Skip to main content

Thermomechanical Analysis of Polymer Nanocomposites

  • Chapter
  • First Online:

Abstract

Thermomechanical properties of polymer nanocomposites containing nanofillers in the form of nanoplatelets, nanospheres, and nanocylinders are reviewed. Herein, thermomechanical properties of polymer nanocomposites are discussed based on the structure, morphological behavior, and performance characteristics (mechanical and thermal properties). Using nanofillers in polymers generally improves thermomechanical properties such as stiffness, glass transition, storage and loss modulus, damping coefficient, heat distortion temperature, and thermal expansion coefficient compared to the case where traditional micron-sized particles are used in polymeric systems. In order to maximize thermomechanical properties, new synthesis methods enabling good control of nanofiller dispersion and distribution within the polymer matrix should be developed. This chapter examines the current status of thermomechanical properties of polymer nanocomposites containing nanofillers in the form of nanocylinders, nanospheres, and nanoplatelets, using examples from the literature to highlight important breakthroughs and potential problems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Han Z, Fina A (2011) Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog Polym Sci 36:914

    Article  CAS  Google Scholar 

  2. Sengupta R, Bhattacharya M, Bandyopadhyay S, Bhowmick AK (2011) A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog Polym Sci 36:638

    Article  CAS  Google Scholar 

  3. Kashiwagi T, Grulke E, Hilding J, Groth K, Harris R, Butler K, Shields J, Kharchenko S, Douglas J (2004) Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites. Polymer 45:4227

    Article  CAS  Google Scholar 

  4. Gilman JW (1999) Flammability and thermal stability studies of polymer layered-silicate (clay)nanocomposites. Appl Clay Sci 15:31

    Article  CAS  Google Scholar 

  5. LeBaron PC, Wang Z, Pinnavaia TJ (1999) Polymer-layered silicate nanocomposites: an overview. Appl Clay Sci 15:11

    Article  CAS  Google Scholar 

  6. Okada A, Kawasumi M, Usuki A, Kojima Y, Kurauchi T, Kamigaito O (1990) Nylon-6 clay hybrid. Mater Res Soc Symp Proc 171:45

    Article  CAS  Google Scholar 

  7. Giannelis EP, Krishnamoorti R, Manias E (1999) Polymer-silicate nanocomposites: model systems for confined polymers and polymer brushes. Adv Polym Sci 138:107

    Article  CAS  Google Scholar 

  8. Messersmith PB, Giannelis EP (1995) Synthesis and barrier properties of poly (e-caprolactone)-layered silicate nanocomposites. J Polym Sci Part A Polym Chem 33:1047

    Article  CAS  Google Scholar 

  9. Gilman JW, Jackson CL, Morgan AB, Harris R, Manias E, Giannelis EP, Wuthenow M, Hilton D, Phillips H (2000) Flammability properties of polymer-layered-silicate nanocomposites. Polypropylene and polystyrene nanocomposites. Chem Mater 12:1866

    Article  CAS  Google Scholar 

  10. Gleiter H (1992) Nanostructured materials. Adv Mater 4:474

    Article  CAS  Google Scholar 

  11. Ziolo RF, Giannelis EP, Weinstein BA, O’Horo MP, Ganguly BN, Mehrotra V, Russell MW, Huffman DR (1992) Matrix-mediated synthesis of nanocrystalline ggr-Fe2O3: a new opti-cally transparent magnetic material. Science 257:219

    Article  CAS  Google Scholar 

  12. Giannelis EP (1996) Polymer layered silicate nanocomposites. Adv Mater 8:29

    Article  CAS  Google Scholar 

  13. Fisher H, Gielgens L, Koster T (1998) Nanocomposites from polymers and layered minerals, TNO-TPD Report

    Google Scholar 

  14. Usuki A, Kojima Y, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O (1993) Synthesis of nylon 6-clay hybrid. J Mater Res 8:1179

    Article  CAS  Google Scholar 

  15. Lan T, Pinnavaia TJ (1994) Clay-reinforced epoxy nanocomposites. Chem Mater 6:2216

    Article  CAS  Google Scholar 

  16. Chang JH, An YU, Cho DH, Giannelis EP (2003) Poly (butylene terephthalate)/organoclay nanocomposites prepared by in situ interlayer polymerization and its fiber (II). Polymer 44:371514

    Google Scholar 

  17. Vaia RA, Maguire JF (2007) Polymer nanocomposites with prescribed morphology: going beyond nanoparticle-filled polymers. Chem Mater 19:2736

    Article  CAS  Google Scholar 

  18. Liff SM, Kumar N, McKinley GH (2007) High-performance elastomeric nanocomposites via solvent-exchange processing. Nat Mater 6:76

    Article  CAS  Google Scholar 

  19. Zou H, Wu S, Shen J (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108:3893

    Article  CAS  Google Scholar 

  20. Wu J, Mather PT (2009) POSS polymers: physical properties and biomaterials applications. Polym Rev 49:25

    Article  CAS  Google Scholar 

  21. Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44:1624

    Article  CAS  Google Scholar 

  22. Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15:353

    Article  CAS  Google Scholar 

  23. Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, Prud'homme RK, Brinson LC (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotech 3:327

    Article  CAS  Google Scholar 

  24. Rittigstein P, Priestley RD, Broadbelt LJ, Torkelson JM (2007) Model polymer nanocomposites provide an understanding of confinement effects in real nanocomposites. Nat Mater 6:278

