Skip to main content

Use of Forests and Wood Products to Mitigate Climate Change

  • Chapter
  • First Online:

Part of the book series: Managing Forest Ecosystems ((MAFE,volume 34))

Abstract

The increased concentrations of greenhouse gases in the atmosphere are one of the most severe current environmental problems. The annual atmospheric increase of carbon is estimated to be 3.2 Pg (IPCC 2001, p. 190). In comparison, the annual harvest of roundwood is about 3.5 billion cubic meters (FAO 2006) and contains approximately 0.8 Pg carbon in roundwood (assuming 0.23 Mg C/m3) and is, hence, significant also for the global carbon balance. The estimated amount of carbon in forested areas is approximately 650–1200 Pg (House et al. 2003; Grace 2004; FAO 2006), most of which is located in forest soils. Recent aboveground biomass estimates are between 257 Pg (Kauppi 2003) and 359 Pg (IPCC 2001). Given the large amounts, even a small proportional change is influential.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • FAO (2001) Global forest resources assessment 2000. Main report, FAO Forestry Paper 140. Food and Agriculture Organization of the United Nations, Rome, 479 p

    Google Scholar 

  • FAO (2006) Global forest resources assessment 2005. Main report, FAO Forestry Paper 147. Food and Agriculture Organization of the United Nations, Rome, 320 p

    Google Scholar 

  • FAOSTAT Statistics (2006) Referenced 15 Nov 2006. http://faostat.fao.org/site/513/DesktopDefault.aspx?PageID=513

  • Global Forest Resources Assessment (2005) FAO Forestry Paper 147. Food and Agriculture Organization of the United Nations, Rome, 320 p

    Google Scholar 

  • Goodale CL, Apps MJ, Birdsey RA, Field CB, Heath LS, Houghton RA, Jenkins JC, Kohlmaier G, Kurz W, Liu S, Nabuurs G-J, Nilsson S, Shvidenko AZ (2002) Forest carbon sinks in the Northern Hemisphere. Ecol Appl 12(3)891–899

    Article  Google Scholar 

  • Grace J (2004) Understanding and managing the global carbon cycle. J Ecol 92:189–202

    Article  CAS  Google Scholar 

  • Gustavsson L, Pingoud K, Sathre R (2006) Carbon dioxide balance of wood substitution: Comparing concrete and wood-framed buildings. Mitig Adapt Strateg Glob Chang 11:667–691

    Article  Google Scholar 

  • Hoen HF, Solberg B (1994) Potential and economic efficiency of carbon sequestration in forest biomass through silvicultural management. For Sci 40(3)429–451

    Google Scholar 

  • House JI, Prentice IC, Ramankutty N, Houghton RA, Heimann M (2003) Reconciling apparent inconsistencies in estimates of terrestrial CO2 sources and sinks. Tellus B 55(2)345–363

    Article  Google Scholar 

  • Hynynen J, Ahtikoski A, Siitonen J, Sievänen R, Liski J (2005) Applying the MOTTI simulator to analyse the effect of alternative management schedules on timber and non-timber production. For Ecol Manag 207:5–18

    Article  Google Scholar 

  • Hyvän metsänhoidon suositukset (2001) Metsätalouden kehittämiskeskus Tapio. Helsinki, 95 p

    Google Scholar 

  • IPCC (2001) In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis. Contribution of the Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 881 p

    Google Scholar 

  • Kauppi PE (2003) New, low estimate for carbon stock in global forest vegetation based on inventory data. Silva Fennica 37(4)451–457

    Article  Google Scholar 

  • Kauppi PE, Ausubel JH, Fang J, Mather AS, Sedjo RA, Waggener PE (2006) Returning forests analyzed with the forest identity. Proc Natl Acad Sci U S A 103(46)17574–17579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lippke B, Wilson J, Perez-Garcia J, Bowyer J, Meil J (2004) CORRIM: life-cycle environmental performance of renewable building materials. For Prod J 54(6)8–19

    Google Scholar 

  • Liski J, Pussinen A, Pingoud K, Mäkipää R, Karjalainen T (2001) Which rotation length is favourable to carbon sequestration? Can J For Res 31(11)2004–2013

    Article  Google Scholar 

  • Manriquez AC (2002) Carbon sequestration in the Pacific Northwest: a model. Master of Science thesis, University of Washington, Washington, USA, p 167

    Google Scholar 

  • Niles JO, Schwarze R (2001) The value of careful carbon accounting in wood products. Editorial. Clim Chang 49:371–376

    Article  CAS  Google Scholar 

  • Oliver CD (1992) A landscape approach: achieving and maintaining biodiversity and economic productivity. J For 90:20–25

    Google Scholar 

  • Perez-Garcia J, Lippke B, Comnick J, Manriquez C (2005a) An assessment of carbon pools, storage, and wood products market substitution using life-cycle analysis results. Wood Fiber Sci 37:140–148

    CAS  Google Scholar 

  • Perez-Garcia J, Lippke B, Briggs D, Wilson JB, Bowyer J, Meil J (2005b) The environmental performance of renewable building materials in the context of residential construction. Wood Fiber Sci 37:3–17

    CAS  Google Scholar 

  • Petersen AK, Gobakken T, Hoen HF, Solberg B (2004) Avoided greenhouse gas emissions when forest products substitute competing materials – effect on carbon account and optimal forest management. A case study of Hedmark County in Norway. Scand For Econ 40:113

    Google Scholar 

  • Petersen AK, Gobakken T, Hoen HF, Solberg B (2005) Increasing the carbon benefit from a forest area – optimal forest management and cost-effectiveness. A case-study from Hedmark County in Norway. In: Petersen-Raymer AK (ed) Modelling and analysing climate gas impacts of forest management, Ph.D. thesis 2005:11, Paper V. Norwegian University of Life Sciences, Department of Ecology and Natural Resource Management, Norway

    Google Scholar 

  • Pingoud K, Lehtilä A (2002) Fossil carbon emissions associated with carbon flows of wood products. Mitig Adapt Strateg Glob Chang 7(1)63–83

    Article  Google Scholar 

  • Pingoud K, Pohjola J, Valsta L, Karttunen K (2006) Tapaustarkastelu: metsien ja puutuotteiden yhdistetty vaikutus, pp 17–29. In: Valsta L, Ahtikoski A, Horne P, Karttunen K, Kokko K, Melkas E, Mononen J, Pingoud K, Pohjola J, Uusivuori J (eds) Puu ilmastonmuutoksen hillitsijänä. Loppuraportti. Helsingin yliopisto, Metsäekonomian laitos. ISBN 952-10-3022-4. Yliopistopaino, Helsinki, p 57

    Google Scholar 

  • Valsta L, Sedjo RA, Pingoud K, Gustavsson L (2005) Forests and forest products in climate change mitigation. Int For Rev 7(5)72

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Valsta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Valsta, L., Lippke, B., Perez-Garcia, J., Pingoud, K., Pohjola, J., Solberg, B. (2017). Use of Forests and Wood Products to Mitigate Climate Change. In: Bravo, F., LeMay, V., Jandl, R. (eds) Managing Forest Ecosystems: The Challenge of Climate Change. Managing Forest Ecosystems, vol 34. Springer, Cham. https://doi.org/10.1007/978-3-319-28250-3_10

Download citation

Publish with us

Policies and ethics