Skip to main content

Thermally Conductive Electrically Insulating Polymer Nanocomposites

  • Chapter
  • First Online:
Polymer Nanocomposites

Abstract

As the devices and components in the microelectronic systems are getting more and more miniaturized and integrated, thermal management becomes a critical issue in realizing assembling high power, multifunctional, and high reliability systems. Thermally conductive polymer composites play a very important role in thermal management. They can be thermal interface materials (TIMs) and electronic packaging materials. One important category of these materials is electrically insulating but thermally conductive polymer composites, which can be used to conduct heat but keep the devices being electrically insulated. Great efforts have been made on fabricating high thermal conductive insulating polymer composites and different fillers, mainly some oxides and nitrides have been adopted by researchers. However, the high thermal conductivity of the polymer composites may be affected by many factors, including intrinsic thermal conductivity of the fillers, aspect ratio of the fillers, processing methods, etc. In this chapter, we will review the current progresses of the thermally conductive electrically insulating polymer composites with introduction to various types of inorganic fillers and the factors that influence the thermal conductivity achieved in the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prasher R (2006) Thermal interface materials: historical perspective, status, and future directions. Proc IEEE 94(8):1571–1586

    Article  CAS  Google Scholar 

  2. Otiaba KC et al (2011) Thermal interface materials for automotive electronic control unit: trends, technology and R&D challenges. Microelectron Reliab 51(12):2031–2043

    Article  Google Scholar 

  3. Shen S et al (2010) Polyethylene nanofibres with very high thermal conductivities. Nat Nanotechnol 5(4):251–255

    Article  CAS  Google Scholar 

  4. Kleinstreuer C, Feng Y (2011) Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review. Nanoscale Res Lett 6(1):1–13

    Article  Google Scholar 

  5. Lee J-H et al (2008) Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al 2 O 3 nanoparticles. Int J Heat Mass Transf 51(11):2651–2656

    Article  CAS  Google Scholar 

  6. Lee S et al (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf 121(2):280–289

    Article  CAS  Google Scholar 

  7. Wang X, Xu X, Choi SUS (1999) Thermal conductivity of nanoparticle-fluid mixture. J Thermophys Heat Transf 13(4):474–480

    Article  CAS  Google Scholar 

  8. Li CH, Peterson G (2006) Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). J Appl Phys 99(8):084314

    Article  CAS  Google Scholar 

  9. Das SK et al (2003) Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transf 125(4):567–574

    Article  CAS  Google Scholar 

  10. Williams W, Buongiorno J, Hu L-W (2008) Experimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/water nanoparticle colloids (nanofluids) in horizontal tubes. J Heat Transf 130(4):042412

    Article  CAS  Google Scholar 

  11. Rusconi R, Rodari E, Piazza R (2006) Optical measurements of the thermal properties of nanofluids. Appl Phys Lett 89(26):261916

    Article  CAS  Google Scholar 

  12. Putnam SA et al (2006) Thermal conductivity of nanoparticle suspensions. J Appl Phys 99(8):084308

    Article  CAS  Google Scholar 

  13. Venerus DC et al (2006) Study of thermal transport in nanoparticle suspensions using forced Rayleigh scattering. J Appl Phys 100(9):094310

    Article  CAS  Google Scholar 

  14. Greenwood NN, Earnshaw A (1984) Chemistry of the elements. Oxford: Pergamon Press.

    Google Scholar 

  15. Nishi Y, Doering R (2000) Handbook of semiconductor manufacturing technology. New York: Taylor & Francis.

    Google Scholar 

  16. Kistler SS (1931) Coherent expanded aerogels and jellies. Nature 127:741

    Article  CAS  Google Scholar 

  17. Wei TY et al (2007) Preparation of monolithic silica aerogel of low thermal conductivity by ambient pressure drying. J Am Ceram Soc 90(7):2003–2007

    Article  CAS  Google Scholar 

  18. Dorcheh AS, Abbasi MH (2008) Silica aerogel; synthesis, properties and characterization. J Mater Process Technol 199(1–3):10–26

    Article  CAS  Google Scholar 

  19. Nakanishi K et al (1998) Structure design of double-pore silica and its application to HPLC. J Sol-Gel Sci Technol 13(1–3):163–169

