadius L, Murray B, Utkin A, Zamolodchikov D (2005) Stocks and flows: carbon inventory and mitigation potential of the Russian forest and land base. Report of the World Resources Institute, Washington, DCGoogle Scholar
  103. Tarpey RA, Jurgensen MF, Palik BJ, RK K (2008) The long-term effects of silvicultural thinning and partial cutting on soil compaction in red pine (Pinus resinosa Ait.) and northern hardwood stands in the northern Great Lakes Region of the United States. Can J Soil Sci 88(5):849–857. doi: 10.4141/CJSS08001 CrossRefGoogle Scholar
  104. Temesgen H, Affleck D, Poudel K, Gray A, Sessions J (2015) A review of the challenges and opportunities in estimating above ground forest biomass using tree-level models. Scand J For Res 30(4):326–335. doi: 10.1080/02827581.2015.1012114 Google Scholar
  105. Tesfaye MA, Bravo F, Ruiz-Peinado R, Pando V, Bravo-Oviedo A (2016) Impact of changes in land use, species and elevation on soil organic carbon and total nitrogen in Ethiopian Central Highlands. Geoderma 261:70–79. doi: 10.1016/j.geoderma.2015.06.022 CrossRefGoogle Scholar
  106. The Royal Society (2001) The role of land carbon links in mitigating global climate change. Policy document 10/01 35 ppGoogle Scholar
  107. Turner J, Lambert M (2000) Change in organic carbon in forest plantation soils in eastern Australia. For Ecol Manag 133:231–247CrossRefGoogle Scholar
  108. Uzquiano S, Martínez J, San Martín R, Bravo F (2014) Mediciones dendrométricas y dasométricas mediante técnicas LiDAR y fotogramétricas Cuadernos de la Sociedad Española de Ciencas Forestales 40:193–202.
  109. Vesterdal L, Dalsgaard M, Felby C, Raulund-Rasmussen K, Jorgensen BB (1995) Effects of thinning and soil properties on accumulation of carbon, nitrogen and phosphorus in the forest floor of Norway spruce stands. For Ecol Manag 77:1–10. doi: 10.1016/0378-1127(95)03579-Y CrossRefGoogle Scholar
  110. Vesterdal L, Clarke N, Sigurdsson BD, Gundersen P (2013) Do tree species influence soil carbon stocks in temperate and boreal forests? For Ecol Manag 309:4–18. doi: 10.1016/j.foreco.2013.01.017 CrossRefGoogle Scholar
  111. Vilà M, Vayreda J, Comas L, Ibáñez JJ, Mata T, Obón B (2007) Species richness and wood production: a positive association in Mediterranean forests. Ecol Lett 10:241–250CrossRefPubMedGoogle Scholar
  112. Weiskittel AR, MacFarlane DW, Radtke PJ, Affleck DLR, Temesgen H, Westfall JA, Woodall CW, Coulston JW (2015) A call to improve methods for estimating tree biomass for regional and national assessments. J For 113:414–424Google Scholar
  113. Woodbury PB, Smith JE, Heath LS (2007) Carbon sequestration in the U.S. forest sector from 1990–2010. For Ecol Manag 241:14–27CrossRefGoogle Scholar
  114. Zhou G, Liu S, Li Z, Zhang D, Tang X, Zhou C, Yan J, Mo J (2006) Old-growth forests can accumulate carbon in soils. Science 314:1417CrossRefPubMedGoogle Scholar
  115. Zhou W, Lewis BJ, Wu S, Yi D, Zhou L, Wei Y, Dai L (2014) Biomass carbon storage and its sequestration potential of afforestation under natural forest protection program in China. Chin Geogr Sci 24(4):406–413CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Felipe Bravo
    • 1
    Email author
  • Miren del Río
    • 2
  • Andrés Bravo-Oviedo
    • 2
  • Ricardo Ruiz-Peinado
    • 2
  • Carlos del Peso
    • 3
    • 4
  • Gregorio Montero
    • 2
  1. 1.ETS de Ingenierías Agrarias - Universidad de Valladolid & iuFOR - Sustainable Forest Management Research InstituteUniversidad de Valladolid - INIAPalenciaSpain
  2. 2.iuFOR – Sustainable Forest Management Research InstituteUniversidad de Valladolid – INIAPalenciaSpain
  3. 3.Sustainable Forest Management Research InstituteUniversidad de Valladolid - INIAValladolidSpain
  4. 4.Department Producción Vegetal y Recursos Forestales, ETS Ingenierías AgrariasUniversidad de ValladolidPalenciaSpain

Personalised recommendations