    Article  CAS  Google Scholar 

  25. Rittigstein P, Torkelson JM (2006) Polymer-nanoparticle interfacial interactions in polymer nanocomposites: confinement effects on glass transition temperature and suppression of physical aging. J Polym Sci Part B-Polym Phys 44:2935

    Article  CAS  Google Scholar 

  26. Hanemann T, Szabó DV (2010) Polymer-nanoparticle composites: from synthesis to modern applications. Materials 3:3468

    Article  CAS  Google Scholar 

  27. Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539

    Article  CAS  Google Scholar 

  28. Chen B, Evans JRG, Greenwell HC, Boulet P, Coveney PV, Bowden AA, Whiting A (2008) A critical appraisal of polymer–clay nanocomposites. Chem Soc Rev 37:568

    Article  Google Scholar 

  29. Pavlidou S, Papaspyrides CD (2008) A review on polymer-layered silicate nanocomposites. Prog Polym Sci 33:1119

    Article  CAS  Google Scholar 

  30. Mittal V (2009) Polymer layered silicate nanocomposites: a review. Materials 2:992

    Article  CAS  Google Scholar 

  31. Chowdhury FH, Hosur MV, Jeelani S (2006) Studies on the flexural and thermomechanical properties of woven carbon/nanoclay-epoxy laminates. Mater Sci Eng A 421:298

    Article  CAS  Google Scholar 

  32. Yasmin A, Luo JJ, Abot JL, Daniel IM (2006) Mechanical and thermal behavior of clay/epoxy nanocomposites. Compos Sci Tech 66:2415

    Article  CAS  Google Scholar 

  33. Leszczynska A, Njuguna J, Pielichowski K, Banerjee JR (2007) Polymer/montmorillonite nanocomposites with improved thermal properties Part I. Factors influencing thermal stability and mechanisms of thermal stability improvement. Thermo Acta 453:75

    Article  CAS  Google Scholar 

  34. Kaya E, Tanoglu M, Okur S (2008) Layered clay/epoxy nanocomposites: thermomechanical, flame retardancy, and optical properties. J Appl Poly Sci 109:834

    Article  CAS  Google Scholar 

  35. Yang L, Phua SL, Teo Jun Kai H, Toh CL, Lau SK, Ma J, Lu XA (2011) Biomimetic approach to enhancing interfacial interactions: polydopamine-coated clay as reinforcement for epoxy resin. ACS Appl Mater Interfaces 3:3026

    Article  CAS  Google Scholar 

  36. Verge P, Fouquet T, Barrère C, Toniazzo V, Ruch D, Bomfim JAS (2013) Organomodification of sepiolite clay using bio-sourced surfactants: compatibilization and dispersion into epoxy thermosets for properties enhancement. Compos Sci Tech 79:126

    Article  CAS  Google Scholar 

  37. Shabana YM, Wang GT (2013) Thermomechanical modeling of polymer nanocomposites by the asymptotic homogenization method. Acta Mech 224:1213

    Article  Google Scholar 

  38. Souza VS, Bianchi O, Lima MFS, Mauler RS (2014) Morphological, thermomechanical and thermal behavior of epoxy/MMT nanocomposites. J Non-Cryst Solids 400:58

    Article  CAS  Google Scholar 

  39. Sharmila TKB, Ayswarya EP, Abrahamd BT, Beguma PMS, Thachil ET (2014) Fabrication of partially exfoliated and disordered intercalated cloisite epoxy nanocomposites via in situ polymerization: mechanical, dynamic mechanical, thermal and barrier properties. Appl Clay Sci 102:220

    Article  CAS  Google Scholar 

  40. Baniasadi H, Ramazani SAA, Nikkhah SJ (2010) Investigation of in situ prepared polypropylene/clay nanocomposites properties and comparing to melt blending method. Mater Design 31:76

    Article  CAS  Google Scholar 

  41. Grigoriadi K, Giannakas A, Ladavos A, Barkoula NM (2013) Thermomechanical behavior of polymer/layered silicate clay nanocomposites based on unmodified low density polyethylene. Polym Eng Sci 53:301

    Article  CAS  Google Scholar 

  42. Passador FR, Ruvolo-Filho CA, Pessan LA (2013) Effects of different compatibilizers on the rheological, thermomechanical, and morphological properties of HDPE/LLDPE blend-based nanocomposites. J Appl Polym Sci 130:1726

    Article  CAS  Google Scholar 

  43. Siengchin S, Karger-Kocsis J (2009) Structure and creep response of toughened and nanoreinforced polyamides produced via the latex route: effect of nanofiller type. Compos Sci Tech 69:677

    Article  CAS  Google Scholar 

  44. Anoukou K, Zaïri F, Naït-Abdelaziz M, Zaoui A, Messager T, Gloaguen JM (2011) On the overall elastic moduli of polymer–clay nanocomposite materials using a self-consistent approach. Part II: experimental verification. Compos Sci Tech 71:206

    Article  CAS  Google Scholar 

  45. Stoclet G, Sclavons M, Devaux J (2013) Relations between structure and property of polyamide 11 nanocomposites based on raw clays elaborated by water-assisted extrusion. J Appl Polym Sci 127:4809

    Article  CAS  Google Scholar 

  46. Wan T, Liao S, Wang K, Yan P, Clifford M (2013) Multi-scale hybrid polyamide 6 composites reinforced with nano-scale clay and micro-scale short glass fibre. Comp: Part A 50:31

    CAS  Google Scholar 

  47. Pluta M, Paul MA, Alexandre M, Dubois P (2006) Plasticized polylactide/clay nanocomposites. I. The role of filler content and its surface organo-modification on the physico-chemical properties. J Polym Sci Part B Polym Phys 44:299

