Skip to main content

Positive Temperature Coefficient Effect of Polymer Nanocomposites

  • Chapter
  • First Online:
Polymer Nanocomposites

Abstract

Certain conductive polymer nanocomposites as PTC materials have attracted significant attention due to the advantages of low cost, excellent formability, flexibility, and lightweight over the conventional inorganic ceramic PTC materials. Several conductive theories as well as their characteristics of polymer PTC conductive composites are reviewed. The key factors that influence the PTC properties such as matrix material, kinds of conductive fillers, constructural composition, and process technologies are analyzed in details. Issues regarding the influences of polymer crystallinity on PTC effect, polymer melting temperature on PTC critical temperature, and binary-polymer blends on percolation threshold are discussed. Moreover, it is discovered that the kinds, grain sizes, shape, and distribution of conductive fillers in nanocomposites have crucial influences on the PTC effects. Therefore, the morphological control of conductive network is also reviewed. Several methods have been shown to be able to improve the PTC properties of nanocomposites, such as surface modification of conductive filler, cross-linking and heat treatment of the nanocomposite, etc. Furthermore, many novel and exciting results have been extensively investigated for the preparation of high-performance PTC nanocomposites using large aspect ratio and multifunctional conductive fillers, such as carbon nanotubes, graphene nanoplates, etc. Some thoughts on the developing trend of this kind of materials are also presented in order to learn more about the intrinsical characteristics of them and improve their properties further.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Király A, Ronkay (2015) Polym Test 43:154–162

    Article  Google Scholar 

  2. Tan Y, Song Y, Cao Q, Zheng Q (2011) Polym Int 60:823–832

    Article  CAS  Google Scholar 

  3. Lu C, Hu XN, He YX, Huang X, Liu JC, Zhang YQ (2012) Polym Bull 68:2071–2087

    Article  CAS  Google Scholar 

  4. Ram R, Rahaman M, Khastgir D (2015) Compos: Part A 69:30–39

    Article  CAS  Google Scholar 

  5. Brigandi PJ, Cogen JM, Wolf CA, Reffner JR, Pearson RA (2015) Kinetic and thermodynamic control in conductive PP/PMMA/EAA carbon black composites. J Appl Polym Sci 25:132–137