    Article  CAS  Google Scholar 

  20. Nakanishi K et al (1997) Double pore silica gel monolith applied to liquid chromatography. J Sol-Gel Sci Technol 8(1–3):547–552

    CAS  Google Scholar 

  21. Ishizuka N et al (2000) Performance of a monolithic silica column in a capillary under pressure-driven and electrodriven conditions. Anal Chem 72(6):1275–1280

    Article  CAS  Google Scholar 

  22. Wagh P et al (1999) Comparison of some physical properties of silica aerogel monoliths synthesized by different precursors. Mater Chem Phys 57(3):214–218

    Article  CAS  Google Scholar 

  23. Rao AV et al (2006) Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor. J Colloid Interface Sci 300(1):279–285

    Article  CAS  Google Scholar 

  24. Strøm R et al (2007) Strengthening and aging of wet silica gels for up-scaling of aerogel preparation. J Sol-Gel Sci Technol 41(3):291–298

    Article  CAS  Google Scholar 

  25. Titulaer M et al (1994) The increase in pH during aging of porous sol–gel silica spheres. J Non-Cryst Solids 170(2):128–133

    Article  CAS  Google Scholar 

  26. Chou K, Lee B (1994) Solvent effect on ageing of silica gels. J Mater Sci 29(13):3565–3571

    Article  CAS  Google Scholar 

  27. Smitha S et al (2006) Effect of aging time and concentration of aging solution on the porosity characteristics of subcritically dried silica aerogels. Microporous Mesoporous Mater 91(1):286–292

    Article  CAS  Google Scholar 

  28. Özgür Ü et al (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98(4):041301

    Article  CAS  Google Scholar 

  29. Wang ZL (2004) Zinc oxide nanostructures: growth, properties and applications. J Phys Condens Matter 16(25):R829

    Article  CAS  Google Scholar 

  30. Morkoç, H., & Özgür, Ü. (2008). Zinc oxide: fundamentals, materials and device technology. John Wiley & Sons.

    Google Scholar 

  31. Zhang Y et al (2005) Zinc oxide nanorod and nanowire for humidity sensor. Appl Surf Sci 242(1):212–217

    Article  CAS  Google Scholar 

  32. Yang H-J et al (2015) Ultralong mesoporous ZnO nanowires grown via room temperature self-assembly of ZnO nanoparticles for enhanced reversible storage in lithium ion batteries. RSC Adv 5(42):33392–33399

    Article  CAS  Google Scholar 

  33. Wang ZL (2004) Nanostructures of zinc oxide. Mater Today 7(6):26–33

    Article  CAS  Google Scholar 

  34. Gao P, Wang ZL (2002) Self-assembled nanowire-nanoribbon junction arrays of ZnO. J Phys Chem B 106(49):12653–12658

    Article  CAS  Google Scholar 

  35. Gao P, Ding Y, Wang Z (2003) Crystallographic orientation-aligned ZnO nanorods grown by a tin catalyst. Nano Lett 3(9):1315–1320

    Article  CAS  Google Scholar 

  36. Lao J et al (2003) ZnO nanobridges and nanonails. Nano Lett 3(2):235–238

    Article  CAS  Google Scholar 

  37. Pan ZW, Dai ZR, Wang ZL (2001) Nanobelts of semiconducting oxides. Science 291(5510):1947–1949

    Article  CAS  Google Scholar 

  38. Hashimoto S, Yamaguchi A (1996) Growth morphology and mechanism of a hollow ZnO polycrystal. J Am Ceram Soc 79(4):1121–1123

    Article  CAS  Google Scholar 

  39. Huang X, Jiang P, Tanaka T (2011) A review of dielectric polymer composites with high thermal conductivity. IEEE Electr Insul Mag 27(4):8–16

    Article  Google Scholar 

  40. Olorunyolemi T et al (2002) Thermal conductivity of zinc oxide: from green to sintered state. J Am Ceram Soc 85(5):1249–1253

    Article  CAS  Google Scholar 

  41. Özgür Ü et al (2006) Thermal conductivity of bulk ZnO after different thermal treatments. J Electron Mater 35(4):550–555

    Article  Google Scholar 

  42. Tsubota T et al (1997) Thermoelectric properties of Al-doped ZnO as a promising oxide material for high-temperature thermoelectric conversion. J Mater Chem 7(1):85–90