    Article  CAS  Google Scholar 

  48. Fukushima K, Tabuani D, Camino G (2009) Nanocomposites of PLA and PCL based on montmorillonite and sepiolite. Mater Sci Eng C 29:1433

    Article  CAS  Google Scholar 

  49. Kontou E, Niaounakis M, Georgiopoulos P (2011) Comparative study of PLA nanocomposites reinforced with clay and silica nanofillers and their mixtures. J Appl Polym Sci 122:1519

    Article  CAS  Google Scholar 

  50. Wootthikanokkhan J, Cheachun T, Sombatsompop N, Thumsorn S, Kaabbuathong N, Wongta N, Wong-On J, Ayutthaya SIN, Kositchaiyong A (2013) Crystallization and thermomechanical properties of PLA composites: effects of additive types and heat treatment. J Appl Polym Sci 129:215

    Article  CAS  Google Scholar 

  51. Chang JH, An YU, Sur GS (2003) Poly(lactic acid) nanocomposites with various organoclays. I. Thermomechanical properties, morphology, and gas permeability. J Polym Sci Part B Polym Phys 41:94

    Article  CAS  Google Scholar 

  52. Ratna D, Divekar S, Samui AB, Chakraborty BC, Banthia AK (2006) Poly(ethylene oxide)/clay nanocomposite: thermomechanical properties and morphology. Polymer 47:4068

    Article  CAS  Google Scholar 

  53. Burgaz E (2011) Poly(ethylene oxide)/clay/silica nanocomposites: morphology and thermomechanical properties. Polymer 52:5118

    Article  CAS  Google Scholar 

  54. Sehaqui H, Kochumalayil J, Liu A, Zimmermann T, Berglund LA (2013) Multifunctional nanoclay hybrids of high toughness, thermal, and barrier performances. ACS Appl Mater Interfaces 5:7613

    Article  CAS  Google Scholar 

  55. Marras SI, Kladi KP, Tsivintzelis I, Zuburtikudis I, Panayiotou C (2008) Biodegradable polymer nanocomposites: the role of nanoclays on the thermomechanical characteristics and the electrospun fibrous structure. Acta Biomater 4:756

    Article  CAS  Google Scholar 

  56. Li S, Auddy K, Barber P, Hansen TJ, Ma J, Loye HC, Ploehn HJ (2012) Thermal, mechanical, and barrier properties of polyethylene terephthalate-platelet nanocomposites prepared by in situ polymerization. Polym Eng Sci 52:1888

    Article  CAS  Google Scholar 

  57. Gashti MP, Moradian S (2012) Effect of nanoclay type on dyeability of polyethylene terephthalate/clay nanocomposites. J Appl Polym Sci 125:4109

    Article  CAS  Google Scholar 

  58. Zengeni E, Hartmann PC, Pasch H (2012) Encapsulation of clay by ad-miniemulsion polymerization: the influence of clay size and modifier reactivity on latex morphology and physical properties. ACS Appl Mater Interfaces 4:6957

    Article  CAS  Google Scholar 

  59. Poreba R, Spırkov M, Brozov L, Lazic N, Pavlicevic J, Strachota A (2013) Aliphatic polycarbonate-based polyurethane elastomers and nanocomposites. II. mechanical, thermal, and gas transport properties. J Appl Polym Sci 127:329

    Article  CAS  Google Scholar 

  60. Spoljaric S, Salminen A, Luong ND, Lahtinen P, Vartiainen J, Tammelin T, Seppala J (2014) Nanofibrillated cellulose, poly(vinyl alcohol), montmorillonite clay hybrid nanocomposites with superior barrier and thermomechanical properties. Polym Comp 35:1117

    CAS  Google Scholar 

  61. Sengwa RJ, Choudhary S (2014) Structural characterization of hydrophilic polymer blends/montmorillonite clay nanocomposites. J Appl Polym Sci 131:40617

    Article  CAS  Google Scholar 

  62. Qian Y, Liu W, Park YT, Lindsay CI, Camargo R, Macosko CW, Stein A (2012) Modification with tertiary amine catalysts improves vermiculite dispersion in polyurethane via in situ intercalative polymerization. Polymer 53:5060

    Article  CAS  Google Scholar 

  63. Alonso RH, Estevez L, Lian H, Kelarakis A, Giannelis EP (2009) Nafion–clay nanocomposite membranes: morphology and properties. Polymer 50:2402

    Article  CAS  Google Scholar 

  64. Cele N, Ray SS (2009) Recent progress on nafion-based nanocomposite membranes for fuel cell applications. Macromol Mater Eng 294:719

    Article  CAS  Google Scholar 

  65. Burgaz E, Lian H, Alonso RH, Estevez L, Kelarakis A, Giannelis EP (2009) Nafion–clay nanocomposite membranes: morphology and properties. Polymer 50:2384

    Article  CAS  Google Scholar 

  66. Chen J-S, Poliks MD, Ober CK, Zhang Y, Wiesner U, Giannelis E (2002) Study of the interlayer expansion mechanism and thermal-mechanical properties of surface-initiated epoxy nanocomposites. Polymer 43:4895

    Article  CAS  Google Scholar 

  67. Cable KM (1996) PhD thesis. The University of Southern Mississippi, Hattiesburg

    Google Scholar 

  68. Kim H, Abdale AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43:6515

    Article  CAS  Google Scholar 

  69. Juilla T, Bhadra S, Yao D, Kim NH, Bosem S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350

    Article  CAS  Google Scholar 

  70. Mahmoud WE (2011) Morphology and physical properties of poly(ethylene oxide) loaded graphene nanocomposites prepared by two different techniques. Eur Polym J 47:1534