    Google Scholar 

  6. Feng C, Jiang L (2013) Compos Part A: Appl Sci Manuf 47:143–149

    Article  CAS  Google Scholar 

  7. Cheng WL, Zhang RM, Xie K, Liu N, Wang J (2010) Sol Ener Mat Sol Cells 94:1636–1642

    Article  CAS  Google Scholar 

  8. Frydman E (1945) UK Patent Spec. 604 195 I718 14S, 1945

    Google Scholar 

  9. Cheng WL, Song JL, Wu WF (2012) Spacer Eng 21:131–135

    Google Scholar 

  10. Kar P, Khatua BB (2011) Polym Eng Sci 51:1780–1790

    Article  CAS  Google Scholar 

  11. Ying X, Hisako I, Zhen BY (2004) M Masaru Carbon 42:1699–1706

    Google Scholar 

  12. Di WH, Zhang G, Peng Y, Zhao ZD (2004) J Mater Sci 39:695–697

    Article  CAS  Google Scholar 

  13. Chen R, Bin YZ, Zhang R, Dong EY, Ougizawa T, Kuboyama K, Mastuo M (2012) Polymer 53:5197–5207

    Google Scholar 

  14. Srivastava S, Tchoudakov R, Narkis M (2000) Polym Eng Sci 40(7):1522–1528

    Article  CAS  Google Scholar 

  15. Struèmpler R. Glatz-reichenbach J (1999) J Electroceram 3:4, 329–346

    Google Scholar 

  16. Sumita M, Sakata K, Asai S, Miyasaka K, Nakagawa H (1991) Polym Bull 25:265–271

    Article  CAS  Google Scholar 

  17. Nakamura S, Saito K, Sawa G, Kitagawa K (1997) Jpn J Appl Phys 36:5163–5168

    Article  CAS  Google Scholar 

  18. Kohler F (1966) Resistance element. US Patent, 3,243,753, 1966

    Google Scholar 

  19. Ohe K, Natio Y (1971) Jpn J Appl Phys 10:199–208

    Google Scholar 

  20. Meyer J (1973) Polym Eng Sci 13:462–486

    Article  CAS  Google Scholar 

  21. Klason C, Kubat J (1975) J Appl Polym Sci 19:831–845

    Article  CAS  Google Scholar 

  22. Voet A (1980) Rubber Chem Tech 54:42–50

    Article  Google Scholar 

  23. Allak HK, Brinkman AW (1993) J Mater Sci 28:117–120

    Article  Google Scholar 

  24. Mamunya YP, Zois H, Apekis L (2004) Powder Tech 140:49–55

    Article  CAS  Google Scholar 

  25. Cheng WL, Wu WF, Song JL, Liu Y, Yuan S, Liu N (2014) Ener Conversion Manag 79:470–476

    Article  CAS  Google Scholar 

  26. Brigandi PJ, Cogen JM, Wolf CA, Reffner JR, Pearson RA (2015) J Appl Polym Sci 132:42134

    Article  Google Scholar 

  27. Dai K, Zhang YC, Tang JH, Ji X, Li ZM (2012) J Appl Polym Sci 125:561–570

    Article  Google Scholar 

  28. Kim J, Kang PH, Nho YC (2004) J Appl Polym Sci 92:394–401

    Article  CAS  Google Scholar 

  29. Xiong CX, Zhou ZY, Xu W, Hu HR, Zhang Y, Dong LJ (2005) Carbon 43:1778–1814

    Article  Google Scholar 

  30. Jiang MJ, Dang ZM, Xu HP (2007) Appl Phys Lett 90:042914

    Article  Google Scholar 

  31. Wan Y, Xiong CX, Yu JY, Wen DJ (2005) Comp Sci Tech 65:1769–1779

    Article  CAS  Google Scholar 

  32. Kar P, Khatua B (2010) J Appl Polym Sci 118:950–959

    CAS  Google Scholar 

  33. Wen M, Sun X, Su L, Shen J, Li J, Guo S (2012) Polymer 53:1602–1610

    Article  CAS  Google Scholar 

  34. Gunes IS, Jimenez1 GA, Jana SC (2009) Carbon 47:981–997

    Google Scholar 

  35. Ibarrola JMA, Lopez SH, Santiago EV, Pe´rez JA, Valverde MIP (2015) J Thermoplast Compos Mater 28(4):574–590

    Google Scholar 

  36. Feng JY, Chan CM (2000) Polymer 41:7279–7282

    Article  CAS  Google Scholar 

  37. Akihiko K, Katsuya S, Hajime N, Yousuke G, Yusuke K, Toshiaki O, Hideo H (2012) Polymer 53:1760–1764

    Google Scholar 

  38. Xu HP, Dang ZM, Yao SH, Jiang MJ, Wang DY (2007) Appl Phys Lett 90:152912

    Article  Google Scholar 

  39. Xu HP, Dang ZM, Shi CY, Lei QQ, Bai J (2008) J Mater Chem 18(23):2685–2690

    Article  CAS  Google Scholar 

  40. Zhang SM, Deng H, Zhang Q, Fu Q (2014) Appl Mater Interfaces 6:6835–6844

    Article  CAS  Google Scholar 

  41. Dai K, Qu YY, Li Y, Zheng GQ, Liu CT, Chen JB (2014) Tuning of the PTC and NTC effects of conductive CB/PA6/HDPE composite utilizing an electrically superfine electrospun network. Mater lett 114:96–99