    Article  CAS  Google Scholar 

  43. Katsuyama S et al (2002) Thermoelectric properties of (Zn1− yMgy) 1− xAlxO ceramics prepared by the polymerized complex method. J Appl Phys 92(3):1391–1398

    Article  CAS  Google Scholar 

  44. Ong KP, Singh DJ, Wu P (2011) Analysis of the thermoelectric properties of n-type ZnO. Phys Rev B 83(11):115110

    Article  CAS  Google Scholar 

  45. Shinde SL, Goela J (2006) High thermal conductivity materials. Berlin: Springer

    Google Scholar 

  46. Slack GA (1973) Nonmetallic crystals with high thermal conductivity. J Phys Chem Solids 34(2):321–335

    Article  CAS  Google Scholar 

  47. Buhr H et al (1991) Phase composition, oxygen content, and thermal conductivity of AIN (Y2O3) ceramics. J Am Ceram Soc 74(4):718–723

    Article  CAS  Google Scholar 

  48. Komeya K, Tsuge A, Inoue H (1984) High density and thermal conductivity. Google Patents US4435513 A

    Google Scholar 

  49. Haubner, R., Herrmann, M., Lux, B., Petzow, G., Weissenbacher, R., & Wilhelm, M. (2003). High performance non-oxide ceramics II (Vol. 102). M. Jansen (Ed.). Springer.

    Google Scholar 

  50. Kimura Y et al (1999) Boron nitride as a lubricant additive. Wear 232(2):199–206

    Article  CAS  Google Scholar 

  51. Pawlak Z et al (2009) A comparative study on the tribological behaviour of hexagonal boron nitride (h-BN) as lubricating micro-particles—an additive in porous sliding bearings for a car clutch. Wear 267(5):1198–1202

    Article  CAS  Google Scholar 

  52. Chopra NG et al (1995) Boron nitride nanotubes. Science 269(5226):966–967

    Article  CAS  Google Scholar 

  53. Golberg D et al (2007) Boron nitride nanotubes. Adv Mater 19(18):2413–2432

    Article  CAS  Google Scholar 

  54. Golberg D et al (2010) Boron nitride nanotubes and nanosheets. ACS Nano 4(6):2979–2993

    Article  CAS  Google Scholar 

  55. Lin Y, Williams TV, Connell JW (2009) Soluble, exfoliated hexagonal boron nitride nanosheets. J Phys Chem Lett 1(1):277–283

    Article  CAS  Google Scholar 

  56. Tang C et al (2008) Synthetic routes and formation mechanisms of spherical boron nitride nanoparticles. Adv Funct Mater 18(22):3653–3661

    Article  CAS  Google Scholar 

  57. Zeng H et al (2010) “White graphenes”: boron nitride nanoribbons via boron nitride nanotube unwrapping. Nano Lett 10(12):5049–5055

    Article  CAS  Google Scholar 

  58. Huo K et al (2002) Synthesis of boron nitride nanowires. Appl Phys Lett 80(19):3611–3613

    Article  CAS  Google Scholar 

  59. Lian G et al (2011) Facile synthesis of 3D boron nitride nanoflowers composed of vertically aligned nanoflakes and fabrication of graphene-like BN by exfoliation. J Mater Chem 21(25):9201–9207

    Article  CAS  Google Scholar 

  60. Hirao K et al (2012) High thermal conductivity silicon nitride ceramics. J Korean Ceram Soc 49(4):380–384

    Article  CAS  Google Scholar 

  61. Xu W et al (2003) Study on the thermal conductivity and microstructure of silicon nitride used for power electronic substrate. Mater Sci Eng B 99(1):475–478

    Article  CAS  Google Scholar 

  62. Pablos A, Osendi MI, Miranzo P (2002) Effect of microstructure on the thermal conductivity of hot‐pressed silicon nitride materials. J Am Ceram Soc 85(1):200–206