    Article  CAS  Google Scholar 

  71. Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer composites. Polymer 52:5

    Article  CAS  Google Scholar 

  72. Ajayan PM, Schadler LS, Giannaris C, Rubio A (2000) Single-walled carbon nanotube– polymer composites: strength and weakness. Adv Mater 12:750

    Article  CAS  Google Scholar 

  73. Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132

    Article  CAS  Google Scholar 

  74. Oh SM, Oh KM, Dung DT, Lee H, Jeonga HM, Kim BK (2012) The modification of graphene with alcohols and its use in shape memory polyurethane composites. Polym Int 62:54

    Article  CAS  Google Scholar 

  75. Kelly BT (1981) Physics of graphite. Applied Science, London

    Google Scholar 

  76. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666

    Article  CAS  Google Scholar 

  77. Chu K, Li W, Dong H (2013) Role of graphene waviness on the thermal conductivity of graphene composites. Appl Phys A 111:221

    Article  CAS  Google Scholar 

  78. Xi Z, Allou O, He Q, Zhu J, Verde MJ, Li Y, Wei S, Guo Z (2013) Strengthened magnetic epoxy nanocomposites with protruding nanoparticles on the graphene nanosheets. Polymer 54:3594

    Article  CAS  Google Scholar 

  79. Li J, Sham ML, Kim JK, Marom G (2007) Morphology and properties of UV/ozone treated graphite nanoplatelet/epoxy nanocomposites. Compos Sci Tech 67:296

    Article  CAS  Google Scholar 

  80. Patsidis AC, Kalaitzidou K, Psarras GC (2014) Graphite nanoplatelets/polymer nanocomposites: thermomechanical, dielectric, and functional behavior. J Therm Anal Calorim 116:41

    Article  CAS  Google Scholar 

  81. Prolongo SG, Jiménez-Suárez A, Moriche R, Ureña A (2014) Graphene nanoplatelets thickness and lateral size influence on the morphology and behavior of epoxy composites. Eur Polym J 53:292

    Article  CAS  Google Scholar 

  82. Potts JR, Lee SH, Alam TM, An J, Stoller MD, Piner RD, Ruoff RS (2011) Thermomechanical properties of chemically modified graphene/poly(methyl methacrylate) composites made by in situ polymerization. Carbon 49:2615

    Article  CAS  Google Scholar 

  83. Hazarika M, Jana T (2013) Graphene nanosheets generated from sulfonated polystyrene/graphene Nanocomposite. Compos Sci and Tech 87:94

    Article  CAS  Google Scholar 

  84. Menes O, Cano M, Benedito A, Giménez E, Castell P, Maser WK, Benito AM (2012) The effect of ultra-thin graphite on the morphology and physical properties of thermoplastic polyurethane elastomer composites. Compos Sci Tech 72:1595

    Article  CAS  Google Scholar 

  85. Yoon OJ, Jung CY, Sohn IY, Kim HJ, Hong B, Jhon MS, Lee BNE (2011) Nanocomposite nanofibers of poly(D, L-lactic-co-glycolic acid) and graphene oxide nanosheets. Composites: Part A 42:1978

    Article  CAS  Google Scholar 

  86. Suhr J, Koratkar N, Keblinski P, Ajayan P (2005) Viscoelasticity in carbon nanotube composites. Nat Mater 4:134

    Article  CAS  Google Scholar 

  87. Pan Y, Xu Y, An L, Lu H, Yang Y, Chen W, Nutt S (2008) Hybrid network structure and mechanical properties of rodlike silicate/cyanate ester nanocomposites. Macromolecules 41:9245

    Article  CAS  Google Scholar 

  88. Sherely AP, Christoph S, Kuruvilla J, Gem MGD, Laly PA, Sabu T (2010) Dynamic mechanical analysis of novel composites from commingled polypropylene fiber and banana fiber. Polym Eng Sci 50:384

    Article  CAS  Google Scholar 

  89. Gojny FH, Schulte K (2004) Functionalisation effect on the thermomechanical behaviour of multi-wall carbon nanotube/epoxy-composites. Compos Sci Technol 64:2303

    Article  CAS  Google Scholar 

  90. Li J, Kim JK, Sham ML (2005) Conductive graphite nanoplatelet/epoxy nanocomposites: effects of exfoliation and UV/ozone treatment of graphite. Scripta Mater 53:235

    Article  CAS  Google Scholar 

  91. Sarwar MI, Zulfiqar S, Ahmad Z (2008) Polyamide–silica nanocomposites: mechanical, morphological and thermomechanical investigations. Polym Int 57:292

    Article  CAS  Google Scholar 

  92. Chrissafis K, Paraskevopoulos KM, Papageorgiou GZ, Bikiaris DN (2008) Thermal and dynamic mechanical behavior of bionanocomposites: fumed silica nanoparticles dispersed in poly(vinyl pyrrolidone), chitosan, and poly(vinyl alcohol). J Appl Polym Sci 110:1739

    Article  CAS  Google Scholar 

  93. Zhu A, Diao H, Rong Q, Cai A (2010) Preparation and properties of polylactide–silica nanocomposites. J Appl Polym Sci 116:2866

    CAS  Google Scholar 

  94. Feng Y, Wang B, Wang F, Zheng G, Dai K, Liu C, Chen J, Shen C (2014) Effects of modified silica on morphology, mechanical property, and thermostability of injection-molded polycarbonate/silica nanocomposites. J Reinf Plast Compos 33:911

