Use of Forests and Wood Products to Mitigate Climate Change

  • L. ValstaEmail author
  • B. Lippke
  • J. Perez-Garcia
  • K. Pingoud
  • J. Pohjola
  • B. Solberg
Part of the Managing Forest Ecosystems book series (MAFE, volume 34)


The increased concentrations of greenhouse gases in the atmosphere are one of the most severe current environmental problems. The annual atmospheric increase of carbon is estimated to be 3.2 Pg (IPCC 2001, p. 190). In comparison, the annual harvest of roundwood is about 3.5 billion cubic meters (FAO 2006) and contains approximately 0.8 Pg carbon in roundwood (assuming 0.23 Mg C/m3) and is, hence, significant also for the global carbon balance. The estimated amount of carbon in forested areas is approximately 650–1200 Pg (House et al. 2003; Grace 2004; FAO 2006), most of which is located in forest soils. Recent aboveground biomass estimates are between 257 Pg (Kauppi 2003) and 359 Pg (IPCC 2001). Given the large amounts, even a small proportional change is influential.


Wood Product Carbon Pool Laminate Veneer Lumber Energy Wood Wood Product Harvest 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. FAO (2001) Global forest resources assessment 2000. Main report, FAO Forestry Paper 140. Food and Agriculture Organization of the United Nations, Rome, 479 pGoogle Scholar
  2. FAO (2006) Global forest resources assessment 2005. Main report, FAO Forestry Paper 147. Food and Agriculture Organization of the United Nations, Rome, 320 pGoogle Scholar
  3. FAOSTAT Statistics (2006) Referenced 15 Nov 2006.
  4. Global Forest Resources Assessment (2005) FAO Forestry Paper 147. Food and Agriculture Organization of the United Nations, Rome, 320 pGoogle Scholar
  5. Goodale CL, Apps MJ, Birdsey RA, Field CB, Heath LS, Houghton RA, Jenkins JC, Kohlmaier G, Kurz W, Liu S, Nabuurs G-J, Nilsson S, Shvidenko AZ (2002) Forest carbon sinks in the Northern Hemisphere. Ecol Appl 12(3)891–899CrossRefGoogle Scholar
  6. Grace J (2004) Understanding and managing the global carbon cycle. J Ecol 92:189–202CrossRefGoogle Scholar
  7. Gustavsson L, Pingoud K, Sathre R (2006) Carbon dioxide balance of wood substitution: Comparing concrete and wood-framed buildings. Mitig Adapt Strateg Glob Chang 11:667–691CrossRefGoogle Scholar
  8. Hoen HF, Solberg B (1994) Potential and economic efficiency of carbon sequestration in forest biomass through silvicultural management. For Sci 40(3)429–451Google Scholar
  9. House JI, Prentice IC, Ramankutty N, Houghton RA, Heimann M (2003) Reconciling apparent inconsistencies in estimates of terrestrial CO2 sources and sinks. Tellus B 55(2)345–363CrossRefGoogle Scholar
  10. Hynynen J, Ahtikoski A, Siitonen J, Sievänen R, Liski J (2005) Applying the MOTTI simulator to analyse the effect of alternative management schedules on timber and non-timber production. For Ecol Manag 207:5–18CrossRefGoogle Scholar
  11. Hyvän metsänhoidon suositukset (2001) Metsätalouden kehittämiskeskus Tapio. Helsinki, 95 pGoogle Scholar
  12. IPCC (2001) In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis. Contribution of the Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 881 pGoogle Scholar
  13. Kauppi PE (2003) New, low estimate for carbon stock in global forest vegetation based on inventory data. Silva Fennica 37(4)451–457CrossRefGoogle Scholar
  14. Kauppi PE, Ausubel JH, Fang J, Mather AS, Sedjo RA, Waggener PE (2006) Returning forests analyzed with the forest identity. Proc Natl Acad Sci U S A 103(46)17574–17579CrossRefPubMedPubMedCentralGoogle Scholar
  15. Lippke B, Wilson J, Perez-Garcia J, Bowyer J, Meil J (2004) CORRIM: life-cycle environmental performance of renewable building materials. For Prod J 54(6)8–19Google Scholar
  16. Liski J, Pussinen A, Pingoud K, Mäkipää R, Karjalainen T (2001) Which rotation length is favourable to carbon sequestration? Can J For Res 31(11)2004–2013CrossRefGoogle Scholar
  17. Manriquez AC (2002) Carbon sequestration in the Pacific Northwest: a model. Master of Science thesis, University of Washington, Washington, USA, p 167Google Scholar
  18. Niles JO, Schwarze R (2001) The value of careful carbon accounting in wood products. Editorial. Clim Chang 49:371–376CrossRefGoogle Scholar
  19. Oliver CD (1992) A landscape approach: achieving and maintaining biodiversity and economic productivity. J For 90:20–25Google Scholar
  20. Perez-Garcia J, Lippke B, Comnick J, Manriquez C (2005a) An assessment of carbon pools, storage, and wood products market substitution using life-cycle analysis results. Wood Fiber Sci 37:140–148Google Scholar
  21. Perez-Garcia J, Lippke B, Briggs D, Wilson JB, Bowyer J, Meil J (2005b) The environmental performance of renewable building materials in the context of residential construction. Wood Fiber Sci 37:3–17Google Scholar
  22. Petersen AK, Gobakken T, Hoen HF, Solberg B (2004) Avoided greenhouse gas emissions when forest products substitute competing materials – effect on carbon account and optimal forest management. A case study of Hedmark County in Norway. Scand For Econ 40:113Google Scholar
  23. Petersen AK, Gobakken T, Hoen HF, Solberg B (2005) Increasing the carbon benefit from a forest area – optimal forest management and cost-effectiveness. A case-study from Hedmark County in Norway. In: Petersen-Raymer AK (ed) Modelling and analysing climate gas impacts of forest management, Ph.D. thesis 2005:11, Paper V. Norwegian University of Life Sciences, Department of Ecology and Natural Resource Management, NorwayGoogle Scholar
  24. Pingoud K, Lehtilä A (2002) Fossil carbon emissions associated with carbon flows of wood products. Mitig Adapt Strateg Glob Chang 7(1)63–83CrossRefGoogle Scholar
  25. Pingoud K, Pohjola J, Valsta L, Karttunen K (2006) Tapaustarkastelu: metsien ja puutuotteiden yhdistetty vaikutus, pp 17–29. In: Valsta L, Ahtikoski A, Horne P, Karttunen K, Kokko K, Melkas E, Mononen J, Pingoud K, Pohjola J, Uusivuori J (eds) Puu ilmastonmuutoksen hillitsijänä. Loppuraportti. Helsingin yliopisto, Metsäekonomian laitos. ISBN 952-10-3022-4. Yliopistopaino, Helsinki, p 57Google Scholar
  26. Valsta L, Sedjo RA, Pingoud K, Gustavsson L (2005) Forests and forest products in climate change mitigation. Int For Rev 7(5)72Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • L. Valsta
    • 1
    Email author
  • B. Lippke
    • 2
  • J. Perez-Garcia
    • 2
  • K. Pingoud
    • 3
  • J. Pohjola
    • 1
  • B. Solberg
    • 4
  1. 1.Department of Forest EconomicsUniversity of HelsinkiHelsinkiFinland
  2. 2.College of Forest ResourcesUniversity of WashingtonSeattleUSA
  3. 3.VTT Technical Research Centre of FinlandEspooFinland
  4. 4.Department of Ecology and Natural Resource ManagementNorwegian University of Life SciencesOsloNorway

Personalised recommendations