    Article  Google Scholar 

  63. Wang G et al (2008) Facile synthesis and characterization of graphene nanosheets. J Phys Chem C 112(22):8192–8195

    Article  CAS  Google Scholar 

  64. Novoselov KS et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  CAS  Google Scholar 

  65. Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339

    Article  CAS  Google Scholar 

  66. Marcano DC et al (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814

    Article  CAS  Google Scholar 

  67. Bao C et al (2012) Preparation of graphene by pressurized oxidation and multiplex reduction and its polymer nanocomposites by masterbatch-based melt blending. J Mater Chem 22(13):6088–6096

    Article  CAS  Google Scholar 

  68. Shen J et al (2009) Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets. Chem Mater 21(15):3514–3520

    Article  CAS  Google Scholar 

  69. Sreeprasad TS et al (2011) Reduced graphene oxide-metal/metal oxide composites: Facile synthesis and application in water purification. J Hazard Mater 186(1):921–931

    Article  CAS  Google Scholar 

  70. Su Y et al (2014) Impermeable barrier films and protective coatings based on reduced graphene oxide. Nat Commun 5

    Google Scholar 

  71. Zhu XJ et al (2011) Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 5(4):3333–3338

    Article  CAS  Google Scholar 

  72. Ji LW et al (2011) Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J Am Chem Soc 133(46):18522–18525

    Article  CAS  Google Scholar 

  73. Dikin DA et al (2007) Preparation and characterization of graphene oxide paper. Nature 448(7152):457–460

    Article  CAS  Google Scholar 

  74. Slack GA (1964) Thermal conductivity of pure and impure silicon, silicon carbide, and diamond. J Appl Phys 35(12):3460–3466

    Article  CAS  Google Scholar 

  75. Shor JS, Kurtz AD (1994) Photoelectrochemical etching of 6 H‐SiC. J Electrochem Soc 141(3):778–781

    Article  CAS  Google Scholar 

  76. Takazawa A, Tamura T, Yamada M (1993) Porous β-SiC fabrication by electrochemical anodization. Jpn J Appl Phys 32(7R):3148

    Article  CAS  Google Scholar 

  77. Cambaz GZ et al (2006) Anisotropic etching of SiC whiskers. Nano Lett 6(3):548–551

    Article  CAS  Google Scholar 

  78. Matsumoto T et al (1994) Blue‐green luminescence from porous silicon carbide. Appl Phys Lett 64(2):226–228

    Article  CAS  Google Scholar 

  79. Connolly E et al (2005) A porous SiC ammonia sensor. Sensors Actuators B Chem 109(1):44–46

    Article  CAS  Google Scholar 

  80. Klein S, Winterer M, Hahn H (1998) Reduced‐pressure chemical vapor synthesis of nanocrystalline silicon carbide powders. Chem Vap Depos 4(4):143–149

    Article  CAS  Google Scholar 

  81. Lin H et al (2008) Synthesis of amorphous silicon carbide nanoparticles in a low temperature low pressure plasma reactor. Nanotechnology 19(32):325601

    Article  CAS  Google Scholar 

  82. Meng G et al (1998) Preparation of β–SiC nanorods with and without amorphous SiO2 wrapping layers. J Mater Res 13(09):2533–2538

    Article  CAS  Google Scholar 

  83. Wang ZL et al (2000) Side-by-side silicon carbide–silica biaxial nanowires: synthesis, structure, and mechanical properties. Appl Phys Lett 77(21):3349–3351

    Article  CAS  Google Scholar 

  84. Ryu Y, Tak Y, Yong K (2005) Direct growth of core–shell SiC–SiO2 nanowires and field emission characteristics. Nanotechnology 16(7):S370

    Article  CAS  Google Scholar 

  85. Tang C, Bando Y (2003) Effect of BN coatings on oxidation resistance and field emission of SiC nanowires. Appl Phys Lett 83(4):659–661

    Article  CAS  Google Scholar 

  86. Hao Y-J et al (2006) Synthesis and characterization of bamboo-like SiC nanofibers. Mater Lett 60(11):1334–1337

    Article  CAS  Google Scholar 

  87. Wei J et al (2006) Growth and morphology of one-dimensional SiC nanostructures without catalyst assistant. Mater Chem Phys 95(1):140–144

    Article  CAS  Google Scholar 

  88. Hao Y-J et al (2006) Beaded silicon carbide nanochains via carbothermal reduction of carbonaceous silica xerogel. Nanotechnology 17(12):2870