    Article  CAS  Google Scholar 

  95. Mya KY, Wang Y, Shen L, Xu J, Wu Y, Lu X, He C (2009) Star-like polyurethane hybrids with functional cubic silsesquioxanes: preparation, morphology, and thermomechanical properties. J Polym Sci Part A Polym Chem 47:4602

    Article  CAS  Google Scholar 

  96. Kim GM, Qın H, Fang X, Sun FC, Mather PT (2003) Hybrid epoxy-based thermosets based on polyhedral oligosilsesquioxane: cure behavior and toughening mechanisms. J Polym Sci Part B Polym Phys 41:3299

    Article  CAS  Google Scholar 

  97. Maitra P, Ding J, Huang H, Wunder SL (2003) Poly(ethylene oxide) silananted nanosize fumed silica: DSC and TGA characterization of the surface. Langmuir 19:8994

    Article  CAS  Google Scholar 

  98. Tominaga Y, Asai S, Sumita M, Panero S, Scrosati B (2005) A novel composite polymer electrolyte: effect of mesoporous SiO2 on ionic conduction in poly(ethylene oxide)–LiCF3SO3 complex. J Power Sources 146:402

    Article  CAS  Google Scholar 

  99. Ding J, Maitra P, Wunder SL (2003) Characterization of the interaction of poly(ethylene oxide) with nanosize fumed silica: Surface effects on crystallization. J Polym Sci Part B Polym Phys 41:1978

    Article  CAS  Google Scholar 

  100. Kweon JO, Noh ST (2001) Thermal, thermomechanical, and electrochemical characterization of the organic–inorganic hybrids poly(ethylene oxide) (PEO)–silica and PEO–silica–LiClO4. J Appl Polym Sci 81:2471

    Article  CAS  Google Scholar 

  101. Liu W, Kong J, Toh WE, Zhou R, Ding G, Huang S, Dong Y, Lu X (2013) Toughening of epoxies by covalently anchoring triazole-functionalized stacked-cup carbon nanofibers. Compos Sci Tech 85:1

    Article  CAS  Google Scholar 

  102. Sun Y, Zhang Z, Moon KS, Wong CP (2004) Glass transition and relaxation behavior of epoxy nanocomposites. J Polym Sci Part B Polym Phys 42:3849

    Article  CAS  Google Scholar 

  103. Natarajan B, Neely T, Rungta A, Benicewicz BC, Schadler LS (2013) Thermomechanical properties of bimodal brush modified nanoparticle composites. Macromolecules 46:4909

    Article  CAS  Google Scholar 

  104. Kontou E, Anthoulis G (2007) The effect of silica nanoparticles on the thermomechanical properties of polystyrene. J Appl Polym Sci 105:1723

    Article  CAS  Google Scholar 

  105. Bansal A, Yang H, Li C, Benicewicz BC, Kumar SK, Schadler LS (2006) Controlling the thermomechanical properties of polymer nanocomposites by tailoring the polymer–particle interface. J Polym Sci Part B Polym Phys 44:2944

    Article  CAS  Google Scholar 

  106. Bansal A, Yang H, Li C, Benicewicz BC, Kumar SK, Schadler LS (2005) Quantitative equivalence between polymer nanocomposites and thin polymer films. Nat Mater 4:693

    Article  CAS  Google Scholar 

  107. Georgiopoulos P, Kontou E, Niaounakis M (2014) Thermomechanical properties and rheological behavior of biodegradable composites. Polym Compos 35:1140

    CAS  Google Scholar 

  108. Huang WM, Yang B, Zhao Y, Ding Z (2010) Thermo-moisture responsive polyurethane shape-memory polymer and composites: a review. J Mater Chem 20:3367

    Article  CAS  Google Scholar 

  109. Wen X, Lin Y, Han C, Zhang K, Ran X, Li Y, Dong L (2009) Thermomechanical and optical properties of biodegradable poly(L-lactide)/silica nanocomposites by melt compounding. J Appl Polym Sci 114:3379

    Article  CAS  Google Scholar 

  110. Zhang FA, Lee DK, Pinnavaia TJ (2010) PMMA/mesoporous silica nanocomposites: effect of framework structure and pore size on thermomechanical properties. Polym Chem 1:107

    Article  CAS  Google Scholar 

  111. Lai YH, Kuo MC, Huanga JC, Chena M (2007) On the PEEK composites reinforced by surface-modified nano-silica. Mater Sci Eng A 458:158

    Article  CAS  Google Scholar 

  112. Kyoung JM, Hartwig A, Kim BK (2009) Shape memory polyurethanes cross-linked by surface modified silica particles. J Mater Chem 19:1166

    Article  CAS  Google Scholar 

  113. Neikirk CC, Chung JW, Priestley RD (2013) Thermomechanical behavior of hydrogen-bond based supramolecular poly(e-caprolactone)-silica nanocomposites. RSC Advances 3:16686

    Article  CAS  Google Scholar 

  114. Olmos D, Prolongo SG, González-Benito J (2014) Thermo-mechanical properties of polysulfone based nanocomposites with well dispersed silica nanoparticles. Composites: Part B 61:307

    Article  CAS  Google Scholar 

  115. Zhao D, Schneider D, Fytas G, Kumar SK (2014) Controlling the thermomechanical behavior of nanoparticle/polymer films. ACS Nano 8:8163

    Article  CAS  Google Scholar 

  116. Jouault N, Moll JF, Meng D, Windsor K, Ramcharan S, Kearney C, Kumar SK (2013) Bound polymer layer in nanocomposites. ACS Macro Lett 2:371