    Google Scholar 

  42. Gubbels F, Jerome R, Vanlathem E, Deltour R, Blacher S, Brouers F (1998) Chem Mater 10:1227–1235

    Article  CAS  Google Scholar 

  43. Nicolaus P, Eusebiu G (2002) Carbon 40:201–205

    Article  Google Scholar 

  44. Mather PJ, Thomas KM (1997) J Mate Sci 32:401–407

    Article  CAS  Google Scholar 

  45. Wang WP, Pan CY, Wu JS, Phys J (2005) Chem Solid 66:1695–1700

    Article  CAS  Google Scholar 

  46. Lee JH, Kim SK, Kim NH (2006) Scripta Mater 55:1119–1122

    Article  CAS  Google Scholar 

  47. Feller JF, Linossier I, Grohens Y (2002) Mater Lett 57(1):64–71

    Article  CAS  Google Scholar 

  48. Das NC, Chaki TK, Khastgir D (2001) Adv Polym Tech 20:226–236

    Article  CAS  Google Scholar 

  49. Zhang YC, Dai K, Pang H, Luo QJ, Li ZM, Zhang WQ (2012) J Appl Polym Sci 124:1808–1814

    Article  CAS  Google Scholar 

  50. Zhang R, Tang P, Li JF, Xu DG, Bin YZ (2014) Polymer 55:2103–2112

    Article  CAS  Google Scholar 

  51. Ke K, Wang Y, Luo Y, Yang W, Xie BH, Yang MB (2012) Compos Part B 43:3281–3287

    Article  CAS  Google Scholar 

  52. Jiang SL, Yu Y, Xie JJ, Wang LP, Zeng YK, Fu M, Li T (2010) J Appl Polym Sci 116:838–842

    CAS  Google Scholar 

  53. Chen J, Shi YY, Yang JH, Zhang N, Huang T, Chen C (2012) J Mater Chem 22:22398–22404

    Article  CAS  Google Scholar 

  54. Huang JR, Mao C, Zhu YT, Jiang W, Yang XD (2014) Carbon 73:267–274

    Article  CAS  Google Scholar 

  55. Maiti S, Suin S, Shrivastava N, Khatua BB (2014) RSC Adv 4:7979–7990

    Google Scholar 

  56. Gao JF, Li ZM, Peng S, Yan DX (2009) Polym Plast Tech Eng 48:478–481

    Article  CAS  Google Scholar 

  57. Zeng Y, Lu GX, Wang H, Du JH, Ying Z, Liu C (2014) Sci Rep 4:6684

    Article  Google Scholar 

  58. Du J, Zhao L, Zeng Y, Zhang L, Li F, Liu P, Liu C (2011) Carbon 49:1094–1100

    Article  CAS  Google Scholar 

  59. Pang H, Zhang YC, Chen T, Zeng BQ, Li ZM (2010) Appl Phys Lett 96:251907

    Article  Google Scholar 

  60. Ryu SH, Kim S, Kim H, Kang SO, Choa YH (2015) RSC Adv 5:36456

    Article  CAS  Google Scholar 

  61. Thommerel ME, Valmalette JC, Musso J (2002) Mater Sci Eng A328:67–79

    Google Scholar 

  62. Tavman IH (1997) Powder Tech 91(1):63–67

    Article  CAS  Google Scholar 

  63. Rusu M, Sofiana N, Rusu D (2001) Polym Test 20(4):409–417

    Article  CAS  Google Scholar 

  64. Mamunya YP, Davydenko VV, Pissis P, Lebedev V (2002) Europ Polym J 38(9):1887–1897

    Article  CAS  Google Scholar 

  65. Andrzej R, Gisele B, Flavien M, Gerard S (2010) Comp Sci Tech 70:410–416

    Article  Google Scholar 

  66. Mitsuhiro K, Toru M (2005) Electr Eng Japan 2:1–9 (Translated from Denki Gakkai Ronbunshi, Vol. 124-A, No. 4, April 2004, pp 337–343