    Article  CAS  Google Scholar 

  89. Li Z et al (2008) Large-scale synthesis and Raman and photoluminescence properties of single crystalline β-SiC nanowires periodically wrapped by amorphous SiO2 nanospheres 2. J Phys Chem C 113(1):91–96

    Article  CAS  Google Scholar 

  90. Zhang H-F, Wang C-M, Wang L-S (2002) Helical crystalline SiC/SiO2 core-shell nanowires. Nano Lett 2(9):941–944

    Article  CAS  Google Scholar 

  91. Fu J et al (2010) Effect of nanoparticles on the performance of thermally conductive epoxy adhesives. Polym Eng Sci 50(9):1809–1819

    Article  CAS  Google Scholar 

  92. Liu M, Jia K, Liu X (2015) Effective thermal conductivity and thermal properties of phthalonitrile‐terminated poly (arylene ether nitriles) composites with hybrid functionalized alumina. J Appl Polym Sci 132(10):1–8

    Google Scholar 

  93. Kozako M et al (2010) Preparation and evaluation of epoxy composite insulating materials toward high thermal conductivity. In: Solid Dielectrics (ICSD), 2010 10th IEEE international conference on 2010 IEEE, Potsdam

    Google Scholar 

  94. Bujard P et al (1994) Thermal conductivity of molding compounds for plastic packaging. In: Electronic components and technology conference, 1994. Proceedings, 44th, 1994, IEEE, Washington, DC

    Google Scholar 

  95. Wong C, Bollampally RS (1999) Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging. J Appl Polym Sci 74(14):3396–3403

    Article  CAS  Google Scholar 

  96. Shen M-X et al (2011) Thermal conductivity model of filled polymer composites. Int J Miner Metall Mater 18(5):623–631

    Article  CAS  Google Scholar 

  97. Lee WS, Yu J (2005) Comparative study of thermally conductive fillers in underfill for the electronic components. Diam Relat Mater 14(10):1647–1653

    Article  CAS  Google Scholar 

  98. Sim LC et al (2005) Thermal characterization of Al 2 O 3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes. Thermochim Acta 430(1):155–165

    Article  CAS  Google Scholar 

  99. Özmıhçı FÖ, Balköse D (2013) Effects of particle size and electrical resistivity of filler on mechanical, electrical, and thermal properties of linear low density polyethylene–zinc oxide composites. J Appl Polym Sci 130(4):2734–2743

    Article  CAS  Google Scholar 

  100. Fang L et al (2015) Hydrangea-like zinc oxide superstructures for ferroelectric polymer composites with high thermal conductivity and high dielectric constant. Compos Sci Technol 107:67–74

    Article  CAS  Google Scholar 

  101. Lee B, Dai G (2009) Influence of interfacial modification on the thermal conductivity of polymer composites. J Mater Sci 44(18):4848–4855

    Article  CAS  Google Scholar 

  102. Wang Z et al (2011) Preparation of nano‐zinc oxide/EPDM composites with both good thermal conductivity and mechanical properties. J Appl Polym Sci 119(2):1144–1155

    Article  CAS  Google Scholar 

  103. Mu Q, Feng S, Diao G (2007) Thermal conductivity of silicone rubber filled with ZnO. Polym Compos 28(2):125–130

    Article  CAS  Google Scholar 

  104. Huang X et al (2012) Role of interface on the thermal conductivity of highly filled dielectric epoxy/AlN composites. J Phys Chem C 116(25):13629–13639

    Article  CAS  Google Scholar 

  105. Lee ES et al (2008) Enhanced thermal conductivity of polymer matrix composite via high solids loading of aluminum nitride in epoxy resin. J Am Ceram Soc 91(4):1169–1174

    Article  CAS  Google Scholar 

  106. Zhou Y et al (2012) Fabrication and characterization of aluminum nitride polymer matrix composites with high thermal conductivity and low dielectric constant for electronic packaging. Mater Sci Eng B 177(11):892–896

    Article  CAS  Google Scholar 

  107. Yu H et al (2012) Thermal and insulating properties of epoxy/aluminum nitride composites used for thermal interface material. J Appl Polym Sci 124(1):669–677

    Article  CAS  Google Scholar 

  108. Yu S, Hing P, Hu X (2002) Thermal conductivity of polystyrene–aluminum nitride composite. Compos A: Appl Sci Manuf 33(2):289–292