    Article  CAS  Google Scholar 

  117. Turri S, Levi M (2005) Structure, dynamic properties, and surface behavior of nanostructured ionomeric polyurethanes from reactive polyhedral oligomeric silsesquioxanes. Macromolecules 38:5569

    Article  CAS  Google Scholar 

  118. Huang J, He C, Liu X, Xu J, Tay CSS, Chow SY (2005) Organic–inorganic nanocomposites from cubic silsesquioxane epoxides: direct characterization of interphase, and thermomechanical properties. Polymer 46:7018

    Article  CAS  Google Scholar 

  119. Kopeskya ET, Haddad TS, McKinley GH, Cohen RE (2005) Miscibility and viscoelastic properties of acrylic polyhedral oligomeric silsesquioxane–poly(methyl methacrylate) blends. Polymer 46:4743

    Article  CAS  Google Scholar 

  120. Liu H, Zheng S, Nie K (2005) Morphology and thermomechanical properties of organic-inorganic hybrid composites involving epoxy resin and an incompletely condensed polyhedral oligomeric silsesquioxane. Macromolecules 38:5088

    Article  CAS  Google Scholar 

  121. Misra R, Fu BX, Morgan SE (2007) Surface energetics, dispersion, and nanotribomechanical behavior of POSS/PP hybrid nanocomposites. J Polym Sci Part B Polym Phys 45:2441

    Article  CAS  Google Scholar 

  122. Lee KM, Knight PT, Chung T, Mather PT (2008) Polycaprolactone-POSS chemical/physical double networks. Macromolecules 41:4730

    Article  CAS  Google Scholar 

  123. Sánchez-Soto M, Schiraldi DA, Illescas S (2009) Study of the morphology and properties of melt-mixed polycarbonate–POSS nanocomposites. Eur Polym J 45:341

    Article  CAS  Google Scholar 

  124. Tan J, Jia Z, Sheng D, Wen X, Yang Y (2011) Thermomechanical and surface properties of novel poly(ether urethane)/polyhedral oligomeric silsesquioxane nanohybrid elastomers. Polym Eng Sci 51:795

    Article  CAS  Google Scholar 

  125. Brus J, Urbanova M, Strachota A (2008) Epoxy networks reinforced with polyhedral oligomeric silsesquioxanes: structure and segmental dynamics as studied by solid-state NMR. Macromolecules 41:372

    Article  CAS  Google Scholar 

  126. Misra R, Fu BX, Plagge A, Morgan SE (2009) POSS-Nylon 6 nanocomposites: influence of POSS structure on surface and bulk properties. J Polym Sci Part B Polym Phys 47:1088

    Article  CAS  Google Scholar 

  127. Qiu Z, Pan H (2010) Preparation, crystallization and hydrolytic degradation of biodegradable poly(L-lactide)/polyhedral oligomeric silsesquioxanes nanocomposite. Compos Sci Tech 70:1089

    Article  CAS  Google Scholar 

  128. Liu Y, Shi Z, Xu H, Fang J, Ma X, Yin J (2010) Preparation, characterization, and properties of novel polyhedral oligomeric silsesquioxane-polybenzimidazole nanocomposites by Friedel-Crafts reaction. Macromolecules 43:6731

    Article  CAS  Google Scholar 

  129. Kopesky ET, Haddad TS, Cohen RE, McKinley GH (2004) Thermomechanical properties of poly(methyl methacrylate)s containing tethered and untethered polyhedral oligomeric silsesquioxanes. Macromolecules 37:8992

    Article  CAS  Google Scholar 

  130. Sanchez-Soto M, Illescas S, Milliman H, Schiraldi DA, Arostegui A (2010) Morphology and thermomechanical properties of melt-mixed polyoxymethylene/polyhedral oligomeric silsesquioxane nanocomposites. Macromol Mater Eng 295:846

    Article  CAS  Google Scholar 

  131. Wang F, Lub X, He C (2011) Some recent developments of polyhedral oligomeric silsesquioxane (POSS)-based polymeric materials. J Mater Chem 21:2775

    Article  CAS  Google Scholar 

  132. Tanaka K, Adachi S, Chujo Y (2009) Structure–property relationship of octa-substituted POSS in thermal and mechanical reinforcements of conventional polymers. J Polym Sci Part A Polym Chem 47:5690

    Article  CAS  Google Scholar 

  133. Damian CM, Ciobotaru CC, Garea SA, Iovu H (2013) Effect of POSS-NH2 functionalization of MWNTs on reinforcing properties in epoxy nanocomposites. High Perform Polym 25:566

    Article  CAS  Google Scholar 

  134. Wu Y, Li L, Feng S, Liu H (2013) Hybrid nanocomposites based on novolac resin and octa(phenethyl) polyhedral oligomeric silsesquioxanes (POSS): miscibility, specific interactions and thermomechanical properties. Polym Bull 70:3261

    Article  CAS  Google Scholar 

  135. Matejka L, Kroutilová IA, Lichtenhan JD, Haddad TS (2014) Structure ordering and reinforcement in POSS containing hybrids. Eur Polym J 52:117

    Article  CAS  Google Scholar 

  136. Choi J, Tamaki R, Kim SG, Laine RM (2003) Organic/inorganic imide nanocomposites from aminophenylsilsesquioxanes. Chem Mater 15:3365

    Article  CAS  Google Scholar 

  137. Choi J, Kim SG, Laine RM (2004) Organic/inorganic hybrid epoxy nanocomposites from aminophenylsilsesquioxanes. Macromolecules 37:99