    Google Scholar 

  67. Sun Y, Bao HD, Guo ZX, Yu J (2009) Macromolecules 42:459–463

    Article  CAS  Google Scholar 

  68. Zhang SM, Lin L, Deng H, Gao X, Bilotti E, Peijs T, Zhang Q (2012) Exp Polym Lett 6:159–168

    Article  CAS  Google Scholar 

  69. Otten RHJ, Van DSP (2009) Phys Rev Lett 103:225704/1-4

    Article  Google Scholar 

  70. Ma PC, Liu MY, Zhang H, Wang SQ, Wang R, Wang K, Wong YK, Tang BZ, Hong SH, Paik KW, Kim JK (2009) ACS Appl Mater Interfaces 1:1090–1096

    Article  CAS  Google Scholar 

  71. Sumfleth J, Adroher XC, Schulte K (2009) J Mater Sci 44:3241–3247

    Article  CAS  Google Scholar 

  72. Deng H, Lin L, Ji MZ, Zhang SM, Yang MB, Fu Q (2014) Prog Polym Sci 39:627–655

    Article  CAS  Google Scholar 

  73. Zha JW, Li WK, Liao RJ, Bai J, Dang ZM, Mater J (2013) Chem A 1:843–851

    CAS  Google Scholar 

  74. Chekanov Y, Ohnogi R, Asai S (1999) J Mater Sci 34:5589–5592

    Article  CAS  Google Scholar 

  75. Xue QZ (2004) Eur Polym J 40:323–327

    Article  CAS  Google Scholar 

  76. Zhang C, Yi XS, Yui H, Asai S, Sumita M, Appl J (1998) Polym Sci 69(9):1813–1819

    CAS  Google Scholar 

  77. Xu HP, Dang ZM, Jiang MJ, Yao SH, Bai JB (2008) J Mater Chem 18:229–234

    Google Scholar 

  78. Dang ZM, Wang HY, XU HP (2006) Appl Phys Lett 89:112902

    Article  Google Scholar 

  79. Bai BC, Kang SC, Im JS, Lee SH, Lee YS (2011) Mater Res Bull 46:1391–1397

    Article  CAS  Google Scholar 

  80. He LX, Tjong SC (2015) RSC Adv 5:15070

    Article  CAS  Google Scholar 

  81. Jia SJ, Jiang PK, Zhang ZC et al (2006) Effect of carbon-black treatment by radiation emulsion polymerization on temperature dependence of resistivity of carbon-black-filled polymer blends. Radiat Phys Chem 75:524–531

    Article  CAS  Google Scholar 

  82. Michael S, Martin B, Jurgen H, Eur J (2005) Ceramic Soc 25:199–204

    Article  Google Scholar 

  83. Chen JH, Wei G, Maekawa Y, Yoshida M, Tsubokawa N (2003) Polymer 44(11):3201–3207

    Article  CAS  Google Scholar 

  84. Yang GC (1997) Polym Comp 18(4):484–491

    Article  CAS  Google Scholar 

  85. Narkis M, Ram A, Stein Z (1981) Polym Eng Sci 21:1049–1054

    Article  CAS  Google Scholar 

  86. Narkis M, Vaxman A (1984) J Appl Polym Sci 29:1639–1652

    Article  CAS  Google Scholar 

  87. Zhang GX, Zhang ZC (2004) Radiat Phys Chem 71(1–2):273–276

    Article  CAS  Google Scholar 

  88. Yi XS, Zhang JF, Zheng Q, Pan Y, Appl J (2000) Polym Sci 77(3):494–499

    CAS  Google Scholar 

  89. Seo MK, Rhee KY, Park SJ (2011) Curr Appl Phys 11:428–433

    Article  Google Scholar 

  90. Chen JH, Iwata H, Tsubokawa N, Maekawa Y, Yoshida M (2002) Polymer 43(8):2201–2206

    Article  CAS  Google Scholar 

  91. Hirano S, Kishimoto A (1998) Appl Phys Lett 73:25–27

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiping Xu PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Xu, H. (2016). Positive Temperature Coefficient Effect of Polymer Nanocomposites. In: Huang, X., Zhi, C. (eds) Polymer Nanocomposites. Springer, Cham. https://doi.org/10.1007/978-3-319-28238-1_4

Download citation

Publish with us

Policies and ethics