    Article  Google Scholar 

  109. Xu Y, Chung D, Mroz C (2001) Thermally conducting aluminum nitride polymer-matrix composites. Compos A: Appl Sci Manuf 32(12):1749–1757

    Article  Google Scholar 

  110. Xie S-H et al (2004) Preparation and properties of polyimide/aluminum nitride composites. Polym Test 23(7):797–801

    Article  CAS  Google Scholar 

  111. Gu J et al (2009) Thermal conductivity and mechanical properties of aluminum nitride filled linear low‐density polyethylene composites. Polym Eng Sci 49(5):1030–1034

    Article  CAS  Google Scholar 

  112. Ohashi M et al (2005) Spherical aluminum nitride fillers for heat‐conducting plastic packages. J Am Ceram Soc 88(9):2615–2618

    Article  CAS  Google Scholar 

  113. Peng W et al (2010) Electrical and thermophysical properties of epoxy/aluminum nitride nanocomposites: Effects of nanoparticle surface modification. Compos A: Appl Sci Manuf 41(9):1201–1209

    Article  CAS  Google Scholar 

  114. Yu J et al (2011) Influence of nano-AlN particles on thermal conductivity, thermal stability and cure behavior of cycloaliphatic epoxy/trimethacrylate system. Express Polym Lett 5(2):132–141

    Article  CAS  Google Scholar 

  115. Bujard P (1988) Thermal conductivity of boron nitride filled epoxy resins: temperature dependence and influence of sample preparation. In: Thermal phenomena in the fabrication and operation of electronic components: I-THERM’88, InterSociety conference on, 1988, IEEE, Los Angeles, CA

    Google Scholar 

  116. Zhou W et al (2007) Thermal conductivity of boron nitride reinforced polyethylene composites. Mater Res Bull 42(10):1863–1873

    Article  CAS  Google Scholar 

  117. Ng HY, Lu X, Lau SK (2005) Thermal conductivity of boron nitride‐filled thermoplastics: effect of filler characteristics and composite processing conditions. Polym Compos 26(6):778–790

    Article  CAS  Google Scholar 

  118. Kemaloglu S, Ozkoc G, Aytac A (2010) Properties of thermally conductive micro and nano size boron nitride reinforced silicon rubber composites. Thermochim Acta 499(1):40–47

    Article  CAS  Google Scholar 

  119. Zhou WY et al (2007) Thermally conductive silicone rubber reinforced with boron nitride particle. Polym Compos 28(1):23–28

    Article  CAS  Google Scholar 

  120. Kemaloglu S, Ozkoc G, Aytac A (2010) Thermally conductive boron nitride/SEBS/EVA ternary composites: “processing and characterization”. Polym Compos 31(8):1398–1408

    CAS  Google Scholar 

  121. Yung K, Liem H (2007) Enhanced thermal conductivity of boron nitride epoxy‐matrix composite through multi‐modal particle size mixing. J Appl Polym Sci 106(6):3587–3591

    Article  CAS  Google Scholar 

  122. Li T-L, Hsu SL-C (2010) Enhanced thermal conductivity of polyimide films via a hybrid of micro-and nano-sized boron nitride. J Phys Chem B 114(20):6825–6829

    Article  CAS  Google Scholar 

  123. Wang Z et al (2014) Solvent-free fabrication of thermally conductive insulating epoxy composites with boron nitride nanoplatelets as fillers. Nanoscale Res Lett 9(1):1–7

    Article  CAS  Google Scholar 

  124. Yu J et al (2012) Interfacial modification of boron nitride nanoplatelets for epoxy composites with improved thermal properties. Polymer 53(2):471–480

    Article  CAS  Google Scholar 

  125. Xu Y, Chung D (2000) Increasing the thermal conductivity of boron nitride and aluminum nitride particle epoxy-matrix composites by particle surface treatments. Compos Interfaces 7(4):243–256

    Article  CAS  Google Scholar 

  126. Zhi C et al (2008) Boron nitride nanotubes: functionalization and composites. J Mater Chem 18(33):3900–3908

    Article  CAS  Google Scholar 

  127. Zhi C et al (2008) Mechanical and thermal properties of polymethyl methacrylate-BN nanotube composites. J Nanomater 2008