    Article  CAS  Google Scholar 

  138. Zheng L, Hong S, Cardoen G, Burgaz E, Gido SP, Coughlin EB (2004) Polymer nanocomposites through controlled self-assembly of cubic silsesquioxane scaffolds. Macromolecules 37:8606

    Article  CAS  Google Scholar 

  139. Matejka L, Murias P, Pleštil J (2012) Effect of POSS on thermomechanical properties of epoxy-POSS Nanocomposites. Eur Polym J 48:260

    Article  CAS  Google Scholar 

  140. Milliman HW, Sanchez-Soto M, Arostegui A, Schiraldi DA (2012) Structure–property evaluation of trisilanolphenyl POSS/polysulfone composites as a guide to POSS melt blending. J Appl Polym Sci 125:2914

    Article  CAS  Google Scholar 

  141. Liu J, Rasheed A, Minus ML, Kumar S (2009) Processing and properties of carbon nanotube/poly(methyl methacrylate) composite films. J Appl Polym Sci 112:142

    Article  CAS  Google Scholar 

  142. Stephane B, Peeterbroeck S, Bonduel D, Alexandre M, Dubois P (2008) Mini-review from carbon nanotube coatings to high-performance polymer nanocomposites. Polym Int 57:547

    Article  CAS  Google Scholar 

  143. Geng Y, Liu MY, Li J, Shi XM, Kim JK (2008) Effects of surfactant treatment on mechanical and electrical properties of CNT/epoxy nanocomposites. Compos Part A 39:1876

    Article  CAS  Google Scholar 

  144. Logakis E, Pandis C, Pissis P, Pionteck J, Pötschke P (2011) Highly conducting poly(methyl methacrylate)/carbon nanotubes composites: Investigation on their thermal, dynamic-mechanical, electrical and dielectric properties. Compos Sci Tech 71:854

    Article  CAS  Google Scholar 

  145. He G, Zhou J, Tan K, Li H (2011) Preparation, morphology and properties of acylchloride-grafted multiwall carbon nanotubes/fluorinated polyimide composites. Compos Sci Tech 71:1914

    Article  CAS  Google Scholar 

  146. Lasater KL, Thostenson ET (2012) In situ thermoresistive characterization of multifunctional composites of carbon nanotubes. Polymer 53:5367

    Article  CAS  Google Scholar 

  147. Sinnott SB, Andrews R (2001) Carbon nanotubes: synthesis, properties, and applications. Crit Rev Sol St Mater Sci 26:145

    Article  CAS  Google Scholar 

  148. Hegde M, Lafont U, Norder B, Picken SJ, Samulski ET, Rubinstein M, Dingemans T (2013) SWCNT induced crystallization in an amorphous all-aromatic poly(ether imide). Macromolecules 46:1492

    Article  CAS  Google Scholar 

  149. Chen W, Lu H, Nutt SR (2008) The influence of functionalized MWCNT reinforcement on the thermomechanical properties and morphology of epoxy nanocomposites. Compos Sci Tech 68:2535

    Article  CAS  Google Scholar 

  150. Ko JH, Chang JH (2009) Properties of ultrahigh-molecular-weight polyethylene nanocomposite films containing different functionalized multiwalled carbon nanotubes. Polym Eng Sci 49:2168

    Article  CAS  Google Scholar 

  151. Spitalsky Z, Matejka L, Slouf M, Konyushenko EN, Kovarova J, Zemek J, Kotek J (2009) Modification of carbon nanotubes and its effect on properties of carbon nanotube/epoxy nanocomposites. Polym Compos 30:1378

    Article  CAS  Google Scholar 

  152. Mamunya YP, Levchenko VV, Rybak A, Boiteux G, Lebedev EV, Ulanski J, Seytre G (2010) Electrical and thermomechanical properties of segregated nanocomposites based on PVC and multiwalled carbon nanotubes. J Non-Cryst Solids 356:635

    Article  CAS  Google Scholar 

  153. Li H, Zhong J, Meng J, Xian G (2013) The reinforcement efficiency of carbon nanotubes/shape memory polymer nanocomposites. Compos Part B 44:508

    Article  CAS  Google Scholar 

  154. Rana S, Cho JW, Park JS (2013) Thermomechanical and water-responsive shape memory properties of carbon nanotubes-reinforced hyperbranched polyurethane composites. J Appl Polym Sci 127:2670

    Article  CAS  Google Scholar 

  155. Shepard KB, Gevgilili H, Ocampo M, Li J, Fisher FT, Kalyon DM (2012) Viscoelastic behavior of poly(ether imide) incorporated with multiwalled carbon nanotubes. J Polym Sci Part B Polym Phys 50:1504

    Article  CAS  Google Scholar 

  156. Barick AK, Tripathy DK (2011) Preparation, characterization and properties of acid functionalized multi-walled carbon nanotube reinforced thermoplastic polyurethane nanocomposites. Mater Sci Eng B 176:1435

    Article  CAS  Google Scholar 

  157. Gupta A, Choudhary V (2012) Effect of multiwall carbon nanotubes on thermomechanical and electrical properties of poly(trimethylene terephthalate). J Appl Polym Sci 123:1548

    Article  CAS  Google Scholar 

  158. Mallakpour S, Zadehnazari A (2014) A convenient strategy to functionalize carbon nanotubes with ascorbic acid and its effect on the physical and thermomechanical properties of poly(amide–imide) composites. J Solid State Chem 211:136