    Google Scholar 

  128. Zhi CY et al (2010) Dielectric and thermal properties of epoxy/boron nitride nanotube composites. Pure Appl Chem 82(11):2175–2183

    Article  CAS  Google Scholar 

  129. Terao T et al (2009) Thermal conductivity improvement of polymer films by catechin-modified boron nitride nanotubes. J Phys Chem C 113(31):13605–13609

    Article  CAS  Google Scholar 

  130. Terao T et al (2010) Alignment of boron nitride nanotubes in polymeric composite films for thermal conductivity improvement. J Phys Chem C 114(10):4340–4344

    Article  CAS  Google Scholar 

  131. Zhi C et al (2009) Towards thermoconductive, electrically insulating polymeric composites with boron nitride nanotubes as fillers. Adv Funct Mater 19(12):1857–1862

    Article  CAS  Google Scholar 

  132. Huang X et al (2013) Polyhedral oligosilsesquioxane‐modified boron nitride nanotube based epoxy nanocomposites: an ideal dielectric material with high thermal conductivity. Adv Funct Mater 23(14):1824–1831

    Article  CAS  Google Scholar 

  133. Zhou W et al (2009) A novel fiber-reinforced polyethylene composite with added silicon nitride particles for enhanced thermal conductivity. Compos A: Appl Sci Manuf 40(6):830–836

    Article  CAS  Google Scholar 

  134. He H et al (2007) High thermal conductive Si3N4 particle filled epoxy composites with a novel structure. J Electron Packag 129(4):469–472

    Article  CAS  Google Scholar 

  135. He H et al (2007) Preparation and properties of Si 3 N 4/PS composites used for electronic packaging. Compos Sci Technol 67(11):2493–2499

    Article  CAS  Google Scholar 

  136. Zeng J et al (2009) High thermal conductive epoxy molding compound with thermal conductive pathway. J Appl Polym Sci 113(4):2117–2125

    Article  CAS  Google Scholar 

  137. Hsiao M-C et al (2013) Thermally conductive and electrically insulating epoxy nanocomposites with thermally reduced graphene oxide–silica hybrid nanosheets. Nanoscale 5(13):5863–5871

    Article  CAS  Google Scholar 

  138. Pu X et al (2014) Thermally conductive and electrically insulating epoxy nanocomposites with silica-coated graphene. RSC Adv 4(29):15297–15303

    Article  CAS  Google Scholar 

  139. Ji WF et al (2014) Preparation and comparison of the physical properties of PMMA/thermally reduced graphene oxides composites with different carboxylic group content of thermally reduced graphene oxides. Compos A Appl Sci Manuf 65:108–114

    Article  CAS  Google Scholar 

  140. Kim T-E et al (2013) Thermal conductivity behaviour of silicon carbide fiber/phenolic resin composites by the introduction of graphene nanoplatelets. Asian J Chem 25(10):5625–5630

    CAS  Google Scholar 

  141. Tsai M-H et al (2014) Flexible polyimide films hybrid with functionalized boron nitride and graphene oxide simultaneously to improve thermal conduction and dimensional stability. ACS Appl Mater Interfaces 6(11):8639–8645

    Article  CAS  Google Scholar 

  142. Li Z et al (2014) Enhancement of the thermal conductivity of polymer composites with Ag–graphene hybrids as fillers. Phys Status Solidi A 211(9):2142–2149

    Article  CAS  Google Scholar 

  143. Qian R et al (2013) Alumina-coated graphene sheet hybrids for electrically insulating polymer composites with high thermal conductivity. RSC Adv 3(38):17373–17379

    Article  CAS  Google Scholar 

  144. Khan MO et al (2013) Effects of microsized and nanosized carbon fillers on the thermal and electrical properties of polyphenylene sulfide based composites. Polym Eng Sci 53(11):2398–2406

    Article  CAS  Google Scholar 

  145. Hwang Y, Kim J, Cho W (2014) Thermal conductivity of thermally conductive ceramic composites and silicon carbide/epoxy composites through wetting process. Polymer-Korea 38(6):782–786

    Article  CAS  Google Scholar 

  146. Kim SR et al (2007) Study on thermal conductivity of polyetheretherketone/thermally conductive filler composites. Solid State Phenom 124:1079–1082

    Article  Google Scholar 

  147. Ekstrand L, Kristiansen H, Liu J (2005) Characterization of thermally conductive epoxy nano composites. In: Electronics technology: meeting the challenges of electronics technology progress, 2005. 28th International Spring seminar on. 2005, IEEE, Wiener Neustadt

    Google Scholar 

  148. Wang L, Li F, Su Z (2008) Effective thermal conductivity behavior of filled vulcanized perfluoromethyl vinyl ether rubber. J Appl Polym Sci 108(5):2968–2974

    Article  CAS  Google Scholar 

  149. Ren F et al (2011) Thermal, mechanical and electrical properties of linear low-density polyethylene composites filled with different dimensional SiC particles. Polym Plast Technol Eng 50(8):791–796

    Article  CAS  Google Scholar 

  150. Ishida H, Rimdusit S (1998) Very high thermal conductivity obtained by boron nitride-filled polybenzoxazine. Thermochim Acta 320(1):177–186

    Article  CAS  Google Scholar 

  151. Hill RF, Supancic PH (2002) Thermal conductivity of platelet‐filled polymer composites. J Am Ceram Soc 85(4):851–857

    Article  CAS  Google Scholar 

  152. Lu X, Xu G (1997) Thermally conductive polymer composites for electronic packaging. J Appl Polym Sci 65(13):2733–2738

    Article  CAS  Google Scholar 

  153. Chiu HT et al (2014) Surface modification of aluminum nitride by polysilazane and its polymer-derived amorphous silicon oxycarbide ceramic for the enhancement of thermal conductivity in silicone rubber composite. Appl Surf Sci 292:928–936

    Article  CAS  Google Scholar 

  154. Choudhury M, Mohanty S, Nayak SK (2013) Effect of surface modification of aluminum nitride on electrical and thermal characterizations of thermosetting polymeric nanocomposites. Polym Compos 34(1):1–14

    Article  CAS  Google Scholar 

  155. Yu A et al (2008) Enhanced thermal conductivity in a hybrid graphite nanoplatelet–carbon nanotube filler for epoxy composites. Adv Mater 20(24):4740–4744

    Article  CAS  Google Scholar 

  156. Gaska K et al (2015) Enhanced thermal conductivity of epoxy–matrix composites with hybrid fillers. Polym Adv Technol 26(1):26–31

    Article  CAS  Google Scholar 

  157. Teng C-C et al (2012) Synergetic effect of thermal conductive properties of epoxy composites containing functionalized multi-walled carbon nanotubes and aluminum nitride. Compos Part B 43(2):265–271

    Article  CAS  Google Scholar 

  158. Lim HS et al (2013) Anisotropically alignable magnetic boron nitride platelets decorated with iron oxide nanoparticles. Chem Mater 25(16):3315–3319

    Article  CAS  Google Scholar 

  159. Yan H et al (2014) Enhanced thermal conductivity in polymer composites with aligned graphene nanosheets. J Mater Sci 49(15):5256–5264

    Article  CAS  Google Scholar 

  160. Lin Z et al (2013) Enhanced thermal transport of hexagonal boron nitride filled polymer composite by magnetic field-assisted alignment. In: Electronic components and technology conference (ECTC), 2013 IEEE 63rd, 2013, IEEE, Las Vegas, NV

    Google Scholar 

  161. Lin Z et al (2013) Magnetic alignment of hexagonal boron nitride platelets in polymer matrix: toward high performance anisotropic polymer composites for electronic encapsulation. ACS Appl Mater Interfaces 5(15):7633–7640

    Article  CAS  Google Scholar 

  162. Cho H-B et al (2013) Thermal anisotropy of epoxy resin-based nano-hybrid films containing BN nanosheets under a rotating superconducting magnetic field. Mater Chem Phys 139(2):355–359

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunyi Zhi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wang, Z., Zhi, C. (2016). Thermally Conductive Electrically Insulating Polymer Nanocomposites. In: Huang, X., Zhi, C. (eds) Polymer Nanocomposites. Springer, Cham. https://doi.org/10.1007/978-3-319-28238-1_11

Download citation

Publish with us

Policies and ethics