    Article  CAS  Google Scholar 

  159. Basuli U, Chaki TK, Chattopadhyay S (2011) Thermomechanical and rheological behaviour of polymer nanocomposites based on ethylene–methyl acrylate (EMA) and multiwalled carbon nanotube (MWNT). Plast Rub Compos 40:213

    Article  CAS  Google Scholar 

  160. Díez-Pascual AM, Naffakh M (2013) Enhancing the thermomechanical behaviour of poly(phenylene sulphide) based composites via incorporation of covalently grafted carbon nanotubes. Compos Part A 54:10

    Article  CAS  Google Scholar 

  161. Bethune DS, Kiang CH, Devries MS, Gorman G, Savoy R, Vazquez J et al (1993) Cobalt-catalyzed growth of carbon nanotubes with singleatomic-layerwalls. Nature 363:605

    Article  CAS  Google Scholar 

  162. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603

    Article  CAS  Google Scholar 

  163. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56

    Article  CAS  Google Scholar 

  164. Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277:1971

    Article  CAS  Google Scholar 

  165. Yu M, Lourie O, Dyer MJ, Kelly TF, Ruoff RS (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287:637

    Article  CAS  Google Scholar 

  166. Hossain MK, Chowdhury MR, Salam MB, Malone J, Hosur MV, Jeelani S, Bolden NW (2014) Improved thermomechanical properties of carbon fiber reinforced epoxy composite using amino functionalized XDCNT. J Appl Polym Sci 131:40709

    Article  CAS  Google Scholar 

  167. Lopes MC, Castro VG, Seara LM, Diniz VPA, Lavall RL, Silva GG (2014) Thermosetting polyurethane-multiwalled carbon nanotube composites: thermomechanical properties and nanoindentation. J Appl Polym Sci 131:41207

    Google Scholar 

  168. Saha S, Saha U, Singh JP, Goswami TH (2013) Thermal and mechanical properties of homogeneous ternary nanocomposites of regioregular poly(3-hexylthiophene)-wrapped multiwalled carbon nanotube dispersed in thermoplastic polyurethane: dynamic- and thermomechanical analysis. J Appl Polym Sci 128:2109

    CAS  Google Scholar 

  169. Bafekrpour E, Simon GP, Naebe M, Habsuda J, Yang C, Fox B (2013) Preparation and properties of composition-controlled carbon nanofiber/phenolic nanocomposites. Compos Part B 52:120

    Article  CAS  Google Scholar 

  170. Zhu J, Wei S, Ryu J, Budhathoki M, Liang G, Guo Z (2010) In situ stabilized carbon nanofiber (CNF) reinforced epoxy nanocomposites. J Mater Chem 20:4937

    Article  CAS  Google Scholar 

  171. Prolongo SG, Campo M, Gude MR, Chaos-Morán R, Ureña A (2009) Thermo-physical characterisation of epoxy resin reinforced by amino-functionalized carbon nanofibers. Compos Sci Technol 69:349

    Article  CAS  Google Scholar 

  172. Green KJ, Dean DR, Vaidya UK, Nyairo E (2009) Multiscale fiber reinforced composites based on a carbon nanofiber/epoxy nanophased polymer matrix: Synthesis, mechanical, and thermomechanical behavior. Compos Part A 40:1470

    Article  CAS  Google Scholar 

  173. Endo M, Kroto HW (1992) Formation of carbon nanofibers. J Phys Chem 96:6941

    Article  CAS  Google Scholar 

  174. Tibbetts GG, Beetz CP (1987) Mechanical properties of vapor grown carbon fibers. J Phys D Appl Phys 20:292

    Article  CAS  Google Scholar 

  175. Nouranian S, Toghiani H, Lacy TE, Pittman CU, Dubien J (2011) Dynamic mechanical analysis and optimization of vapor-grown carbon nanofiber/vinyl ester nanocomposites using design of experiments. J Compos Mater 45:1647

    Article  CAS  Google Scholar 

  176. Ma H, Zeng J, Realff ML, Kumar S, Schiraldi DA (2003) Processing, structure, and properties of fibers from polyester/carbon nanofiber composites. Compos Sci Technol 63:1617

    Article  CAS  Google Scholar 

  177. Zeng J, Saltysiak B, Johnson WS, Schiraldi DA, Kumar S (2004) Processing and properties of poly(methyl methacrylate)/carbon nanofiber composites. Compos B: Eng 35:245

    Article  CAS  Google Scholar 

  178. Barick AK, Tripathy DK (2010) Effect of nanofiber on material properties of vapor-grown carbon nanofiber reinforced thermoplastic polyurethane (TPU/CNF) nanocomposites prepared by melt compounding. Compos Part A 41:1471

    Article  CAS  Google Scholar 

  179. Jimenez GA, Jana SC (2009) Composites of carbon nanofibers and thermoplastic polyurethanes with shape-memory properties prepared by chaotic mixing. Polym Eng Sci 49:2020

    Article  CAS  Google Scholar 

  180. Yang S, Taha-Tijerina J, Serrato-Diaz V, Hernandez K, Lozano K (2007) Dynamic mechanical and thermal analysis of aligned vapor grown carbon nanofiber reinforced polyethylene. Compos B: Eng 38:228

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Ondokuz Mayis University under Grant No. PYO.MUH.1904.11.008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Engin Burgaz PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Burgaz, E. (2016). Thermomechanical Analysis of Polymer Nanocomposites. In: Huang, X., Zhi, C. (eds) Polymer Nanocomposites. Springer, Cham. https://doi.org/10.1007/978-3-319-28238-1_8

Download citation

Publish with us

Policies and ethics